JP5134532B2 - 水素製造システムおよび当該システムにおけるオフガスの流量制御方法 - Google Patents

水素製造システムおよび当該システムにおけるオフガスの流量制御方法 Download PDF

Info

Publication number
JP5134532B2
JP5134532B2 JP2008515495A JP2008515495A JP5134532B2 JP 5134532 B2 JP5134532 B2 JP 5134532B2 JP 2008515495 A JP2008515495 A JP 2008515495A JP 2008515495 A JP2008515495 A JP 2008515495A JP 5134532 B2 JP5134532 B2 JP 5134532B2
Authority
JP
Japan
Prior art keywords
gas
cycle
flow rate
buffer tank
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008515495A
Other languages
English (en)
Other versions
JPWO2007132692A1 (ja
Inventor
俊彦 住田
正訓 三宅
秀典 南
芳範 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2008515495A priority Critical patent/JP5134532B2/ja
Publication of JPWO2007132692A1 publication Critical patent/JPWO2007132692A1/ja
Application granted granted Critical
Publication of JP5134532B2 publication Critical patent/JP5134532B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1695Adjusting the feed of the combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0357For producing uniform flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、炭化水素系原料から水素を工業的に製造するための水素製造システムに関する。さらに、本発明は、かかる水素製造システムにおけるオフガスの流量制御方法に関する。
水素(高純度水素)は、金属熱処理、ガラス溶融、半導体製造、光ファイバー製造など多くの産業分野で利用されている。また、水素は、燃料電池の燃料としても使用される。
水素を工業的に製造するための水素製造システムとしては、例えば、下記の特許文献1に記載されたものがある。特許文献1に記載されている水素製造システムは、気化器と、改質反応器と、圧力変動吸着式ガス分離装置とを具備する。気化器は、メタノールや天然ガスなどの炭化水素系原料、水、および酸素を含む混合原料を、改質反応器に供給する前に加熱して気化する。気化器においては、燃料の燃焼により生じる高温の燃焼ガスを熱源として、気化器内を通流する混合原料が所定の温度に加熱される。改質反応器は、気化された混合原料を改質反応させて改質ガス(水素を含む)を生じさせる。改質反応器においては、改質触媒の作用により、吸熱反応である水蒸気改質反応(炭化水素系原料と水から主生成物として水素が発生)と発熱反応である部分酸化改質反応(炭化水素系原料と酸素から主生成物として水素が発生)とが併発する。混合原料の組成を調整して水蒸気改質反応による吸熱量と部分酸化改質反応による発熱量とをバランスさせることにより、改質反応器内の反応温度が略一定に維持されるオートサーマル改質反応が進行する。
国際公開WO2006/006479号パンフレット
圧力変動吸着式ガス分離装置は、改質ガス中に含まれる水素以外の不要成分を吸着除去して製品ガスとしての水素富化ガスを導出するものであり、改質ガス中の不要成分を優先的に吸着するための吸着剤が充填された吸着塔を備える。圧力変動吸着式ガス分離装置においては、圧力変動吸着式ガス分離法(PSA分離法)によるガス分離が実行される。PSA分離法によるガス分離では、吸着塔において、例えば、吸着工程、脱着工程および再生工程を含むサイクルが繰り返して実行される。吸着工程では、吸着塔に改質ガスを導入して当該改質ガス中の不要成分を加圧条件下で吸着させ、当該吸着塔から水素富化ガスを導出する。脱着工程では、吸着塔内を減圧して吸着剤から不要成分を脱着させ、塔内に残存する水素と当該不要成分とを含むガス(オフガス)を吸着塔から排出する。再生工程では、例えば洗浄ガスが吸着塔内に通流されることにより、不要成分に対する吸着剤の吸着性能が回復される。改質反応器および圧力変動吸着式ガス分離装置の負荷が一定である定常稼動時においては、一般的に1サイクルが実行される時間(サイクルタイム)は一定とされている。
上記吸着塔から排出されたオフガスは、配管を介して気化器に供給され、当該オフガスに含まれる水素ガスが混合原料の気化用燃料として消費される。PSA分離法の特性上、吸着塔から排出されるオフガスは、ガス量やガス濃度の経時変化が大きい。上述のように吸着塔にて水素以外の不要成分を吸着除去する場合には、脱着工程初期においては、吸着塔から排出されるオフガスの量(流量)が比較的に多く、当該オフガス中の水素濃度も比較的に高い。一方、脱着工程における時間の経過とともに、吸着塔から排出されるオフガスの量は減少し、当該オフガス中の水素濃度も低下する。また、PSA分離法では、吸着塔における運転サイクルの関係上、オフガスを連続的に排出させることができない場合もある。したがって、吸着塔から排出されるオフガスが配管を通じてそのまま気化器に供給され続けると、気化器に供給されるオフガス中の水素ガスの量は、経時的に比較的大きく変動し、その結果、気化器での燃焼状態が不安定となってしまう。
そこで、このような気化器に供給されるオフガスないし水素ガスの量の変動を抑制して気化器での燃焼状態の安定化を図るために、圧力変動吸着式ガス分離装置と気化器とを繋ぐ配管の途中に比較的大きな容量を有するバッファタンクが設けられる場合がある。バッファタンクが設けられる場合、吸着塔から排出されるオフガスがバッファタンク内に一旦収容される。バッファタンク内では、オフガス中の水素濃度が平均化され、略一定の水素濃度のオフガスがバッファタンクから導出される。バッファタンクの下流側には、気化器に供給されるオフガスの流量を調整するための流量制御弁が設けられる。
このような水素製造システムでは、改質反応器および圧力変動吸着式ガス分離装置の負荷が一定である定常稼動時において、気化器ないし改質反応器には混合原料が一定の供給量(単位時間あたりの供給量)で供給される。一方、気化器に供給されるオフガスの制御としては、バッファタンクに流入するオフガスの平均流量と、バッファタンクから導出されるオフガスの流量とが略同一となるように、流量制御弁が所定の開口度に固定設定される。これにより、気化器では、略一定流量の気化用燃料がオフガスにより賄われ、安定した燃焼状態が維持される。また、改質反応器では、上述のように当該反応器内で進行する水蒸気改質反応および部分酸化改質反応の比率を調整することにより、改質反応器内が所定温度に調整されている。このように、上記の水素製造システムは、その定常稼動時において、システム稼動に伴う自己供給熱のみにより、混合原料を加熱気化し続けるとともに改質反応器内が所定温度に維持される。
ところで、上記の水素製造システムの定常稼動時において、製品ガスとしての水素富化ガスの生産量を変更する場合には、改質反応器および圧力変動吸着式ガス分離装置の負荷を変更する必要がある。例えば、水素富化ガスの生産量を増やす場合には、改質反応器および圧力変動吸着式ガス分離装置の負荷を、負荷変更後の定常稼動状態に至るまで徐々に増大させる必要があり、気化器ないし改質反応器に供給される混合原料の供給量は、連続的に増加させられる。これにより、改質反応器を経て圧力変動吸着式ガス分離装置に供給される改質ガスの量(流量)も連続的に増加するので、圧力変動吸着式ガス分離装置の稼動条件を変更する必要がある。圧力変動吸着式ガス分離装置は、上述のように吸着工程、脱着工程および再生工程を含むサイクルが繰り返されるように構成されている。したがって、1つのサイクルについては各工程が所定のタイムチャートに沿って実行され、当該サイクルは、所定のサイクルタイムにて実行される。負荷変更後の次のサイクルでは、圧力変動吸着式ガス分離装置に供給される改質ガスの流量が増加しているが、吸着塔での吸着剤による不要成分の保持能力(容量)が略一定であるので、当該改質ガスの流量の増加分に見合うだけサイクルタイムを短縮させる必要がある。これを繰り返すことにより、圧力変動吸着式ガス分離装置におけるサイクルタイムは、負荷変更後の定常稼動状態に到達するまで各サイクルごとに順次短縮させられる。
