JP5132478B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP5132478B2
JP5132478B2 JP2008215917A JP2008215917A JP5132478B2 JP 5132478 B2 JP5132478 B2 JP 5132478B2 JP 2008215917 A JP2008215917 A JP 2008215917A JP 2008215917 A JP2008215917 A JP 2008215917A JP 5132478 B2 JP5132478 B2 JP 5132478B2
Authority
JP
Japan
Prior art keywords
speed
image
image forming
detecting
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008215917A
Other languages
English (en)
Other versions
JP2010049208A (ja
JP2010049208A5 (ja
Inventor
隆 美留町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008215917A priority Critical patent/JP5132478B2/ja
Publication of JP2010049208A publication Critical patent/JP2010049208A/ja
Publication of JP2010049208A5 publication Critical patent/JP2010049208A5/ja
Application granted granted Critical
Publication of JP5132478B2 publication Critical patent/JP5132478B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、電子写真式の複写機、プリンタおよびファクシミリなどの画像形成装置に関する。特に、感光ドラムを駆動させる駆動モータと、中間転写体となるベルトあるいは記録媒体を搬送するベルトを周回させるための駆動ローラを回転駆動するための駆動モータとの回転制御に関する。かかる両駆動モータの回転制御により、前記感光ドラムとベルトとの周速差を制御する画像形成装置に関するものである。
従来のカラー画像を形成するためのタンデム方式の画像形成装置の概略構成を、図17A及び図17Bに示すと共に、以下にその説明を行う。図17Aは画像形成装置の画像形成に関わる画像形成部11の機構的な構成を示し、図17Bは画像形成装置おける画像形成部11を含む概略構成を示す。
画像形成部11は、例えば図17Aに示すように、Y(イエロー)、M(マゼンダ)、C(シアン)、K(ブラック)の4色の画像をそれぞれ形成する4組の画像形成ユニット11Y,11M,11C,11Kから構成される。例えば、Y(イエロー)の画像を形成する画像形成ユニット11Yは、本例では矢印Bの方向に回転する感光ドラム105Y、現像器106Y、クリーナ107Y、帯電器108Y、1次転写ローラ109Y、レーザ光学系110Yから成る。各画像形成ユニット11Y,11M,11C,11Kは、対応する色の画像を矢印Aの方向に回転する中間転写ベルト101上にそれぞれ形成する。以下、M(マゼンダ)、C(シアン)、K(ブラック)についても同様であり、同じ構成要素には同じ参照番号の後にM,C,Kを付しているが、説明は省く。
画像形成部11の画像形成動作は、図17Bに示すシステムコントローラ100によって制御される。画像読取装置121または画像処理装置122よりカラー画像データが供給されると、これがシステムコントローラ100を介して各色の画像形成ユニットに供給される。各画像形成ユニット11Y,11M,11C,11Kにおける感光ドラムには、光の照射によって電気的特性が変化する光半導体層が形成されている。
各感光ドラムは、画像形成動作中に定速回転を行い、以下に示す処理(1)〜(5)が各画像形成ユニット11Y,11M,11C,11Kにおいて行われる。なお、以下の説明では、Y用画像形成ユニット11Yを代表に挙げて説明する。
(1)帯電:帯電器108Yが、感光ドラム105Yの光半導体層を均一に帯電する。
(2)レーザ露光:レーザ光学系110Yが、感光ドラム105Yに向けて画像データに対応するレーザ光を照射し、感光ドラム105Y上に画像パターン(静電潜像)を形成する。
(3)現像:現像器106Yが、感光ドラム105Y上の静電潜像にトナーを付着する。
(4)1次転写:1次転写ローラ109Yが、感光ドラム105Y上のトナー像を中間転写ベルト101に転写する。
(5)クリーニング:中間転写ベルト101に転写しきれずに感光ドラム105Y上に残ったトナーを、クリーナ107Yがクリーニングする。
次に、処理(6),(7)によって、中間転写ベルト101に転写されたトナー像が記録紙122へ転写され定着される。
(6)2次転写:2次転写器111が、中間転写ベルト101上のトナー像を記録紙122に転写する。
(7)定着:定着器112が記録紙に対して加熱及び加圧を行い、トナーを記録紙122上に定着させ、記録紙122を画像形成部11の外に排出する。
上述したように、中間転写ベルト101上には、各画像形成ユニット11Y,11M,11C,11Kにてそれぞれ形成されたトナー像がタイミングを合わせて順に転写され、各トナー像が重なり合うようになっている。
しかし、中間転写ベルト101の移動速度に変動が生じると、中間転写ベルト101に転写される各色のトナー像の転写位置が、本来の転写位置からずれてしまい、色ずれ(1次転写位置のずれ)や濃度ムラ等の画質の劣化が発生する。ここで、図17Aに示すように、中間転写ベルト101は、駆動ローラ104の回転駆動に応じて矢印Aの方向に周回駆動を行っている。そして、駆動ローラ104には、駆動モータ102の駆動力が駆動ギア103を介して伝達される。
次に、中間転写ベルト101の搬送速度について、以下に説明する。
図18に示すように、駆動ローラ104の半径をr、中間転写ベルト101における速度中立線までの厚み(中間転写ベルト101の厚さの半分)をd0、駆動ローラ104の角速度をωとする。すると、中間転写ベルト101の搬送速度Vbは下記式(1)で表される。
Vb=(r+d0)×ω ...(1)
実際の系において中間転写ベルト101の搬送速度Vbを変動させる代表的な要因としては、次ぎの要因が考えられる。すなわち、駆動ローラ104の偏心成分Δrと、中間転写ベルト101の厚みムラΔd(シームレスベルト製造時に発生)と、駆動ギア103の偏心成分による駆動ローラ104の角速度変動分Δωとである。こうした変動要因を考慮すると、搬送速度Vbは下記式(2)で表される。
Vb=(r+Δr+Δd)×(ω+Δω)
=rω+Δrω+Δdω+(r+Δr+Δd)×Δω ...(2)
したがって、速度変動成分ΔVb(=Vb−rω)は下記式(3)で表される。
ΔVb=Δrω+Δdω+Δω×(r+Δr+Δd)
=ΔVr+ΔVd+ΔVω ...(3)
ただし、ΔVr=Δrω、ΔVd=Δdω、ΔVω=Δω×(r+Δr+Δd)とする。
ここで、ΔVrは、駆動ローラ104の偏心成分Δrに起因する速度変動分であり、ΔVdは、中間転写ベルト101の厚みムラΔdに起因する速度変動分であり、ΔVωは、駆動ローラ104の角速度変動分Δωに起因する速度変動分である。