負荷増加があった場合、気化器に供給されるオフガスの従来の制御では、圧力変動吸着式ガス分離装置の運転サイクルに同期して、気化器に供給されるオフガスの流量を段階的に増加させていた。具体的には、1サイクルの間にバッファタンクに流入するオフガス量(別言すれば、当該1サイクルにおけるバッファタンクへ流入するオフガスの平均流量)と、当該1サイクルの間にバッファタンクから流出するオフガス量(別言すれば、当該1サイクルにおけるバッファタンクから流出するオフガスの流量)とが等しくなるように、圧力変動吸着式ガス分離装置でのサイクルの切り替えと同期してバッファタンクの下流側の流量制御弁の開口度を段階的に増加させる。このような制御によれば、製品ガス(水素富化ガス)の生産量を増やす場合においても、バッファタンクに流入するオフガス量およびバッファタンクから流出するオフガス量のマテリアルバランスを一致させることができ、バッファタンク内の圧力が極端に低下する、或は、上昇するといった不具合は発生しない。
しかしながら、このような制御では、気化器に供給される混合原料の供給量およびオフガスの流量について着目すると、混合原料の供給量は連続的に増加するのに対し、オフガスの流量は段階的(即ち、不連続的)に増加する。このようなオフガス流量の段階的な変化は、気化器における燃焼状態の段階的な変化をきたし、その結果、気化される混合原料の量が不連続的に増加する可能性がある。この場合、改質反応器では改質反応が円滑に進行せずに、水素製造システム全体の稼動に影響を及ぼす虞がある。即ち、製品ガスの生産量を増やす際に、水素製造システムが円滑に稼動しないという不都合を生じる虞がある。このような問題は、製品ガスの生産量を減らす場合においても生じるものであり、また、水素製造システムの稼動開始時や稼動停止時においても生じ得るものである。
本発明は、このような事情の下で考え出されたものであって、改質ガスを精製して水素富化ガスを得るための圧力変動吸着式ガス分離装置から排出されるオフガスを、気化器において、改質反応器への供給前の混合原料を加熱するための燃料として使用するように構成された水素製造システムにおいて、圧力変動吸着式ガス分離装置の負荷を変更する際に、気化器に供給されるオフガスの流量の急激な変動を回避することができるオフガスの流量制御方法を提供することを目的とする。
本発明の別の目的は、オフガスの流量制御方法が実施される水素製造システムを提供することにある。
本発明の第1の側面によれば、炭化水素系原料を含む混合原料を加熱して気化するための気化器と、上記炭化水素系原料の改質反応により、上記気化された混合原料から、水素を含有する改質ガスを生じさせるための改質反応器と、吸着剤が充填された吸着塔を用いて行う圧力変動吸着式ガス分離法により、吸着塔に上記改質ガスを導入して当該改質ガス中の不要成分を上記吸着剤に吸着させて当該吸着塔から水素富化ガスを導出するための吸着工程と、上記吸着剤から上記不要成分を脱着させて吸着塔内に残存する水素と当該不要成分とを含むオフガスを当該吸着塔から排出するための脱着工程とを少なくとも含むサイクルを上記吸着塔で繰り返し行うように構成された圧力変動吸着式ガス分離装置と、上記吸着塔から排出されるオフガスを上記混合原料を加熱するための燃料として上記気化器に供給するためのオフガス供給配管と、上記オフガス供給配管に設けられ、上記吸着塔から排出されるオフガスを一旦収容するためのバッファタンクと、上記バッファタンクを経て上記気化器に供給されるオフガスの流量を制御するための流量制御ユニットと、を備える水素製造システムにおけるオフガスの流量制御方法であって、上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記気化器に供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において上記流量制御ユニットによって経時的に連続して変化させる、オフガスの流量制御方法が提供される。
このようなオフガスの流量制御方法では、PSA分離装置の負荷を変動する際に、バッファタンクから気化器に供給するオフガスの流量を経時的に連続して変化させるため、バッファタンクからのオフガスの流量を段階的に変化させる場合に比べて、気化器に供給されるオフガスの流量の急激な変動を抑制することができる。したがって、本流量制御方法によれば、圧力変動吸着式ガス分離装置の負荷を変動させる場合でも、気化器での燃焼状態が急激に変化することはなく、その結果、水素製造システムの稼動への影響を低減することができる。
好ましくは、上記先行サイクルは、上記バッファタンクからのオフガスの流量を一定に維持する維持期間と当該オフガスの流量を直線的に変化させる後行変化期間とを含んでおり、上記後行サイクルは、上記バッファタンクからのオフガスの流量を直線的に変化させる先行変化期間と当該オフガスの流量を一定に維持する維持期間とを含んで構成されており、上記先行サイクルの上記後行変化期間の長さと上記後行サイクルの上記先行変化期間の長さとが同一とされ、かつ、これら2つの変化期間における上記バッファタンクからのオフガスの流量の変化率が一定になるとともに、上記後行サイクルの先行変化期間終了時における上記バッファタンクからのオフガスの流量と、上記後行サイクルにおいて上記吸着塔から排出されるオフガスの平均流量とが同一とされている。
このような流量制御方法によれば、バッファタンクからのオフガスの流量が経時的に連続して変化する期間である上記後行変化期間および上記先行変化期間においては、吸着塔から排出されてバッファタンク側へ供給されるオフガス量と、バッファタンクから気化器側へ供給されるオフガス量とは、同一となる。従って、PSA分離装置の負荷変動の前後を通じて、バッファタンクに流入するオフガス量およびバッファタンクから流出するオフガス量のマテリアルバランスを一致させつつ、バッファタンクから気化器に供給されるオフガスの流量の急激な変動を回避することができる。
本発明の一つの実施形態によれば、上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して短縮される場合には、上記先行サイクルの上記後行変化期間の長さは、上記後行サイクルのサイクルタイムの半分とされている。
本発明の他の実施形態によれば、上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して延長される場合には、上記後行サイクルの上記先行変化期間の長さは、上記先行サイクルのサイクルタイムの半分とされている。
本発明の第2の側面によれば、圧力変動吸着式ガス分離法により、難吸着成分である第1成分と易吸着成分である第2成分を含む原料ガスから、上記第1成分ガスを目的ガスとして取り出すための吸着工程と、上記第2成分ガスと上記第1成分ガスとを含むオフガスを取り出すための脱着工程とを含むサイクルを繰り返し行うように構成された圧力変動吸着式ガス分離装置と、オフガスを消費するためのオフガス消費ユニットと、上記圧力変動吸着式ガス分離装置から取り出されるオフガスを上記オフガス消費ユニットに供給するためのオフガス供給配管と、上記オフガス供給配管に設けられ、上記圧力変動吸着式ガス分離装置から取り出されるオフガスを一旦収容するためのバッファタンクと、上記バッファタンクを経て上記オフガス消費ユニットに供給されるオフガスの流量を制御するための流量制御ユニットと、を備えるシステムにおけるオフガスの流量制御方法であって、上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記オフガス消費ユニットに供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において上記流量制御ユニットによって経時的に連続して変化させる、オフガスの流量制御方法が提供される。
本発明の第3の側面によれば、炭化水素系原料を含む混合原料を加熱して気化するための気化器と、上記炭化水素系原料の改質反応により、上記気化された混合原料から、水素を含有する改質ガスを生じさせるための改質反応器と、吸着剤が充填された吸着塔を用いて行う圧力変動吸着式ガス分離法により、吸着塔に上記改質ガスを導入して当該改質ガス中の不要成分を上記吸着剤に吸着させて当該吸着塔から水素富化ガスを導出するための吸着工程と、上記吸着剤から上記不要成分を脱着させて吸着塔内に残存する水素と当該不要成分とを含むオフガスを当該吸着塔から排出するための脱着工程とを少なくとも含むサイクルを上記吸着塔で繰り返し行うように構成された圧力変動吸着式ガス分離装置と、上記吸着塔から排出されるオフガスを上記混合原料を加熱するための燃料として上記気化器に供給するためのオフガス供給配管と、上記オフガス供給配管に設けられ、上記吸着塔から排出されるオフガスを一旦収容するためのバッファタンクと、上記バッファタンクを経て上記気化器に供給されるオフガスの流量を制御するための流量制御ユニットと、を備える水素製造システムであって、上記流量制御ユニットは、上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記気化器に供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において経時的に連続して変化させるように構成されている、水素製造システムが提供される。
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
本発明に係るオフガスの流量制御方法を実行するのに使用することのできる水素製造システムの概略構成図である。 本発明に係るオフガスの流量制御方法を説明するための図であり、圧力変動吸着式ガス分離装置の負荷増大に伴う、バッファタンクから気化器に供給されるオフガスの流量の時間変化の一例を示すグラフである。 図2に示すグラフの一部を拡大した図である。 図3に示す流量変化例を説明するための図である。 本発明に係るオフガスの流量制御方法を説明するための図であり、圧力変動吸着式ガス分離装置の負荷減少に伴う、バッファタンクから気化器に供給されるオフガスの流量の時間変化の一例を示すグラフである。 図5に示すグラフの一部を拡大した図である。 図6に示す流量変化例を説明するための図である。
図1は、本発明の実施形態に係るオフガスの流量制御方法を実行するのに使用することができる水素製造システムX1の概略構成図である。水素製造システムX1は、気化器1と、改質反応器2と、熱交換器3と、気液分離器4と、圧力変動吸着式ガス分離装置(PSA分離装置)5と、バッファタンク6と、オフガス流量制御ユニット7とを備え、炭化水素系原料であるメタノールを主原料として水素を製造するように構成されている。
気化器1は、本体容器11と、供給管12と、触媒燃焼部13と、流通管14とを有しており、メタノールと水と酸素とを含む混合材料を加熱して気化状態とする。図1においては、気化器1の内部構造を概略的に示している。
本体容器11は閉端管状構造を有し、その上端部には燃焼ガス排出口111が設けられている。供給管12は、外管121および内管122からなる二重管構造を有する。外管121は、上端部が本体容器11外で配管81に連結されており、下端部が本体容器11中で開放されている。内管122は、上端部が本体容器11外で配管83とオフガス供給配管92とに連結されており、下端部が外管121中で開放されている。外管121と連結されている配管81は、空気ブロワ82に連結されている。内管122と連結されている配管83は、稼動開始時用の気化用燃料(例えばLPG:liquefied petroleum gas)の供給源(図示略)に連結されており、この配管83には、自動弁83aが設けられている。触媒燃焼部13は、外管121内の下端部に設けられており、水素や上述の稼動開始時用燃料を触媒燃焼させて高温の燃焼ガスを生じさせる。触媒燃焼部13には燃焼用触媒が充填されている。燃焼用触媒としては、例えば白金やパラジウムなどの白金系触媒が挙げられる。流通管14は、原料導入端141および原料導出端142を有し、供給管12を取り囲むスパイラル部を一部に有する。原料導入端141は、本体容器11の下端部から本体容器11外に出ている。原料導出端142は、本体容器11の上端部から本体容器11外に出ている。内管122を通じて供給された気化用燃料が触媒燃焼部13にて燃焼すると、当該燃焼ガスは、外管121の開放端(図中下端)から放出され、本体容器11内にて流通管14の周囲を通過して燃焼ガス排出口111から気化器1外に排出される。本体容器11内における供給管12および流通管14の周囲には、必要に応じて蓄熱材(図示略)が充填される。
改質反応器2は、図1に示すように、本体容器21と、改質反応部22とを有する。この改質反応器2は、メタノールの水蒸気改質反応および部分酸化改質反応を併発させることにより、気化器1において気化状態とされた混合原料中のメタノールを改質し、水素を含有する改質ガスを生じさせる。
本体容器21は、閉端管状構造を有し、その下端部には原料導入口211が設けられ、上端部には改質ガス導出口212が設けられている。原料導入口211は、気化器1の原料導出端142に連結されている。改質反応部22は、本体容器21の内部に設けられており、改質触媒(図示略)が充填されている。この改質触媒は、気化状態とされた混合原料中のメタノールについて水蒸気改質反応および部分酸化改質反応を併発させる。改質触媒としては、例えば酸化アルミニウム、酸化銅および酸化亜鉛を含む混合物を採用することができる。改質触媒における上記成分の含有比率は、例えば、CuOが42wt%、ZnOが47wt%、およびAl23が10wt%である。
熱交換器3は、メタノール水導入口31と、メタノール水導出口32と、改質ガス導入口33と、改質ガス導出口34とを有しており、気化器1に供給される前のメタノール水と改質反応器2において生じた改質ガスとの熱交換により、メタノール水を予熱し且つ改質ガスを冷却する。熱交換器3内には、メタノール水導入口31からメタノール水導出口32にメタノール水が流れるための経路、および、改質ガス導入口33から改質ガス導出口34に改質ガスが流れるための経路が設けられ、これら2種類の経路の間で熱交換が行われる。この熱交換器3は、気化器1において混合原料を加熱して気化させる際に要する熱エネルギを低減する。
メタノール水導入口31は、メタノール水の供給源(図示略)に配管84およびポンプ85を介して連結されている。ポンプ85は、メタノール水を所定の圧力で送出する。メタノール水導出口32は、配管86を介して、気化器1の原料導入端141に連結されている。配管86には、配管87がその一端部を介して連結されている。配管87の他端部は、酸素含有ガス(例えば酸素富化ガスや空気)の供給源(図示略)に連結されている。また、配管87には、酸素含有ガスの流量を調整するための流量制御弁87aが設けられている。改質ガス導入口33は、配管88を介して改質反応器2の改質ガス導出口212に連結されている。改質ガス導出口34は、配管89を介して気液分離器4に連結されている。
気液分離器4は、液排出口41を有しており、改質ガス中に混在する液成分(例えば水)42を当該ガスと気液分離する。液排出口41は、気液分離器4で回収された液成分42を当該気液分離器4の外部に排出する。
PSA分離装置5は、吸着剤が充填された少なくとも一つの吸着塔を備え、当該吸着塔を用いて行う圧力変動吸着式ガス分離法(PSA分離法)によって改質ガスから水素富化ガスを取り出すことのできるものである。吸着塔に充填される吸着剤としては、例えば、ゼオライト系吸着剤、カーボン系吸着剤、またはアルミナ吸着剤を採用することができ、好ましくはゼオライト系吸着剤が採用される。吸着塔には、一種類の吸着剤を充填してもよいし、複数種類の吸着剤を充填してもよい。PSA分離装置5にて実行されるPSA分離法によるガス分離では、吸着工程、脱着工程、および再生工程を含むサイクルが繰り返される。吸着工程では、吸着塔内が所定の高圧状態にある吸着塔に改質ガスを導入して当該改質ガス中の不要成分(一酸化炭素、二酸化炭素、窒素など)を吸着剤に吸着させ、当該吸着塔から水素富化ガスを導出する。脱着工程では、吸着塔内を減圧して吸着剤から不要成分を脱着させ、吸着塔内に残存する水素と当該不要成分とを含むオフガスを外部に排出する。再生工程では、吸着塔を再度の吸着工程に備えさせるべく、例えば洗浄ガスを吸着塔内に通流させることにより、不要成分に対する吸着剤の吸着性能を回復させる。このようなPSA分離装置5としては、公知のPSA水素分離装置を用いることができる。
バッファタンク6は、PSA分離装置5と気化器1とを繋ぐオフガス供給配管92に設けられており、PSA分離装置5の吸着塔から排出されて気化器1に供給されるオフガスを一旦収容してオフガスの流量の変動を抑制する。
オフガス流量制御ユニット7は、バッファタンク6の下流側のオフガス供給配管92に設けられた流量制御弁71と、この流量制御弁71の作動を制御するコントローラ72とを含み、バッファタンク6から気化器1に供給されるオフガスの流量を調整する。オフガス流量制御ユニット7においては、バッファタンク6に流入するオフガスの流量(平均流量)に応じて、コントローラ72により流量制御弁71の開口度が調節される。
次に、以上の構成を有する水素製造システムX1の具体的な動作を説明する。水素製造システムX1の稼動時には、ポンプ85が作動することにより、所定濃度のメタノール水が配管84を介してメタノール水導入口31より熱交換器3内に導入される。熱交換器3内では、相対的に低温(例えば10〜25℃)のメタノール水は、熱交換器3内に導入される相対的に高温(例えば230〜270℃)の改質ガスとの熱交換により、例えば137℃に加熱(予熱)される。熱交換器3において予熱されたメタノール水は、メタノール水導出口32から熱交換器3外に導出され、配管86を通過する際に、配管87を介して配管86に導入される酸素含有ガス(例えば酸素富化ガスや空気)と混合される。酸素含有ガスの供給量は、流量制御弁87aにより調整することができる。
このようにして得られる混合原料(メタノール、水、酸素を含む)は、気化器1の流通管14にその原料導入端141から導入される。定常稼動時には、気化器1に供給される混合原料の供給量(単位時間あたりの供給量)は、一定となるように調整されている。流通管14に導入された混合原料は、流通管14を通過する過程で、触媒燃焼部13にて生ずる燃焼ガスを熱源として、後の改質反応器2での改質反応において必要とされる反応温度(例えば230〜270℃)まで加熱されて気化される。気化された混合原料は、流通管14の原料導出端142から気化器1外に導出され、原料導入211を介して改質反応器2に供給される。