前記式(3)の第1項である駆動ローラ104の偏心成分Δrに起因する速度変動分(ΔVr)に関しては、次のような色ずれの低減策が考えられる。駆動ローラ104の中間転写ベルト101との上方接点位置P0とY(イエロー)の感光ドラム105Yの転写点PYとの間の距離D1と、他の各感光ドラムの転写点PM,PC,PK間のそれぞれの距離D2,D3,D4との合算値を求める。このD1からD4の合算値が、駆動ローラ104の周長の整数倍の長さとなるように、画像形成部11の機械的構造を構成する。これにより、1次転写時における色ずれへの影響を低減することが可能である。
前記式(3)の第2項である中間転写ベルト101の厚みムラΔdに起因する速度変動分(ΔVd)に関しては、次のような色ずれを低減する手法が提案されている。1つの感光ドラムによって中間転写ベルト101に複数の所定パターンを所定間隔で形成する。そして、その中間転写ベルト101に形成された個々の所定パターンを、中間転写ベルト101の周回ルートの1箇所で検出し、その各検出タイミングの時間差に基づいて中間転写ベルト101の厚みムラΔdを検知する。この厚みムラΔdによって駆動ローラ104の回転速度を制御する手法、または各感光ドラムにおける光学系書き込み位置を制御する手法が提案されている(特許文献参照1)。
前記式(3)の第3項である駆動ローラ104の角速度変動分Δωに起因する速度変動分(ΔVω)に関しては、その変動を補正する次のような手法が一般的に実施されている。駆動ローラ104の軸上にエンコーダを設置し、該エンコーダの検出信号に基づいて駆動ローラ104の駆動周波数を算出し、この駆動周波数を利用して駆動ローラ104の角速度変動を補正する。
また、前記式(3)式の第1項及び第3項となる駆動ローラ104の偏心成分Δrに起因する速度変動分(ΔVr)及び駆動ローラ104の角速度変動分Δωに起因する速度変動分(ΔVω)に関しては、次のような方法も提案されている。駆動伝達系の機械的構造を調整可能とし、かつ、駆動対象負荷の絶対角度と回転速度とを検出可能として、それらの値を基に駆動側で各負荷駆動位相を合わせて駆動制御を行う。これにより、色ずれや濃度ムラを抑制する(特許文献2参照)。
以上説明してきた速度変動成分は、機械構成要素(ギア偏心・厚み・ローラ径)によるものであり、それらの速度変動を補正する手法である。
しかし、通常モータによる駆動装置における速度変動要素としては、さらに、画像形成動作中に発生する外乱要因に起因するトルク変化による速度変動要素が加わることになる。負荷変動によりトルク変化を誘発する外乱としては、複写媒体である用紙の通過やクリーナ機構の脱着動作などの摩擦負荷要素、または搬送対象の質量増加など機械的要素の影響がある。更に、その他に、感光ドラム軸の偏心による感光ドラムと転写ベルト間における周速差により発生する外乱要因がある。例えば、記録対象となる画像データに基づく1次転写部におけるトナー量や静電量に影響される電気的なトルク変動(静電吸着)、あるいは現像材(トナー)濃度によりトルク変動(現像剤摩擦)が発生する。
通常、転写ベルト側の周速が、感光ドラムのそれよりも数%速くなるように設定する。これにより、転写ベルト側に2次転写部での記録用紙突入や転写クリーナーの脱着などの外乱による負荷変動が発生した場合でも、転写ベルト側周速が感光ドラムよりも遅くなることをなくしている。その結果、感光ドラム駆動側のギアバックラッシュや駆動軸勘合用のカップリングによるガタの影響を排除できる。
しかしながら、感光ドラムと転写ベルト間に周速差がある場合には、感光ドラム上に形成されたトナー像を転写ベルトへ転写する1次転写部において、大きなトルク変化が発生する。図19A及び図19Bは、共に、上図が周速差が無い場合、下図が周速差が有る場合のトルク変化を示している。すなわち、画像データに基づく帯電量およびトナー量の差による、帯電量による静電気的吸着力やトナー剤による摩擦係数の変化などが、大きなトルク変化を発生させる原因となっていた。このトルク変動は、結果として転写ベルト101の搬送速度Vbに瞬間的に速度変動を生じさせ、その結果、色ずれや濃度ムラが起こる。
これに対して、上記特許文献1に示される画像形成装置では、レジパターン読み取りによる速度検出を示している。また、特許文献2に示される画像形成装置では、中間転写ベルト101の駆動系に生じる負荷変動を検出する。そして、フィードフォワード制御による画像形成動作中における負荷変動の予測分と、それに対する誤差分をフィードバック制御側とすることで、制御精度の向上と安定性を確保する構成としている。
次に、実施系において、感光ドラムや中間転写ベルトの駆動側のモータとして使用するパルスモータ(ステッピングモータ)の位置制御と回転制御に関して説明する(非特許文献1参照)。ここでは、位置制御の簡便性からパルスモータを利用するが、とくに、位置制御可能となるモータであれば、特に問題はない。むしろ、トルク制御を行う観点およびトルクリップルや振動が少ない等の面で、DCモータ(ブラシレス含む)の方が利点がある場合もある。
パルスモータは、回転子位置を検出して制御回路にフイードバックする必要が無いオープンループ制御で駆動することが可能なモータである。その指令値は入力パルスのパルス数と周期である。入力パルスのパルス数により位置制御ができ、入力パルスの周期で速度制御がとできるデジタル制御に適したモータである。入力パルスに同期する動作は、パルス入力毎に固定子側の各相(2相ステッピングモータの場合A・A*・B・B*)に流れる電流を順次切り換えていくことで回転磁界を生成し、永久磁石で構成される回転子が連れ回っていることによる。
図15は、ステッピングモータを励磁する相(もしくは巻線)に流れる電流を一定とする定電流制御方式の駆動回路構成を示したものである。
駆動回路構成としては、一般的に、図15に示すように、相励磁パターン生成回路300と定電流制御回路202とで構成される。
相励磁パターン生成回路300は、ステッピングモータの回転方向と回転速度に対応して主制御部1から入力された駆動パルス信号に従い、各相(A,A*,B,B*)のオン/オフシーケンスを生成する。一方、定電流制御回路202は、オン/オフシーケンスにより規定された各相(A,A*,B,B*)のオン期間において、ステッピングモータの巻線電流を一定電流に制御する。この定電流制御回路202では、ステッピングモータ100の各巻線LA/LA*/LB/LB*に流れる電流ia+ia*、ib+ib*を、A/A*電流検出回路201AとB/B*電流検出回路201Bで検出する。そして、各相の電流が規定の電流値となるように設定された低電流指令値と、A/A*電流検出回路201AまたはB/B*電流検出回路201Bによる検出値とを比較する。比較結果の出力に対応して、PWM制御回路202A/202Bでオン・オフ比率を制御されたPWM信号が生成される。これらのPWM信号と前記励磁相信号A,A*,B,B*のそれぞれの論理積をとったものを、各巻線に接続された半導体スイッチング素子Q1,Q2,Q3,Q4の駆動信号とする。それで、所定の駆動期間内に流れる各巻線の電流をほぼ一定値となるように制御される。
この回路において、図15に示すシーケンスでA・A*・B・B*が順次励磁され、巻線電流が所定の電流値となるようにオン/オフ比率を制御するPWM制御を用いることで定電流制御駆動が行われる。その結果、巻線電流の大きさに比例した回転磁界が発生する。このような制御を適用することで、ステッピングモータは、指令入力信号のパルス数を位置指令、パルス周期を速度指令として駆動される。
このステッピングモータは、その構造上、永久磁石同期モータとされる分類に属するが、この永久磁石同期モータの発生するトルクとしては下記のようになる。
トルク=(永久磁石による磁束の大きさ)×(巻線電流の大きさ)
× sinφd(位相差) ...(4)
ここで、位相差φdは、永久磁石による磁束とモータ巻線電流による磁束とのなす角(=負荷角)である。