改質反応器2に供給された混合原料は改質反応部22に導入される。改質反応部22においては、改質触媒の作用により、吸熱反応であるメタノールの水蒸気改質反応および発熱反応であるメタノールの部分酸化改質反応が併発し、混合原料から、水素を含む改質ガスが発生する。本実施形態では、改質反応部22内の反応温度(例えば230〜270℃)が略一定に維持されるように、各反応で消費されるメタノールの割合(即ち水蒸気改質反応と部分酸化改質反応各反応の比率)が設定されている。これにより、改質反応部22においては、メタノールのオートサーマル改質反応が進行する。
改質反応部22において生じた改質ガスは、改質ガス導出口212から改質反応器2外に導出され、配管88および改質ガス導入口33を介して熱交換器3内に導入される。熱交換器3内では、相対的に高温(例えば230〜270℃)の改質ガスは、上述のように熱交換器3内に導入される相対的に低温(例えば10〜25℃)のメタノール水との熱交換により、例えば40℃に冷却される。熱交換器3において冷却された改質ガスは、改質ガス導出口34から熱交換器3外に導出され、配管89を介して気液分離器4に導入される。
気液分離器4に導入された改質ガスは、当該改質ガス中に混在する液成分42が当該改質ガスから気液分離される。この結果、気液分離器4の下流に位置するPSA分離装置5の吸着塔に液成分42が導入されるのを抑制することができ、液成分42が吸着塔に充填されている吸着剤と接触することに起因する当該吸着剤の劣化を抑制することができる。この気液分離により回収された液成分42は、液排出口41を介して気液分離器4から外部に排出される。一方、気液分離器4を経た改質ガスは、配管90を介してPSA分離装置5に供給される。定常稼動時には、気化器1に供給される混合原料の供給量が一定であるので、改質反応器2を経てPSA分離装置5に供給される改質ガスの流量は、略一定となる。
PSA分離装置5においては、PSA分離法により、吸着工程、脱着工程、および再生工程を含むサイクルが繰り返される。吸着工程では、吸着塔内が所定の高圧状態にある吸着塔に、水素を含有する改質ガスが導入される。当該吸着塔では、改質ガスに含まれる不要成分(一酸化炭素、二酸化炭素、未反応のメタノール、窒素など)が吸着剤により吸着除去され、水素富化ガス(水素濃度の高いガス)が製品ガスとして塔外へ導出される。得られた水素富化ガスは、配管91を介して水素製造システムX1外に取り出される。脱着工程では、吸着塔内の減圧により吸着剤から不要成分が脱着され、吸着塔内に残存する水素と当該不要成分とを含むオフガスが吸着塔外に排出される。再生工程では、例えば洗浄ガス(一般的には水素富化ガスの一部)が吸着塔内に通流されることにより、不要成分に対する吸着剤の吸着性能が回復される。PSA分離装置5からは、以上のようにして、水素富化ガス(製品ガス)が取り出されるとともに、オフガスが取り出される。水素富化ガスは、例えば、所定の用途に連続的に使用されるか、或は、所定のタンクに貯留される。オフガスは、オフガス供給配管92を介してバッファタンク6に流入し、バッファタンク6内に一旦貯留される。
定常稼動時においては、PSA分離装置5の吸着塔へ供給される改質ガスの流量が略一定であるため、当該PSA分離装置5にて繰り返し実行されるサイクルの時間(サイクルタイム)は、一定とされている。PSA分離装置5のサイクルタイムおよびPSA分離装置5から排出されるオフガス量の一例を挙げると、PSA分離装置5の負荷が50%の定常稼動時においては、サイクルタイムが200秒であり、排出されるオフガス量が平均流量にして7.1Nm3/hである。
バッファタンク6内のオフガスは、流量制御弁71によってその流量が調整されたうえで、オフガス供給配管92を介して気化器1に気化燃料として供給される。定常稼動時においては、PSA分離装置5から排出されるオフガスの平均流量とバッファタンク6から排出されるオフガスの流量とが同一となるように流量制御弁71の開口度が設定される。上述した例のように、PSA分離装置5から排出されるオフガスの平均流量が7.1Nm3/hである場合には、流量制御弁71を通過したオフガスの流量が7.1Nm3/hとなるように流量制御弁71の開口度が固定設定されている。これにより、バッファタンク6に流入するオフガス量およびバッファタンク6から流出するオフガス量のマテリアルバランスを一致させることができる。
気化用燃料として気化器1に供給されたオフガスは、内管122および外管121を通って触媒燃焼部13に導入される。これとともに、触媒燃焼部13には配管81および外管121を通って空気が供給され続ける。この触媒燃焼部13において、その燃焼用触媒の作用により、オフガス中の水素は触媒燃焼され、高温(例えば500〜600℃)の燃焼ガスが生ずる。触媒燃焼部13において生じた高温の燃焼ガスは、供給管12の外管121の開放端(図中下端)から放出され、本体容器11内にて流通管14の周囲を通過して燃焼ガス排出口111から気化器1外に排出される。燃焼ガスが流通管14の周囲を通過する際、熱源としての燃焼ガスから流通管14に熱エネルギが伝達され、流通管14を流通する混合原料は、所定温度(例えば230〜270℃)まで加熱されて気化される。流通管14はスパイラル部を有しているため、流通管14の表面積(受熱面積)を大きく確保することができる。したがって、このようなスパイラル部を有する流通管14は、流通管14内を流通する混合原料に対する伝熱効率を高めて、当該混合原料の加熱を効率的に行うことができる。また、触媒燃焼においては不完全燃焼ガスをほとんど発生しないので、燃焼ガスを最終的に大気中に放出することによる環境負荷は少ない。
以上のように、水素製造システムX1では、その定常稼動時において、原料が、熱交換器3、気化器1、改質反応器2、熱交換器3、気液分離器4、およびPSA分離装置5を順次経ることにより、当該PSA分離装置5から水素富化ガスが取り出され、且つ、PSA分離装置5から排出されるオフガスがバッファタンク6を経て気化器1に供給される。
水素製造システムX1では、PSA分離装置5から排出されて気化器1に供給されるオフガスの流量をバッファタンク6ないしオフガス流量制御ユニット7を通じて調節することにより、定常稼動時において、気化器1にて混合原料を加熱して所定温度の気化状態とするのに必要な燃料が、PSA分離装置5からのオフガスのみで賄われる。また、水素製造システムX1では、改質反応器2の改質反応部22で進行する炭化水素系原料の水蒸気改質反応および部分酸化改質反応の比率を調節することにより、改質反応器2内が所定の反応温度に維持されている。このように、水素製造システムX1は、その定常稼動時において、システム稼動に伴う自己供給熱のみにより、混合原料を加熱気化し続けるとともに改質反応器2の改質反応部22が所定温度に維持される。
上述した水素製造システムX1の動作は、気化器1の触媒燃焼部13にオフガスが充分に供給されている定常稼動時におけるものである。しかしながら、例えば起動時には、触媒燃焼部13にオフガスが充分に供給されない。そのような場合、例えば触媒燃焼部13に対してオフガスを充分に供給することができるまでの間は自動弁83aを開状態としておくことにより、触媒燃焼部13において必要な気化用燃料(例えばLPG)が気化器1ないしその触媒燃焼部13に補助的に供給される。
次に、定常稼動状態から製品ガスとしての水素富化ガスの生産量を変更する場合における水素製造システムX1動作について説明する。例えば、水素富化ガスの生産量を増加させる場合には、改質反応器2およびPSAガス分離装置5の負荷を増大させる必要がある。この場合、改質反応器2の負荷については急激な変動を避けるのが好ましく、したがって、気化器1ないし改質反応器2に供給される混合原料の供給量としては、経時的に連続して増加させられる。改質反応器2に供給される混合原料の供給量が連続的に増加すると、改質反応器2での改質ガスの発生量も増加する。その結果、PSA分離装置5に供給される改質ガスの流量も連続的に増加するので、PSA分離装置5の稼動条件を変更する必要がある。PSA分離装置5については、吸着塔での吸着剤による不要成分の保持能力が略一定であるので、吸着塔に導入される改質ガスの流量が連続的に増加する場合には、当該改質ガスの流量の増加分に見合うだけサイクルタイムを順次短縮させなければならない。このようにサイクルタイムが順次短縮されると、PSA分離装置5から排出されるオフガスの量(流量)は増加する。
バッファタンク6から気化器1に供給されるオフガスの制御は、その流量が経時的に連続して増加する部分を含むように行われる。このような制御によるバッファタンク6から気化器1へのオフガスの流量の時間変化の一例を表すグラフを、図2に示す。図2は、PSA分離装置5の負荷を50%から100%まで変動させる過程における流量の変化を示す。図2のグラフにおいて、横軸は、PSA分離装置5の負荷変動時の経過時間を表し、縦軸(左側)は、オフガスの流量を表す。図2のグラフ中において、破線は、PSA分離装置5の各サイクルでの吸着塔から排出されるオフガスの平均流量を表し、実線は、バッファタンク6から気化器1に供給されるオフガスの流量を表す。なお、図2に表された破線(上記平均流量を示す破線と同じ)は、従来の流量制御方法におけるバッファタンクから気化器に供給されるオフガスの流量変化に相当する。図3は、図2の一部を拡大したものであり、隣接する2つのサイクルC1,C2における流量変化を表す。