この場合に、前記定電流制御により巻線電流が所定値に制御されると、巻線電流により発生する磁束は固定値となる。そのため、図16のように、モータ軸に接続された負荷により印加される負荷トルクに応じて、位相差φd、つまり負荷角がモータそのものにより自動調整されて、モータトルクが負荷トルクと釣り合う位置で回転することになる。また、このことは、設定した電流値で発生する最大トルク以上の負荷が印加された場合に、モータは同期駆動ができない状態、一般に「脱調」と呼ばれる状態に陥り、駆動不能の状態になることを意味する。
このように、ステッピングモータは、位置検出手段が無くてもパルス数による位置決め駆動、パルス周期による速度制御が行える利点を備える。しかし、反面、取り付ける製品に必要な負荷トルクに対して、脱調をしないようにトルクマージンを設けてステッピングモータの発生できるトルクを設計する必要がある。また、前述したように負荷の変化により釣り合い位置が変化する、つまり、速度変動が発生することになり、駆動負荷の速度変動につながることにもなる。
従って、トルクマージンを大きく採って動作させることは、この負荷変動時の速度変動を抑制する利点を持っている。しかし、逆にトルク余りによる速度変動、振動や騒音の発生と云った問題を生じさせてしまう等の欠点要素の方が多い。また、トルクマージンを大きく採るためにはモータのサイズアップや巻線電流値の増加によって実現することから、コスト、サイズ、消費電力の増加といったデメリットも併せ持つことになる。
これらの現状に対して、まず製品にステッピングモータが実装された状態でトルクを測定する方法として、巻線電流または、巻線電流とエンコーダ情報からトルクを測定する方法がある(例えば、特許文献3、特許文献4参照)。また、負荷トルクの変動にたいして脱調の回避や振動の低減を行うステッピングモータ制御装置として、エンコーダを用いることにより負荷トルクと関連があるロータとステータの位置関係から励磁タイミングを変化させるものが実用化されている。また、巻線電流値からロータとステータの位置関係を推定し励磁タイミングを変化させるものも実用化されている。更に、巻線電流値とステッピングモータへの入力電流値との比率から巻線電流設定値を変更させるものも提案されている(特許文献5参照)。
特開平10−186787号 特開2003−29483号 特開平−332857号 特開2001−255220 特開2004−260978 『ステッピングモータとマイコン制御』、見城尚志・菅原晟著、総合電子出版、1994発行、7.3章
しかしながら、上述した特許文献1には、駆動対象負荷(例えば、画像形成装置におけるベルト)の速度変動を検出する手段の提案が主な内容であり、フィードバック制御については詳細な説明が成されていない。また、特許文献2に示される画像形成装置においては、駆動系の偏心に対応する位相合わせを、伝達系の機械的構造やその調整で行う前提での制御性の改善の提案のため、コスト高な構成とならざるを得ない。
本発明は、このような問題点に鑑みてなされたものであって、感光ドラムの偏心量の検出が、現像高圧発生回路における容量変化として検出できることに着目した。そして、各色毎の感光ドラムの偏心量の検出結果をもとに回転位相を補正して同期させ、中間転写ベルトの搬送速度制御を行うことで、良好な画質の画像を得ることを可能とする画像形成装置を提供する。
上記目的を達成するために、本発明の画像形成装置は、トナー画像形成される像担持体と、前記像担持体に静電潜像を形成する潜像形成手段と、前記像担持体に形成される静電潜像を現像剤により現像する現像手段と、前記像担持体に印加される電圧を検出する電圧検出手段を含み、前記現像手段に現像バイアスを供給する高圧発生手段と、前記電圧検出手段が検出する電圧から、前記現像手段の現像スリーブと前記像担持体とのギャップ間に生成されるギャップ容量を検出して、前記検出されたギャップ容量から前記像担持体の回転中心位置からの偏心量を検出する偏心量検出手段と、を有することを特徴とする。
本発明によれば、光学的あるいは磁気的な偏心検出部や変位検出部を追加することなくドラム偏心の検出が可能であり、感光ドラムと転写ベルトとの周速差および各ドラム間での1次転写部における回転速度差を最小化することが可能となる。従って、周速差および1次転写部での帯電電流差により発生するトルク変動を抑制することが可能となる。
また、機械的な取り付け誤差や形状誤差等の要因による速度変動は、その位置毎のモータの速度指令としてフィードフォワード制御とすることができ、それぞれの速度変動要素を補正可能とできる。
また、突発的な負荷トルク変動要因に対しても、速度の逐次検出による変化を検出することでモータ電流のフィードバック制御とすることにより、トルク変動に対してもより安定した速度制御が可能となる。
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
<本実施形態の構成の概要>
まず、本実施形態の特徴的な構成の概要を、以下に説明する。
(1) 現像高圧発生回路に偏心量検出回路を設ける。
(2) 感光ドラムの回転位置関係を検出する位置・速度検出部を設ける。
(3) 感光ドラムの回転基準位置検出部を設ける。
上記(3)は(2)に内蔵されるものでも、別途基準位置のみ検出する構成のいずれでも問題ない。(1)〜(3)により、偏心量最大となる各感光ドラム毎の基準位置からの相対位置を求め、画像形成時の位置基準として各ドラムの位相を合わせを行う。
(4) 前記位置・速度検出部によって検出されたドラム1周期間における位置・速度変動と、前記偏心量検出回路により検出された各ドラム1周期間における偏心量の変化とを記録するドラム駆動状態記録部を設ける。
(5) 前記ドラム駆動状態記録部の情報により、各ドラム毎の偏心周期の位相を合わせた回転位置毎の偏心量の平均を算出する偏心量平均値算出部を設ける。
(6) 前記偏心量平均値算出部で求めた値を、中間転写ベルト駆動時の速度補正情報としてベルト駆動速度制御を行う転写ベルト駆動制御部を設ける。
以上により、各感光ドラムの偏心による転写ベルトとの周速差を最小化しつつ、各ドラム間での速度差も最小化することが可能となる。
なお、上記(4)において、ドラム駆動源としてステッピングモータを用いる場合には、ステッピングモータ位置指令情報をも記録する。これにより、感光ドラム1周期間におけるギア偏心による位置・速度変化情報とステッピングモータの位置指令情報であるパルス入力数とを指定基準位置(ホームポジション)から記録できる。従って、ステッピングモータのステップ毎のトルク補正を行う位置情報が参照可能となる。さらに、下記構成を追加することで、負荷変動による位置ずれ。速度変動を抑制することが可能となる。
(7) 前記ステッピングモータ指令位置情報に基づき、その位置毎の前記ステッピングモータ指令位置情報から、速度指令、およびステッピングモータ駆動回路への入力電流を検出する構成を設ける。
(8) 前記入力電流検出部の値に基づき、負荷トルクの推定を行う負荷トルク推定部を設ける。
ここで、前記負荷トルク推定部は次のような構成で実現される。
(8-1) 前記(3)にて示した駆動回路へ供給される電源の入力電流を検出するための入力電流検出部、
(8-2) 前記(3)にて示した位置・速度指令として入力される駆動パルスの周期(=速度)出部、
(8-3) 前記入力電流検出部による検出タイミングと検出時間幅を、前記駆動周期検出部により指令値である駆動パルス入力から逐次制御する。そして、前記検出時間幅で前記入力電流検出量を除することでの単位時間当たりの入力電流量として算出する負荷角推測部、
以上のような構成により、駆動周波数による場合分けなどを必要とせずに、負荷トルクに応じた入力電流量への変換を可能とし、駆動時の負荷角を推測、脱調限界を把握できる。
(9) 前記(4)による負荷トルク算出結果を、前記(2)に示したように負荷駆動1周期における位置情報とあわせる。そして、機械的ずれ要素要因による速度変動分と負荷トルク変動による速度変動分として、ステッピングモータに供給する電流量を負荷位置情報に基づきフィードフォワード制御する構成を設ける。