図3において、サイクルC1からサイクルC2に切替わると、当該サイクルにおけるサイクルタイムは、CT1からCT2に短縮される。同図に表れているように、バッファタンク6からのオフガスの流量(実線部分)の流量変化は、サイクルC1における変化部分とサイクルC2における変化部分とを含んでいる。このうち、サイクルC1における変化部分は、直線的に連続して増加する先行変化期間C1aと一定に維持する維持期間C1bと直線的に連続して増加する後行変化期間C1cとで構成されている。また、サイクルC2における変化部分は、直線的に連続して増加する先行変化期間C2aと一定に維持する維持期間C2bと直線的に連続して増加する後行変化期間C2cとで構成されている。このように、サイクルC1からサイクルC2への切替時よりも先行して、サイクルC1の後行変化期間C1cの開始と同時に流量制御弁71の開口度を大きくし始め、次のサイクルC2の先行変化期間C2aが終了するまで当該開口度を連続的に徐々に大きくする。以上のようなサイクルタイムの変更に伴ってオフガスの流量を経時的に連続して変化させる制御は、従来採用されていたオフガスの流量を段階的に変化させる場合と異なり、気化器1に供給されるオフガスの流量の急激な変動を回避することができる。したがって、このようなオフガスの流量制御方法によれば、水素製造システムX1による水素富化ガスの生産量の増加に伴ってPSA分離装置5の負荷を変動させる場合でも、気化器1での燃焼状態が急激に変化することはなく、その結果、水素製造システムX1の稼動への影響も低減される。
図3に示す流量変化例では、サイクルC1の後行変化期間C1cの長さは、サイクルC2のサイクルタイムCT2(160秒)の半分の長さ(CT2/2:80秒)とされている。また、サイクルC1の後行変化期間C1cの長さCT2/2(80秒)とサイクルC2の先行変化期間C2aの長さとが同一とされる。また、これら2つの連続する期間C1c,C2aにおけるバッファタンク6からのオフガス流量の変化率が一定とされている。加えて、サイクルC2の先行変化期間C2a終了時におけるバッファタンク6から気化器1へのオフガスの流量と、サイクルC2において吸着塔から排出されるオフガスの平均流量とが同一とされている。即ち、維持期間C2bにおいて、吸着塔からのオフガスの平均流量(破線部分)と、バッファタンク6からのオフガスの流量(実線部分)とは同一になる。このようなサイクルC1およびC2の関係は、PSA分離装置5の負荷変動に伴ってサイクルタイムを順次短縮していく過程における、図2に表れているすべての隣接するサイクル間にて成立している。
図3から理解できるように、サイクルC1の後行変化期間C1cでは、バッファタンク6から供給されるオフガス量(実線部分)は、PSA分離装置5から排出されるオフガス量(破線部分)に比べて破線部分と実線部分とで包囲される三角形T1の面積分だけ多くなるが、サイクルC2の先行変化期間C2aでは、バッファタンク6から供給されるオフガス量(実線部分)は、PSA分離装置5から排出されるオフガス量(破線部分)に比べて破線部分と実線部分とで包囲される三角形T2の面積分だけ少なくなる。一方、上述のように、サイクルC1の後行変化期間C1cの長さとサイクルC2の先行変化期間C2aの長さとが同一とされ、かつ、これら連続する期間C1c,C2aの流量変化率が一定とされているため、三角形T1および三角形T2は合同の関係にあり、その面積が同一である。したがって、サイクルC1の後行変化期間C1cおよびサイクルC2の先行変化期間C2aにおいては、三角形T1と三角形T2との間でオフガス量の不均衡部分が相殺され、PSA分離装置5の吸着塔から排出されるオフガス量と気化器1側へ供給されるオフガス量とは、同一になる。また、上述のように、維持期間C2bにおいては、吸着塔からのオフガスの平均流量とバッファタンク6からのオフガスの流量とが同一であるので、当該期間での吸着塔から排出されるオフガス量と気化器1側へ供給されるオフガス量とは、同一になる。以上から理解できるように、PSA分離装置5の負荷変動の前後を通じて、バッファタンク6に流入するオフガス量およびバッファタンク6から流出するオフガス量についてマテリアルバランスは、一致する。
また、上述のように、サイクルC1の後行変化期間C1cの長さは、サイクルC2のサイクルタイムCT2の半分の長さ(CT2/2)とされている。この点について、主としてオフガスの流量が変化する期間(サイクルC1の後行変化期間C1cおよびサイクルC2の先行変化期間C2a)に関し、具体的に検討する。まず、オフガスの流量の急激な変動を回避する観点から、オフガス流量の変化率は、できるだけ小さいことが好ましく、したがって、オフガスの流量が連続して変化する期間は、できるだけ長いことが好ましい。サイクルC1,C2のみに着目しつつサイクルC2のサイクルタイムCT2がサイクルC1のサイクルタイムCT1よりも短いことを考慮し、上述したような後行変化期間C1cの長さと先行変化期間C2aの長さとが同一であり、かつ、これら連続する期間C1c,C2aの流量変化率が一定であるという幾何的な関係がサイクルC1,C2間でのみ成立すればよいと仮定すると、サイクルC2の先行変化期間C2aとして確保できる長さの最大値はサイクルタイムCT2である(図4参照)。この場合、サイクルC1の後行変化期間C1cの長さは、サイクルC2の先行変化期間C2aの長さと同一であるので、サイクルC2のサイクルタイムCT2と同一になる。ところが、図3に示す流量変化例では、PSA分離装置5の負荷変動の過程は、上記したサイクルC1,C2とその他のサイクルとを含んで構成されており、サイクルタイムが順次短縮するように実行される。このため、サイクルC1,C2間以外のすべての隣接するサイクル間においても上記の幾何的な関係が成立するためには、サイクルC2の先行変化期間C2aおよびサイクルC1の後行変化期間C1cとして確保できる長さの最大値は、サイクルタイムCT2の半分になる。したがって、このような制御は、PSA分離装置5の負荷変動に伴いサイクルタイムを順次短縮する場合、負荷変動の過程において、バッファタンク6について出入りするオフガス量のマテリアルバランスを一致させつつバッファタンク6からのオフガスの流量の変化ができるだけ抑制されていることを意味しており、水素製造システムX1を円滑に稼動させるうえで好適である。
このような流量制御では、PSA分離装置5の負荷変動(本実施例では50%から100%に変更)を決定すると、負荷変動の開始から終了に至るまでのPSA分離装置5の各サイクルのサイクルタイムおよび当該各サイクルにおいて吸着塔から排出されるオフガスの平均流量(図2に表された破線部分)については、コンピュータプログラムによる演算処理を実行することにより算出することができる。そして、各サイクルごとの吸着塔から排出されるオフガスの平均流量が算出されると、バッファタンク6から気化器1に供給されるオフガスの流量の変化(図2に表された実線部分)については、コンピュータプログラムによる演算処理を実行することにより算出することができる。バッファタンク6からのオフガスの流量の変化が決定すると、当該流量に関する制御信号がオフガス流量制御ユニット7に伝送され、当該オフガス流量制御ユニット7(コントローラ72および流量制御弁71)の作動により、バッファタンク6からのオフガス流量が図2に表されるように経時的に変化するようにオフガス流量が調整される。
次に、水素製造システムX1の定常稼動状態から製品ガスとしての水素富化ガスの生産量を減らす場合の制御について説明する。水素富化ガスの生産量を減らす場合には、改質反応器2およびPSA分離装置5の負荷を減少させる必要がある。この場合、改質反応器2の負荷については急激な変動を避けるのが好ましく、したがって、気化器1ないし改質反応器2に供給される混合原料の供給量としては、経時的に連続的に減少させられる。改質反応器2に供給される混合原料の供給量が連続的に減少すると、改質反応器2での改質ガスの発生量も減少し、その結果、PSA分離装置5に供給される改質ガスの流量も連続的に減少するので、PSA分離装置5の稼動条件を変更する必要がある。PSA分離装置5については、吸着塔での吸着剤による不要成分の保持能力が略一定であるので、吸着塔に導入される改質ガスの流量が連続的に減少する場合には、当該改質ガスの流量の減少分に見合うだけサイクルタイムを順次延長する。サイクルタイムが順次延長されると、PSA分離装置5から排出されるオフガスの量(流量)は減少する。