(10) (1)〜(5)に基づき求められている負荷変動要素以外の突発的な外乱を、前記(1)および(4)での逐次的な検出による速度・負荷変動をもとにモータ電流のフィードバック制御を行う構成を設ける。
以上により、定常的な負荷変動、および、定在する機械的ずれ要因による速度変動を補正するとともに、突発的な外乱に対しても追従可能な画像形成装置を提供することが可能となる。
<本実施形態の画像形成装置の構成例>
図1A及び図1Bに、本実施形態のカラー画像を形成するためのタンデム方式の画像形成装置の概略構成を示す。図1Aは画像形成装置の画像形成に関わる画像形成部10の機構的な構成を示し、図1Bは画像形成装置おける画像形成部10を含む概略構成を示す。なお、図中、図17A及び17Bと同様の構成要素においては同符号を用いている。
画像形成部10は、例えば図1Aに示すように、Y(イエロー)、M(マゼンダ)、C(シアン)、K(ブラック)の4色の画像をそれぞれ形成する4組の画像形成ユニット10Y,10M,10C,10Kから構成される。例えば、Y(イエロー)の画像を形成する画像形成ユニット10Yは、本例では矢印Bの方向に回転する像担持体である感光ドラム105Y、現像器106Y、クリーナ107Y、帯電器108Y、1次転写ローラ109Y、レーザ光学系110Yから成る。なお、M(マゼンダ)、C(シアン)、K(ブラック)についても同様であり、同じ構成要素には同じ参照番号の後にM,C,Kを付しているが、説明は省く。
更に、本実施形態の感光ドラム駆動側には、4組の画像形成ユニット10Y,10M,10C,10Kの各ドラムの駆動軸位置と速度を検出するためのエンコーダ117Y,117M,117C,117Kが設けられていいる。また、各基準位置検出用のホームポジションセンサ118Y,118M,118C,118Kが設けられている。
各画像形成ユニット10Y,10M,10C,10Kは、対応する色の画像を矢印Aの方向に回転する中間転写ベルト(ITB)101上にそれぞれ形成する。
画像形成部10の画像形成動作は、図1Bに示すシステムコントローラ130によって制御される。画像読取装置121または画像処理装置122よりカラー画像データが供給されると、これがシステムコントローラ130を介して各色の画像形成ユニットに供給される。各画像形成ユニット10Y,10M,10C,10Kにおける感光ドラムには、光の照射によって電気的特性が変化する光半導体層が形成されている。
各感光ドラムは、画像形成動作中に定速回転を行い、以下に示す処理(1)〜(5)が各画像形成ユニット10Y,10M,10C,10Kにおいて行われる。なお、以下の説明では、Y用画像形成ユニット10Yを代表に挙げて説明する。
(1)帯電:帯電器108Yが、感光ドラム105Yの光半導体層を均一に帯電する。
(2)レーザ露光:レーザ光学系110Yが、感光ドラム105Yに向けて画像データに対応するレーザ光を照射し、感光ドラム105Y上に画像パターン(静電潜像)を形成する。
(3)現像:現像器106Yが、感光ドラム105Y上の静電潜像にトナーを付着してトナー画像を形成する。
(4)1次転写:1次転写ローラ109Yが、感光ドラム105Y上のトナー像を中間転写ベルト101に転写する。
(5)クリーニング:中間転写ベルト101に転写しきれずに感光ドラム105Y上に残ったトナーを、クリーナ107Yがクリーニングする。
次に、処理(6),(7)によって、中間転写ベルト101に転写されたトナー像を記録紙122へ転写して定着する。
(6)2次転写:2次転写器111が、中間転写ベルト101上のトナー像を記録紙122に転写する。
(7)定着:定着器112が記録紙に対して加熱及び加圧を行い、トナーを記録紙122上に定着させ、記録紙122を画像形成部11の外に排出する。
上述したように、中間転写ベルト101上には、各画像形成ユニット10Y,10M,10C,10Kにてそれぞれ形成されたトナー像がタイミングを合わせて順に転写され、各トナー像が重なり合うようになっている。
ここで、図1Aに示すように、中間転写ベルト101は、駆動ローラ104の回転駆動に応じて矢印Aの方向に周回駆動を行っている。そして、駆動ローラ104には、駆動モータ102の駆動力が駆動ギア103を介して伝達される。
更に、本実施形態のベルト駆動側には、ドラム側と同様にエンコーダ113が、中間転写ベルトの駆動ローラ104の軸上に設置され、駆動ローラの角速度を検出する。114は駆動ローラホームポジションセンサで、エンコーダ113と同様に駆動ローラ軸上に設置され、駆動ローラ104の基準位置を検出することにより、駆動ローラ104の1回転を検出する。115はベルトホームポジションセンサで、中間転写ベルト上に設けられたマークを検出する。
また、ここではベルトの面速度を検出するための画像読取センサ116により、ベルト面上に所定の間隔で形成されたトナー像、または所定パターンを検出することで、ベルトの搬送速度検出を行う。しかしながら、前記ベルトホームポジション用のマークを所定の距離に配置された検出センサにより行う構成でも問題はない。
(偏心検出回路の構成及び動作例)
次に、本実施形態でのドラムの回転軸の回転中心位置からの偏心量を検出する偏心検出回路120を説明する。
図2に示すように、前記偏心検出回路120は現像器106へ現像バイアスを供給する現像高圧発生回路119に内包されている。そして、現像DC高圧回路の電圧検出回路に設けた出力容量と、負荷となるドラム容量、および現像スリーブとドラム間ギャップ容量を含んだ容量とで高圧出力電圧を容量分割した電圧値として、偏心量が電圧変動として検出できる構成となっている。ギャップ(距離d)でのギャップ容量は簡易的にCgap=ε・S/dとなる。この値とドラム自身の持つ容量Cdrumとの合算値が、現像DC高圧回路の出力に設けたCout1とCout2とでドラムに印加された電圧が容量分割されて電圧検出されることになる。偏心量による電圧変動は、Cout2の両端電圧として検出される。
この偏心量検出回路120にて検出された電圧変動量を、ドラム基準位置(ホームポジションセンサ118で検出)から一回転分を前記エンコーダ117での角度情報とともに検出して記録すると、図3のようになる。なお、図3において、DEV-DC_refは一回転の基準電圧、DEV-DC_sensは偏心量検出回路120にて検出された電圧を示す。
図3に示した電圧変動量を回転角速度に変換して各感光ドラムについて示すと、図5(基準速度v_refに対してv_yellow〜v_black)に示すように、それぞれ位相・振幅が異なる形で記録される。
ここで、各ドラムの最大容量値となる回転角度位置を改めて各ドラムの基準位置として設定し、駆動時位置制御の位相あわせを行う。また、各ドラム毎の位相合わせを行った場合の回転角度位置毎の偏心量の平均量を算出すると、図5に示すv_avgのようになり、この値をベルト速度補正値として使用する。
<本実施形態の画像形成装置の制御ブロックの構成例>
図4に、本実施形態の画像形成装置の制御ブロックの構成例を示す。なお、図1と同様の構成要素には、同じ参照番号が付与されている。
本画像形成装置の制御ブロックは、全て、システムコントローラ130によって統括的にコントロールされ、主に本画像形成装置内の各負荷の駆動とセンサ類の情報収集及び解析との役割を担っている。
システムコントローラ130の内部構成として、CPU201が搭載されている。CPU201は、システムコントローラ130に搭載されたROM202に格納されたプログラムによって、予め決められた画像形成シーケンスに従って様々なシーケンスを実行する。CPU201内に図示した各構成部は、かかるプログラムに従った処理を機能別に示したものである。また、その際、一時的または恒久的に保存することが必要な書換可能なデータを格納するために、RAM203も搭載されている。ここで、RAM203はディスクなどの不揮発性メモリであってもよい。