バッファタンク6から気化器1に供給されるオフガスの制御は、その流量が経時的に連続して減少する部分を含むように行われる。当該制御によるバッファタンク6から気化器1へのオフガスの流量の時間変化の一例を表すグラフを、図5に示す。図5は、PSA分離装置5の負荷を100%から50%まで変動させる過程における流量の変化を示す。図5のグラフにおいて、横軸は、PSA分離装置5の負荷変動時の経過時間を表し、縦軸(左側)は、オフガスの流量を表す。図5のグラフ中において、破線は、PSA分離装置5の各サイクルでの吸着塔から排出されるオフガスの平均流量を表し、実線は、バッファタンク6から気化器1に供給されるオフガスの流量を表す。なお、図5に表された破線(上記平均流量を示す破線と同じ)は、従来の流量制御方法におけるバッファタンクから気化器に供給されるオフガスの流量変化に対応する。図6は、図5の一部を拡大したものであり、隣接する2つのサイクルC1',C2'における流量変化を表す。
図6において、サイクルC1'からサイクルC2'に切替わると、当該サイクルにおけるサイクルタイムは、CT1'からCT2'に延長される。同図に表れているように、バッファタンク6からのオフガスの流量変化(実線部分)は、サイクルC1'における変化部分とサイクルC2'における変化部分とを含んでいる。このうち、サイクルC1'における変化部分は、直線的に連続して減少する先行変化期間C1a'と一定に維持する維持期間C1b'と直線的に連続して減少する後行変化期間C1c'とで構成されている。また、サイクルC2'における変化部分は、直線的に連続して減少する先行変化期間C2a'と一定に維持する維持期間C2b'と直線的に連続して減少する後行変化期間C2c'とで構成されている。このように、サイクルC1'からサイクルC2'への切替時よりも先行して、サイクルC1'の後行変化期間C1c'の開始と同時に流量制御弁71の開口度を小さくし始め、次のサイクルC2'の先行変化期間C2a'が終了するまで当該開口度を連続的に徐々に小さくする。以上のようなサイクルタイムの変更に伴ってオフガスの流量を経時的に連続して変化させる制御は、従来採用されていたオフガスの流量を段階的に変化させる場合と異なり、気化器1に供給されるオフガスの流量の急激な変動を回避することができる。したがって、このようなオフガスの流量制御方法によれば、水素製造システムX1による水素富化ガスの生産量の減少に伴ってPSA分離装置5の負荷を変動させる場合でも、気化器1での燃焼状態が急激に変化することはなく、その結果、水素製造システムX1の稼動への影響も低減される。
図6において、サイクルC2'の先行変化期間C2a'の長さは、サイクルC1'のサイクルタイムCT1'(169秒)の半分の長さ(CT1'/2:84.5秒)とされている。また、サイクルC1'の後行変化期間C1c'の長さはサイクルC2'の先行変化期間C2a'の長さCT1'/2と同一とされている。また、これら連続する2つの期間C1c',C2a'におけるバッファタンク6からのオフガス流量の変化率が一定とされている。加えて、サイクルC2'の先行変化期間C2a'終了時におけるバッファタンク6から気化器1へのオフガスの流量と、サイクルC2'において吸着塔から排出されるオフガスの平均流量とが同一とされている。即ち、維持期間C2b'において、吸着塔からのオフガスの平均流量(破線部分)と、バッファタンク6からのオフガスの流量(実線部分)とは同一になる。このようなサイクルC1'およびサイクルC2'の関係は、PSA分離装置5の負荷変動に伴ってサイクルタイムを順次延長していく過程における、図5に表れているすべての隣接するサイクル間にて成立している。
図6から理解できるように、サイクルC1'の後行変化期間C1c'では、バッファタンク6から供給されるオフガス量(実線部分)は、PSA分離装置5から排出されるオフガス量(破線部分)に比べて破線部分と実線部分とで包囲される三角形T1'の面積分だけ少なくなるが、サイクルC2'の先行変化期間C2a'では、バッファタンク6から供給されるオフガス量(実線部分)は、PSA分離装置5から排出されるオフガス量(破線部分)に比べて破線部分と実線部分とで包囲される三角形T2'の面積分だけ多くなる。一方、上述のように、サイクルC1'の後行変化期間C1c'の長さとサイクルC2'の先行変化期間C2a'の長さとが同一とされ、かつ、これら連続する期間C1c',C2a'の流量変化率が一定とされているため、三角形T1'および三角形T2'は合同の関係にあり、その面積が同一である。したがって、サイクルC1'の後行変化期間C1c'およびサイクルC2'の先行変化期間C2a'においては、三角形T1'と三角形T2'との間でオフガス量の不均衡部分が相殺され、PSA分離装置5の吸着塔から排出されるオフガス量と気化器1側へ供給されるオフガス量とは、同一になる。一方、上述のように、維持期間C2b'においては、吸着塔からのオフガスの平均流量とバッファタンク6からのオフガスの流量とが同一であるので、当該期間での吸着塔から排出されるオフガス量と気化器1側へ供給されるオフガス量とは、同一になる。このようなことから理解できるように、本流量変化例では、PSA分離装置5の負荷変動の前後を通じて、バッファタンク6に流入するオフガス量およびバッファタンク6から流出するオフガス量についてマテリアルバランスは、一致する。
また、上述のように、サイクルC2'の先行変化期間C2a'の長さは、サイクルC1'のサイクルタイムCT1'の半分の長さ(CT1'/2)とされている。この点について、主としてオフガスの流量が変化する期間(サイクルC1'の後行変化期間C1c'およびサイクルC2'の先行変化期間C2a')に関し、具体的に検討する。まず、オフガスの流量の急激な変動を回避する観点から、オフガス流量の変化率は、できるだけ小さいことが好ましく、したがって、オフガスの流量が連続して変化する期間は、できるだけ長いことが好ましい。この点、サイクルC1',C2'のみに着目しつつサイクルC2'のサイクルタイムCT2'がサイクルC1'のサイクルタイムCT1'よりも長いことを考慮し、上述したような後行変化期間C1c'の長さは先行変化期間C2a'の長さと同一であり、かつ、これら連続する期間C1c',C2a'の流量変化率が一定であるという幾何的な関係がサイクルC1',C2'間でのみ成立すればよいと仮定すると、サイクルC1'の後行変化期間C1c'として確保できる長さの最大値はサイクルタイムCT1'である(図7参照)。この場合、サイクルC2'の先行変化期間C2a'の長さは、サイクルC1'の後行変化期間C1c'の長さと同一であるので、サイクルC1'のサイクルタイムCT1'と同一になる。しかしながら、図6に示す流量変化例では、PSA分離装置5の負荷変動の過程は、上記したサイクルC1',C2'とその他のサイクルとを含んで構成されており、サイクルタイムが順次延長するように実行される。このため、サイクルC1',C2'間以外のすべての隣接するサイクル間においても上記の幾何的な関係が成立するためには、サイクルC1'の後行変化期間C1c'およびサイクルC2'の先行変化期間C2a'として確保できる長さの最大値は、サイクルタイムCT1'の半分になる。したがって、このような制御は、PSA分離装置5の負荷変動に伴いサイクルタイムを順次延長する場合、負荷変動の過程において、バッファタンク6について出入りするオフガス量のマテリアルバランスを一致させつつバッファタンク6からのオフガスの流量の変化ができるだけ抑制されていることを意味しており、水素製造システムX1を円滑に稼動させるうえで好適である。
以上、本発明の実施形態を説明したが、本発明の範囲は上記した実施形態に限定されるものではない。上記実施形態においては、PSA分離装置の負荷変動に伴うオフガスの流量制御方法として、定常稼動状態から水素富化ガスの生産量を増やす、或は、減らす場合を例に挙げて説明した。しかしながら、本発明に係るにオフガスの流量制御方法は、例えば、水素製造システムの稼動開始時(稼動開始後から所定時間経過して定常稼動状態に至るまで)、或は、稼動停止時(定常稼動状態から稼動停止に至るまで)にPSA分離装置の負荷変動を伴う場合においても適用することが可能である。
本発明に係るオフガスの流量制御方法を実行するのに使用する水素製造システムの具体的な構成は、発明の思想から逸脱しない範囲内で種々に変更が可能である。また、本発明に係るオフガスの流量制御方法は、上記実施形態のような水素製造システムへの適用に限定されず、PSA分離装置から取り出されるオフガスを何らかの目的で消費するためのオフガス消費ユニットを備えたシステムに適用してもよい。例えば、メタンと他の成分ガスとを含む原料ガスから、PSA分離装置により当該他の成分ガスを目的ガスとして採取しつつ、メタンを含むオフガスを、バッファタンクを経てオフガス消費ユニットに燃料ガスとして供給するように構成されたシステムにおいても、本発明方法を有意に適用することができる。

Claims (9)

  1. 炭化水素系原料を含む混合原料を加熱して気化するための気化器と、
    上記炭化水素系原料の改質反応により、上記気化された混合原料から、水素を含有する改質ガスを生じさせるための改質反応器と、
    吸着剤が充填された吸着塔を用いて行う圧力変動吸着式ガス分離法により、吸着塔に上記改質ガスを導入して当該改質ガス中の不要成分を上記吸着剤に吸着させて当該吸着塔から水素富化ガスを導出するための吸着工程と、上記吸着剤から上記不要成分を脱着させて吸着塔内に残存する水素と当該不要成分とを含むオフガスを当該吸着塔から排出するための脱着工程とを少なくとも含むサイクルを上記吸着塔で繰り返し行うように構成された圧力変動吸着式ガス分離装置と、