ASIC301は、次の構成のものを含んでいる。なお、ASIC301を構成する各部は、基本的にはLUTや回路などのハードウエア構成であるが、マイクロプログラムによるファームウエアで実現されてもよい。
(1) ベルト駆動系301a:中間転写ベルト101上の画像読取センサ116からのアナログ出力信号をAD変換するAD変換器302を含む。また、ベルトの駆動ローラ104の軸位置と速度とを検出するための、駆動ローラホームポジションセンサ114の出力信号を基準にエンコーダ113の出力信号をカウントする位置・速度検出用カウンタ303を含む。また、位置・速度検出用カウンタ303での計数値を位置及び速度値に変換するベルト駆動ローラ位置・速度情報変換部306を含む。また、中間転写ベルト101の回転を駆動するステッピングモータ102へのクロック生成器304の出力である駆動パルスをカウントするカウンタ305を含む。また、カウンタ305での計数値を位置及び速度値に変換する指令値位置・速度情報変換部307を含む。
(2) ドラム駆動系301b:感光ドラム105Yの駆動軸の位置と速度を検出するための、ホームポジションセンサ118Yの出力信号を基準にエンコーダ117Yの出力信号をカウントする位置・速度検出用カウンタ310を含む。また、位置・速度検出用カウンタ310での計数値を位置及び速度値に変換するドラム軸位置・速度情報変換部313を含む。また、感光ドラム105Yを駆動するステッピングモータ102Yへクロック生成部311から発生する駆動パルスをカウントするカウンタ312を含む。また、カウンタ312での計数値を位置及び速度値に変換する指令値位置・速度情報変換部314を含む。また、ステッピングモータ102Yの駆動回路(ドライバ205Y)への入力電流を検出する入力電流検出回路206にて検出された値をAD変換するAD変換器315を含む。また、指令値位置・速度情報変換部314の値を基に、ステッピングモータ102Yの負荷角換算を行う負荷角推定部316を含む。ここで、感光ドラム105Yの偏心量検出回路120Yで検出された値をAD変換するAD変換器320もここに含まれる。
以上、2系統で検出され変換された値は、システムコントローラ130に送信される。
また、中間転写ベルト101を回転駆動するためのステッピングモータ102を駆動するためのクロック生成器304は、CPU201により設定された値に基づいてドライバ205に駆動クロックを出力する。また、感光ドラム105Yを回転駆動するためのステッピングモータ102Yを駆動するためのクロック生成器311は、CPU201により設定された値に基づいてドライバ205Yに駆動クロックを出力する。これにより、モータのドライバ205、205Yは、ASIC301a、301bより送信された駆動クロックの周波数に基づいて、それぞれステッピングモータ102、102Yを駆動する。
<システムコントローラ130の各制御ブロックの構成例>
以上のような構成において、各ステッピングモータの速度制御、および、電流制御を行う方法を、制御概念と制御指令値生成ブロックとにより示した図を基に説明する。図6はドラム駆動側における制御ブロックを示し、図8はベルト駆動側における制御ブロックの構成例を示したものである。
<ドラム駆動を制御する各制御ブロックの構成例>
まず、ドラム駆動側の動作に関して、図4及び図6を基に説明する。
(1) ドラム駆動用のステッピングモータ102を、予め設定された所定の駆動周波数Vtにより駆動する
(2) 一定速度で駆動されているドラム駆動軸の位置及び速度を検出するため、駆動ローラホームポジションセンサ114の出力信号を基準にエンコーダ117の出力信号がASIC301内に実装された位置・速度検出用カウンタ310にてカウントされる。位置・速度検出用カウンタ310は、ASIC301もしくはCPU201のベースクロックを基に動作し、エンコーダ117の1パルスをカウントするために十分に早い速度でカウント動作をしている。このカウント値により、エンコーダ分解能(1パルスあたりの角度:deg/pls)による位置検出と、ベースクロック規定による時間換算からの速度検出とが、ドラム軸位置・速度情報変換部313にて実行される。なお、位置・速度検出用カウンタ310は、ホームポジションセンサ118Yでの基準位置検出時にリセットされ、ホームポジション位置からの位置と速度情報を生成する。
また、このとき同時に、現像高圧発生回路119Yにより感光ドラム105Yに現像高圧を印加しながら、偏心量検出回路120Yにより偏心量の検出も行う。
(速度補正プロファイル作成部801、ドラム位相補正部701〜704、偏心量平均化テーブル421に関する動作)
(3) CPU201の速度補正プロファイル作成部801は、ASIC301内のドラム軸位置・速度情報変換部313から送信される位置と速度情報とに基づいて、ドラム駆動1周期分のギア偏心成分を抽出した速度偏差プロファイルを生成する。この速度偏差プロファイルによりRAM203内に速度データテーブル401を作成する。この速度データテーブル401は、図4では補正プロファイルデータテーブルの1つとして、図6では速度偏差プロファイル401として示されている。
(4) また、同時に、CPU201のドラム位相補正部701〜704は、偏心量データをAD変換器320を介してRAM203内に取り込み、偏心量が最大値となる位置を回転基準とするように回転位相補正を行う。従って、各ドラムの偏心量が最大値となる相対角度位置がそれぞれ同じとなる。また、各ドラム毎に回転位相補正された偏心量を書き込む際に、ドラム偏心平均部420で既に書き込まれているデータと平均化処理した上で、偏心量平均化テーブル421に書き込まれる。従って、最終的に全ドラムの偏心量の図6のドラム偏心平均値プロファイル421として確定し、図8で示すようにベルトの駆動ローラ104の速度制御に使用される。なお、更に、従来の回転位相補正として、各ドラムの間の距離(図17AのD1〜D4)に応じて画像形成位置が同じになるような回転位相補正(従来技術の記載参照)が同時に行われてよい。
(5) 上記テーブル401や421のデータ格納数は、エンコーダ分解能と等しく、前記位置・速度検出用カウンタ310のカウント周期は、駆動ローラ104の速度ムラ周波数成分に対して十分速い周波数に相当することが条件である。また、該データテーブル401内に記載されている正弦波プロファイルは、駆動ローラ1周分の速度ムラを模式的に示している。CPU201は、速度偏差プロファイル401をもとに、ギア偏心成分を補正する駆動ローラ1周分の速度補正プロファイルを生成し駆動データテーブル402に記憶する。
(トルク補正プロファイル作成部901に関する動作)
(6) また、ASIC301はドライバ205Yへの入力電流を、(1)の所定速度で動作するよう入力される駆動パルス信号に同期して入力電流検出回路206で検出された値がAD変換器315によりサンプリングされる。また、同時に前記駆動パルス信号を基に指令値情報として検出するための、カウンタ312、および位置・速度情報検出部314にて、(2)と同様に生成された値を、ASIC301内に実装した負荷角換算部316に入力する。そして、ステッピングモータの指令値毎の負荷角を換算し、ドラムホームポジションからの負荷トルクの負荷トルク変動プロファイルを生成してトルク変動データテーブル403をメモリ203内に作成する。なお、負荷角換算に関しては、後述する。
(7) 次に、(6)で生成されたトルク変動データテーブル403を基に、ドラム駆動1周期分のトルク変動を補正するようにステッピングモータのトルク補正プロファイルを生成し、RAM203内に駆動電流データテーブル404を作成する。
このように生成された補正用のテーブルを基に、ステッピングモータの速度・トルク制御におけるフィードフォワード制御を行う。そのため、機械的要因(ギア偏芯、軸偏芯)による速度偏差と、機械構成による定常的なトルク変動分布をキャンセルすることが可能となる。
(トルクフィードバック制御指令部601に関する動作)
図6に示すトルクフィードバック制御指令部601は、以下のように、ドラム・トルクフィードバック制御指令の値を生成する。
前述したドラム速度フィードフォワード制御指令の値と、前記ドラム軸位置・速度情報変換部313にて動作中に逐次検出・出力される駆動軸速度と指令値との偏差から求められるドラム速度フィードフォワード制御指令の値とを加算する。加算値に電流補正ゲインKPを乗じて、電流補正値を生成する。
一方、前記ドラム・トルクフィードフォワード制御指令の値と、前記負荷角換算部316にて逐次検出されているトルク検出値との差分(図6では+)に対して、トルク補正ゲインktpを乗じて、トルク補正値を生成する。
上記算出された電流補正値とトルク補正値を乗じてドラム・トルクフィードバック制御指令の値とすることで、突発的なトルク変動に対する追従制御を行う。
以上のようなフィードフォワード制御とフィードバック制御とによる差分補正とすることで、負荷変動に対しても応答性のよい速度制御が行える。
<ベルト駆動を制御する各制御ブロックの構成例>
次に、ベルト駆動制御に対して適用した構成を図7及び図8を用いて説明する。
(速度補正プロファイル作成部811に関する動作)
(a) 基本的な速度補正制御は、上述の感光ドラム駆動において行った手順とほぼ同じである。すなわち、ローラ軸速度検出をエンコーダ113とホームポジションセンサ114により行い、ベルト一周分のベルト駆動ローラの速度偏差プロファイル411と、それを補正する速度補正プロファイル412とを生成する。それにより、RAM203内に速度補正データテーブル412を作成する。
(b) 速度補正データテーブル412とエンコーダデータ入力とに基づいて、ステッピングモータ102を補正駆動する。この状態において、エンコーダデータが予め設定された所定範囲内かどうかを判断し、所定範囲外である場合には、再度補正プロファイルを取得し直す。
所定範囲内であれば、回転体の角速度が安定していると判断し、中間転写ベルト上に図7に記載のパターンを形成する。本実施形態では、該パターンは感光ドラム105上に形成されたトナー像を中間転写ベルト101に転写することにより形成している。図7の(a)は、中間転写ベルト上に形成されるパターンを示す。該パターンは、距離Lで等間隔のスリット状に形成される。
(c) 図7の(b)に、中間転写ベルト上に配置された画像読取センサ116により周回速度検出をしたときの検出波形概略を示す。図に示すように、ベルト面上で周回速度が変動している場合は、該パターン検出信号の入力周期が基準となる入力間隔時間T0に対して変動する。
L/Vt=T0
L/(T0±ΔT)=Vt±ΔV
ここで、ΔT:入力間隔時間変動、ΔV:ベルト速度変動である。
入力周期は、ASICタイマーカウント値として取得する。そして、CPU201は、取得した該データに対して、厚みムラ成分を抽出した中間転写ベルト1周分の厚みムラによる速度偏差プロファイルを生成して速度偏差データテーブル413を作成する。
(d) 該速度偏差データテーブル413の格納数は、形成されたパターン数と等しく、中間転写ベルト厚みムラ周波数成分に対して十分速い周波数成分であることが条件である。また該速度偏差データテーブル413内に記載されている正弦波プロファイルは、中間転写ベルト1周分の速度ムラを模式的に示している。そしてCPU201は、該プロファイルに基づいて厚みムラを補正する厚みムラ補正プロファイルを算出・生成し、RAM203内に厚みムラ補正データテーブル414を作成する
(e) 中間転写ベルトのホームポジションを検出後、速度補正プロファイル412から算出されたモータ駆動周波数に対して、厚みムラ補正データテーブル414からの厚みムラ補正係数をかけたモータ駆動周波数を算出する。さらに、モータ駆動周波数にドラム偏心平均値プロファイル421を重畳したものが、ローラ速度フィードフォワード制御指令の値となる。
以上により、感光ドラム偏心によるベルト搬送速度との周速差、および各ドラム間での1次転写部における回転速度差を最小化することが可能となり、周速差および1次転写部での帯電電流差により発生するトルク変動を抑制することが可能となる。
なお、中間転写ベルト101の速度抽出手法は、本発明を限定するものではない。上述した方法以外にも、予めベルトの厚みムラを計測器等により測定しておきそれに伴うプロファイルを算出する手法、ベルト上に形成する所定パターンをトナー像ではなくベルト自体に予めマーキングしておき、該マークを検出する手法でもよい。
(トルクフィードバック制御指令部611に関する動作)
ベルト駆動側でのステッピングモータ電流を制御するトルク制御系では、ドラム駆動系で述べた負荷角換算ではなく、前記ベルト厚みムラ検出に用いてたパターン検出による速度検出結果を用いる。厚みムラ補正を行った後での前記画像読取センサ116によるパターンでの面速度検出のムラはトルク変動要因でしかない。
そのため、この速度検出結果にトルク補正ゲインKtpを乗じてトルク補正値を生成する。一方、前記ローラ速度フィードフォワード制御指令の値と、前記ベルトローラ軸位置・速度情報変換部306にて動作中に逐次検出・出力される駆動軸速度と指令値307の偏差から求められる制御値とを加える。そして、電流補正ゲインKPを乗じることで電流補正値が生成される。前記算出されたトルク補正値と電流補正値を成就ルことでローラ・トルクフィードバック制御指令の値が決定される。
<負荷角換算の例>
次に、本実施形態で使用したステッピングモータの駆動回路における負荷角換算に関して説明する。
図9に示すように、ステッピングモータの駆動回路は、基本的に定電流制御部202は図15に示す従来回路と同様構成であり、入力電流検出回路501、駆動周波数検出回路502、および、負荷角換算回路503が付加された構成となっている。
定電流制御回路202は従来と同様であるが、ここで簡単に説明する。ステッピングモータ駆動装置に対して、複写機本体の制御装置等の上位装置(図9では主制御部1としている)から駆動パルス信号Dpが入力される。駆動パルス信号Dpに従って、相励磁パターン生成回路300がステッピングモータの巻線を励磁する順序を決定する相励磁パルス信号(A、A*、B、B*)を発生する。この相励磁パターン生成回路300からの前記相励磁パルス信号に応じて選択された巻線に対して、各巻線に流れる電流ia、ia*、ib、ib*が電流検出回路201A及び201Bにより検出される。かかる電流ia、ia*、ib、ib*が定電流指令値に基づいた電流値になるようにPWM制御回路202A及び202BによりON/OFF比率が決定されて、半導体スイッチ素子群(Q1〜Q4)が駆動制御される。
この定電流制御回路により駆動されたステッピングモータのトルク特性図の一例を、図10及び図11に示す。図10は、トルクを一定とした場合に、入力電流と駆動周波数の関係を示した図である。図11は、速度を一定とした場合に、トルクと入力電流の関係を示した図である。
図10に示すように、駆動周波数と入力電流の関係では定電流領域(駆動周波数:低)と定電圧領域(駆動周波数:高)において傾きが変わっている。これはモータ回転子の永久磁石の磁束による誘起電圧の影響のためである。しかし、図11に示すように、トルクと入力電流の関係は駆動周波数により変化はするが、駆動周波数が一定の場合にはそれぞれ線形性をもった特性を有している。
つまり、この各周波数毎の影響度を考慮した補正ができればよい。このために、入力電流検出回路501とともに、駆動パルス周期検出回路502が付与される。これら駆動パルス周期検出回路502と入力電流検出回路501により、トルクに対する入力電流の関係から周波数要因を加味するために、単位時間当たりの電流量[単位:A/s]へ変換する構成とする。