    上記吸着塔から排出されるオフガスを上記混合原料を加熱するための燃料として上記気化器に供給するためのオフガス供給配管と、
    上記オフガス供給配管に設けられ、上記吸着塔から排出されるオフガスを一旦収容するためのバッファタンクと、
    上記バッファタンクを経て上記気化器に供給されるオフガスの流量を制御するための流量制御ユニットと、を備える水素製造システムにおけるオフガスの流量制御方法であって、
    上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記気化器に供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において上記流量制御ユニットによって経時的に連続して変化させる、オフガスの流量制御方法。
  2. 上記先行サイクルは、上記バッファタンクからのオフガスの流量を一定に維持する維持期間と当該オフガスの流量を直線的に変化させる後行変化期間とを含んでおり、
    上記後行サイクルは、上記バッファタンクからのオフガスの流量を直線的に変化させる先行変化期間と当該オフガスの流量を一定に維持する維持期間とを含んで構成されており、
    上記先行サイクルの上記後行変化期間の長さと上記後行サイクルの上記先行変化期間の長さとが同一とされ、かつ、これら2つの変化期間における上記バッファタンクからのオフガスの流量の変化率が一定になるとともに、
    上記後行サイクルの先行変化期間終了時における上記バッファタンクからのオフガスの流量と、上記後行サイクルにおいて上記吸着塔から排出されるオフガスの平均流量とが同一とされている、請求項1に記載のオフガスの流量制御方法。
  3. 上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して短縮される場合には、上記先行サイクルの上記後行変化期間の長さは、上記後行サイクルのサイクルタイムの半分とされている、請求項2に記載のオフガスの流量制御方法。
  4. 上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して延長される場合には、上記後行サイクルの上記先行変化期間の長さは、上記先行サイクルのサイクルタイムの半分とされている、請求項2に記載のオフガスの流量制御方法。
  5. 圧力変動吸着式ガス分離法により、難吸着成分である第1成分と易吸着成分である第2成分を含む原料ガスから、上記第1成分ガスを目的ガスとして取り出すための吸着工程と、上記第2成分ガスと上記第1成分ガスとを含むオフガスを取り出すための脱着工程とを含むサイクルを繰り返し行うように構成された圧力変動吸着式ガス分離装置と、
    オフガスを消費するためのオフガス消費ユニットと、
    上記圧力変動吸着式ガス分離装置から取り出されるオフガスを上記オフガス消費ユニットに供給するためのオフガス供給配管と、
    上記オフガス供給配管に設けられ、上記圧力変動吸着式ガス分離装置から取り出されるオフガスを一旦収容するためのバッファタンクと、
    上記バッファタンクを経て上記オフガス消費ユニットに供給されるオフガスの流量を制御するための流量制御ユニットと、を備えるシステムにおけるオフガスの流量制御方法であって、
    上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記オフガス消費ユニットに供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において上記流量制御ユニットによって経時的に連続して変化させる、オフガスの流量制御方法。
  6. 炭化水素系原料を含む混合原料を加熱して気化するための気化器と、
    上記炭化水素系原料の改質反応により、上記気化された混合原料から、水素を含有する改質ガスを生じさせるための改質反応器と、
    吸着剤が充填された吸着塔を用いて行う圧力変動吸着式ガス分離法により、吸着塔に上記改質ガスを導入して当該改質ガス中の不要成分を上記吸着剤に吸着させて当該吸着塔から水素富化ガスを導出するための吸着工程と、上記吸着剤から上記不要成分を脱着させて吸着塔内に残存する水素と当該不要成分とを含むオフガスを当該吸着塔から排出するための脱着工程とを少なくとも含むサイクルを上記吸着塔で繰り返し行うように構成された圧力変動吸着式ガス分離装置と、
    上記吸着塔から排出されるオフガスを上記混合原料を加熱するための燃料として上記気化器に供給するためのオフガス供給配管と、
    上記オフガス供給配管に設けられ、上記吸着塔から排出されるオフガスを一旦収容するためのバッファタンクと、
    上記バッファタンクを経て上記気化器に供給されるオフガスの流量を制御するための流量制御ユニットと、を備える水素製造システムであって、
    上記流量制御ユニットは、上記圧力変動吸着式ガス分離装置の負荷変動に伴って先行サイクルから後行サイクルにかけてサイクルタイムを変更する際に、上記バッファタンクから上記気化器に供給されるオフガスの流量を、変更されたサイクルタイムの少なくとも一部の区間において経時的に連続して変化させるように構成されている、水素製造システム。
  7. 上記先行サイクルは、上記バッファタンクからのオフガスの流量を一定に維持する維持期間と当該オフガスの流量を直線的に変化させる後行変化期間とを含んでおり、
    上記後行サイクルは、上記バッファタンクからのオフガスの流量を直線的に変化させる先行変化期間と当該オフガスの流量を一定に維持する維持期間とを含んで構成されており、
    上記先行サイクルの上記後行変化期間の長さと上記後行サイクルの上記先行変化期間の長さとが同一とされ、かつ、これら2つの変化期間における上記バッファタンクからのオフガスの流量の変化率が一定になるとともに、上記後行サイクルの先行変化期間終了時における上記バッファタンクからのオフガスの流量と、上記後行サイクルにおいて上記吸着塔から排出されるオフガスの平均流量とが同一となるように上記流量制御ユニットは動作するように構成されている、請求項6に記載の水素製造システム。
  8. 上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して短縮される場合には、上記先行サイクルの上記後行変化期間の長さが、上記後行サイクルのサイクルタイムの半分となるように上記流量制御ユニットは動作する、請求項7に記載の水素製造システム。
  9. 上記後行サイクルのサイクルタイムが上記先行サイクルのサイクルタイムに対して延長される場合には、上記後行サイクルの上記先行変化期間の長さが、上記先行サイクルのサイクルタイムの半分となるように上記流量制御ユニットは動作する、請求項7に記載の水素製造システム。
JP2008515495A 2006-05-11 2007-05-07 水素製造システムおよび当該システムにおけるオフガスの流量制御方法 Active JP5134532B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515495A JP5134532B2 (ja) 2006-05-11 2007-05-07 水素製造システムおよび当該システムにおけるオフガスの流量制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006132720 2006-05-11
JP2006132720 2006-05-11
PCT/JP2007/059464 WO2007132692A1 (ja) 2006-05-11 2007-05-07 水素製造システムおよび当該システムにおけるオフガスの流量制御方法
JP2008515495A JP5134532B2 (ja) 2006-05-11 2007-05-07 水素製造システムおよび当該システムにおけるオフガスの流量制御方法

Publications (2)

Publication Number Publication Date
JPWO2007132692A1 JPWO2007132692A1 (ja) 2009-09-24
JP5134532B2 true JP5134532B2 (ja) 2013-01-30

Family

ID=38693790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008515495A Active JP5134532B2 (ja) 2006-05-11 2007-05-07 水素製造システムおよび当該システムにおけるオフガスの流量制御方法

Country Status (7)

Country Link
US (2) US8298305B2 (ja)
EP (1) EP2022755B1 (ja)
JP (1) JP5134532B2 (ja)
KR (1) KR101353476B1 (ja)
CN (1) CN101443267B (ja)
TW (1) TW200744738A (ja)
WO (1) WO2007132692A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449649B2 (en) * 2010-05-11 2013-05-28 Idatech, Llc Systems and methods for starting up pressure swing adsorption assemblies and hydrogen-producing fuel processing systems including the same
KR20160118795A (ko) * 2015-04-03 2016-10-12 에이치앤파워(주) 연료전지 시스템용 연료 개질기 및 이를 포함하는 연료전지 시스템
GB2554276B (en) * 2015-05-18 2021-04-07 Energyield Llc Vortex tube reformer for hydrogen production, separation, and intergrated use
US9843062B2 (en) * 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
KR20160137183A (ko) * 2015-05-22 2016-11-30 에이치앤파워(주) 연료전지용 프록스 반응장치
CN105045303B (zh) * 2015-07-28 2017-11-14 新疆大全新能源有限公司 一种多晶硅生产过程中反应原料流量的控制方法
DE102017004326A1 (de) * 2017-05-04 2018-11-08 Linde Aktiengesellschaft Verbesserte Verwendung des Restgases einer Druckwechseladsorptionsanlage
DE102019107440A1 (de) * 2019-03-22 2020-09-24 Otto-Von-Guericke-Universität Magdeburg Feststoffreaktor, System und Verfahren zur Kohlendioxidabtrennung
JP7126470B2 (ja) * 2019-03-27 2022-08-26 大阪瓦斯株式会社 水素製造装置の運転方法及び水素製造装置
CN111346590B (zh) * 2020-03-31 2021-10-08 上海岚泽能源科技有限公司 整体型反应器
CN115692785B (zh) * 2023-01-03 2023-03-14 四川荣创新能动力系统有限公司 一种燃料电池稳定供氢装置及缓冲罐压力稳定控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010806A (ja) * 1999-06-21 2001-01-16 Tokyo Gas Co Ltd 水素精製用3塔式psa装置におけるオフガスタンクからのオフガス圧力の制御方法
JP2002355521A (ja) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd 4塔式圧力スイング吸着装置におけるオフガス流量制御方法
JP2004075485A (ja) * 2002-08-21 2004-03-11 Tokyo Gas Chemicals Co Ltd 水素精製用4塔式圧力スイング吸着装置
WO2004076030A1 (ja) * 2003-02-25 2004-09-10 Sumitomo Seika Chemicals Co., Ltd. オフガス供給方法、および目的ガス精製システム
JP2005272598A (ja) * 2004-03-24 2005-10-06 Honda Motor Co Ltd 燃料ガス製造装置及びその始動方法
WO2006006479A1 (ja) * 2004-07-12 2006-01-19 Sumitomo Seika Chemicals Co., Ltd. 水素製造システムおよび改質装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355522A (ja) 2001-05-31 2002-12-10 Tokyo Gas Co Ltd 水素精製用4塔式psa装置におけるオフガスタンクからのオフガス圧力の制御方法
JP4271472B2 (ja) * 2003-03-28 2009-06-03 本田技研工業株式会社 水素発生装置および水素発生装置の運転方法
JP3867082B2 (ja) * 2004-02-09 2007-01-10 本田技研工業株式会社 家庭用燃料ガス製造装置の停止方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010806A (ja) * 1999-06-21 2001-01-16 Tokyo Gas Co Ltd 水素精製用3塔式psa装置におけるオフガスタンクからのオフガス圧力の制御方法
JP2002355521A (ja) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd 4塔式圧力スイング吸着装置におけるオフガス流量制御方法
JP2004075485A (ja) * 2002-08-21 2004-03-11 Tokyo Gas Chemicals Co Ltd 水素精製用4塔式圧力スイング吸着装置
WO2004076030A1 (ja) * 2003-02-25 2004-09-10 Sumitomo Seika Chemicals Co., Ltd. オフガス供給方法、および目的ガス精製システム
JP2005272598A (ja) * 2004-03-24 2005-10-06 Honda Motor Co Ltd 燃料ガス製造装置及びその始動方法
WO2006006479A1 (ja) * 2004-07-12 2006-01-19 Sumitomo Seika Chemicals Co., Ltd. 水素製造システムおよび改質装置

Also Published As

Publication number Publication date
EP2022755A1 (en) 2009-02-11
EP2022755A4 (en) 2011-03-30
TWI374049B (ja) 2012-10-11
US8298305B2 (en) 2012-10-30
KR101353476B1 (ko) 2014-01-20
US20130139684A1 (en) 2013-06-06
EP2022755B1 (en) 2012-08-22
WO2007132692A1 (ja) 2007-11-22
CN101443267A (zh) 2009-05-27
JPWO2007132692A1 (ja) 2009-09-24
CN101443267B (zh) 2011-05-11
US20090104084A1 (en) 2009-04-23
KR20090009261A (ko) 2009-01-22
US8480770B2 (en) 2013-07-09
TW200744738A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5134532B2 (ja) 水素製造システムおよび当該システムにおけるオフガスの流量制御方法
CA2565604C (en) Hydrogen generation process using partial oxidation/steam reforming
JP5225684B2 (ja) 水素製造装置の圧縮機用モーターの速度を制御する方法
EP1358694A2 (en) Process for air enrichment in producing hydrogen for use with fuel cells
JP2008524106A (ja) 水素を製造する装置及び方法
JP2009179487A (ja) 水素製造システム
CA2651797C (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP4357756B2 (ja) メンブレンリフォーマによる高純度水素製造システム
JPH06191801A (ja) 水素製造方法
JP7370934B2 (ja) 改質ユニット及び水素製造装置
JP4041085B2 (ja) 燃料ガス製造システム及びその停止方法
JP7122042B1 (ja) パージ方法およびシステム
JP5276300B2 (ja) 燃料電池用水素ガスの製造方法
JP2007320779A (ja) アンモニア合成用素ガスの製造方法および製造装置
JP2020079175A (ja) 水素製造装置
JP2020079176A (ja) 水素製造システム
JP2020100534A (ja) 水素製造装置
JP2009184901A (ja) 水素製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5134532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250