駆動パルス周期検出回路502の一例を示すと、駆動パルスの周波数よりも十分に速い周波数で動作するタイマカウンタで構成する。ここで、タイマカウンタは、図12に示すように、駆動パルスの立ち上がりもしくは立ち下がりエッジを基点として、パルス周期のカウントを行う。つまり、カウント数が周期値となる。
電流検出回路501での電流は、A/Dコンバータにより駆動パルス周期検出回路502に実装されたCLKエッジを基準としたサンプリング値でも構わない。ただし、サンプリング時間が長い場合には電流変動分が加味されないことになるため、サンプリング時間は短い方が望ましい。また、サンプリング時間が長くなることによる検出精度低下が気になる場合には、検出部においてアナログ回路付加による実効値検出としても構わない。
ここで、モータトルクと入力電流の関係は、前記(2)式と、下記モータ巻線への供給電流計算式、
V=Ri+L×di/dt+eω
(R:巻線抵抗、L:巻線インダクタンス、eω:速度起電力)
から把握は可能である。しかし、より実際的には実測したモータ特性を元に、最大負荷角時の電流値から決定する方が、モータ諸要素の影響も考慮した形とできる。
以下では、実測結果に基づく必要値の抽出例を示す。
まず、モータ発生トルクは、前記(2)式で表されることになるが、巻線電流の振幅固定で、位相を変化させた場合の速度とトルクの特性を測定したものが図13である。この特性図において、必要駆動速度を縦軸上にとり、必要負荷トルクを横軸上にとると、必要速度におけるモータ動作時の位相=負荷角の変化範囲が負荷トルクに応じてどのように変化するかが解る。つまり、負荷トルク変動時を考慮した際に、必要速度が確保できる位相の最大値が、最大負荷角として抽出される。
次に、図13に示したトルク−速度特性を入力電流の観点で表した入力電流−トルク特性を図14に示す。この特性図上において、前述のようにして抽出した最大負荷時の入力電流は抽出されることになる。ここで、必要速度でのトルク変動に基づく入力電流を抽出すると、図11に示すように、速度一定時ではトルクと電流が線形変化となる。
これらの特性図から得た値を基に駆動速度最大値、必要負荷トルク値における負荷角を設定すれば、前述した構成による周波数補正による入力電流値より、駆動範囲内での負荷角変化が検出可能となる。
以上示した構成によれば、ステッピングモータにおいて、位置検出の構成を用いることなく、負荷トルクを検出することが可能となり、前述したようにステッピングモータにおいて、DCモータ的に負荷トルク検出が行えることになる。これを、ステッピングモータの特徴であるオープンループ制御で位置・速度制御が行える利点とをあわせることで、トルク変化データの位置毎のプロファイル生成が行えることになる。
本発明は、この位置毎のプロファイル生成と、画像形成装置としての基本構成要素である現像高圧回路によるドラム偏心量の検出を可能とした。そのため、1次帯電におけるトルク変動を抑制し、回転変動を押さえ、より安定した画像形成が可能となり、画像形成装置の高画質化を図ることができる。
なお、本発明は、複数の機器(例えばホストコンピュータ、インターフェース機器、プリンタなど)から構成されるシステムあるいは統合装置に適用しても、ひとつの機器からなる装置に適用してもよい。
又、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体(または記録媒体)を、システムあるいは装置に供給する。そして、そのシステムあるいは装置のコンピュータ(またはu CPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。
この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。
又、コンピュータが読み出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけではない。そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれる。その後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行う。このような処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートに対応するプログラムコードが格納されることになる。
本実施形態に係る画像形成装置のハードウエアの概略構成を示す図である。 本実施形態に係る画像形成装置の制御に係る概略構成を示す図である。 本実施形態の偏心量検出回路の機械的構成、および電気的構成の相関を示す図である。 本実施形態の偏心量検出回路による偏心時の検出電圧を示す図である。 図1に示す画像形成部の各部と、負荷駆動制御を行う本発明に係る制御部及びシステムコントローラとの構成例を示すブロック図である。 各感光ドラム毎の偏心による速度変動及び位相合わせ時の平均処理を示す図である。 感光ドラムの基準位置からの速度偏差及び負荷トルク変動データのRAM格納テーブルの相互関係と制御指令値の生成とを示すブロック図である。 中間転写ベルト上に形成される所定パターンと該所定パターンを画像読取センサが検出したときの検出信号とを示す図である。 中間転写ベルト駆動軸の基準位置からの速度偏差及び中間転写ベルトの面速度偏差データのRAM格納テーブルの相互関係と、ドラム偏心データによる制御指令値の生成とを示すブロック図である。 本実施形態に係るステッピングモータ駆動回路の基本構成例を示す図である。 定電流制御時のステッピングモータのトルク毎の入力電流−速度特性を示す図である。 定電流制御時のステッピングモータの速度毎の入力電流−トルク特性を示す図である。 駆動パルス周期検出動作と入力電流のサンプリング例を示す図である。 位置基準励磁による定電流制御時のトルク−速度−位相特性を示す図である。 位置基準励磁による定電流制御時のトルク−入力電流−位相特性を示す図である。 従来のステッピングモータ駆動回路の構成例を示すブロック図である。 ステッピングモータの負荷角を説明する図である。 カラー画像を形成する従来の画像形成装置のハードウエアの概略構成を示す図である。 カラー画像を形成する従来の画像形成装置の制御に係る概略構成を示す図である。 ベルト搬送部での速度変動を発生させる変動要素を示す図である。 ベルト周速差による高圧印加レベル変化時のトルク変化を示す図である。 ベルト周速差による高圧印加レベル変化時のトルク変化を示す図である。
符号の説明
101 中間転写ベルト(ベルト)
102 駆動モータ
103 駆動ギア
104 駆動ローラ
105 感光ドラム
113 エンコーダ
114 駆動ローラホームポジションセンサ
115 ベルトホームポジションセンサ
116 画像読取センサ
117 感光ドラム駆動軸速度検出用エンコーダ
118 感光ドラムホームポジションセンサ
119 現像高圧発生回路
120 偏心量検出回路
130 システムコントローラ

Claims (6)

  1. トナー画像形成される像担持体と、
    前記像担持体に静電潜像を形成する潜像形成手段と、
    前記像担持体に形成される静電潜像を現像剤により現像する現像手段と、
    前記像担持体に印加される電圧を検出する電圧検出手段を含み、前記現像手段に現像バイアスを供給する高圧発生手段と、
    記電圧検出手段が検出する電圧から、前記現像手段の現像スリーブと前記像担持体とのギャップ間に生成されるギャップ容量を検出して、前記検出されたギャップ容量から前記像担持体の回転中心位置からの偏心量を検出する偏心量検出手段と、
    を有することを特徴とする画像形成装置。
  2. 前記偏心量検出手段は、前記電圧検出手段に備えられた容量素子の両端の電圧に基づいて記ギャップ容量を検出することを特徴とする請求項1に記載の画像形成装置。
  3. カラー画像を形成するための色成分毎に、前記像担持体、前記潜像形成手段、前記現像手段、前記高圧発生手段、前記偏心量検出手段を含み、
    複数の像担持体の各々に形成される色成分毎のトナー画像が重ねて転写される中間転写体を有し、
    前記色成分毎の偏心量検出手段により検出され偏心量に基づいて、前記複数の像担持体を駆動する複数の駆動モータの回転位相を補正する回転位相補正手段と、
    を更に有することを特徴とする請求項1に記載の画像形成装置。
  4. 前記回転位相補正手段により前記複数の駆動モータの回転位相が所定の関係になった時の前記複数の像担持体の偏心量の平均値を使って、前記中間転写体を駆動する中間転写体駆動モータの速度を補正する速度補正手段を更に有することを特徴とする請求項3に記載の画像形成装置。
  5. 前記複数の像担持体の各々を駆動する駆動軸の回転位置及び角速度を検出するための位置・速度検出手段と、
    記位置・速度検出手段による前記回転位置及び角速度の検出のための前記複数の像担持体の各々の基準位置を検出するための基準位置検出手段と、
    記位置・速度検出手段により検出された前記基準位置からの1周期分の回転位置及び回転速度と、前記偏心量検出手段により検出された前記基準位置からの1周期分の偏心量とを記憶する記憶手段とを更に有し、
    記回転位相補正手段は、前記記憶手段に記録された前記1周期分の回転位置及び回転速度と前記1周期分の偏心量と、前記偏心量検出手段が検出する偏心量とに基づき、前記複数の像担持体の各像担持体の駆動モータの回転位相を補正することを特徴とする請求項3に記載の画像形成装置。
  6. 前記回転位相補正手段は、前記偏心量検出手段により検出された前記複数の像担持体の各々の偏心量の分布を検出し、前記基準位置に対して偏心量が最大値となる相対角度位置がそれぞれ同じとなるように回転位相補正を行うことを特徴とする請求項5に記載の画像形成装置。
JP2008215917A 2008-08-25 2008-08-25 画像形成装置 Expired - Fee Related JP5132478B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215917A JP5132478B2 (ja) 2008-08-25 2008-08-25 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215917A JP5132478B2 (ja) 2008-08-25 2008-08-25 画像形成装置

Publications (3)

Publication Number Publication Date
JP2010049208A JP2010049208A (ja) 2010-03-04
JP2010049208A5 JP2010049208A5 (ja) 2011-10-06
JP5132478B2 true JP5132478B2 (ja) 2013-01-30

Family

ID=42066313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215917A Expired - Fee Related JP5132478B2 (ja) 2008-08-25 2008-08-25 画像形成装置

Country Status (1)

Country Link
JP (1) JP5132478B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641819B2 (ja) * 2010-08-24 2014-12-17 キヤノン株式会社 画像形成装置
JP6934394B2 (ja) * 2017-11-02 2021-09-15 ローム株式会社 Dcモータの駆動回路、駆動方法およびそれを用いた電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208957A (ja) * 1990-11-30 1992-07-30 Matsushita Electric Ind Co Ltd 現像装置
JP2007163602A (ja) * 2005-12-09 2007-06-28 Canon Inc 画像形成装置、制御方法、カートリッジおよび記憶媒体

Also Published As

Publication number Publication date
JP2010049208A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
US8849134B2 (en) Image forming apparatus having banding correction function
JP2009223083A (ja) 画像形成装置
US9621087B2 (en) Stepping motor driving apparatus, image carrier rotation driving apparatus and image forming apparatus
CN102236288B (zh) 图像形成设备
CN102314115A (zh) 组合使用不同类型的驱动力进行图像形成的图像形成装置
JP2017184490A (ja) モータ駆動装置及び画像形成装置
JP2021192589A (ja) モータ制御装置及び画像形成装置
JP2002139112A (ja) 無端状ベルト駆動装置および画像形成装置
JP5132478B2 (ja) 画像形成装置
JP5203823B2 (ja) 画像形成装置、画像形成装置の制御方法、プログラム及び記憶媒体
US9280081B2 (en) Image forming apparatus that suppresses occurrence of color shift in images and method of controlling the same
US9158240B2 (en) Image forming apparatus that prevents surface speed difference from being generated between photosensitive drum and intermediate transfer belt
JP5641819B2 (ja) 画像形成装置
JP6609144B2 (ja) 光走査装置
JP2006058364A (ja) 画像形成装置
US20050129427A1 (en) Rotary member driving mechanism, and image forming apparatus employing this mechanism
JP5762728B2 (ja) ブラシレスモータ
JP2015040999A (ja) 画像形成装置
JP2008015269A (ja) 画像形成装置
JP2014119596A (ja) 画像形成装置
JP2006084669A (ja) カラー画像形成装置における感光体駆動制御
JP2018061383A (ja) モーター制御装置、及び画像形成装置
JP2023031146A (ja) ステッピングモーター駆動装置及びステッピングモーター駆動方法
JP2008206352A (ja) ステッピングモータ駆動制御装置およびそれを用いた画像形成装置
JP2023031147A (ja) ステッピングモーター駆動装置及びステッピングモーター駆動方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5132478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees