JP5130738B2 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP5130738B2
JP5130738B2 JP2007036075A JP2007036075A JP5130738B2 JP 5130738 B2 JP5130738 B2 JP 5130738B2 JP 2007036075 A JP2007036075 A JP 2007036075A JP 2007036075 A JP2007036075 A JP 2007036075A JP 5130738 B2 JP5130738 B2 JP 5130738B2
Authority
JP
Japan
Prior art keywords
active material
material layer
current collector
electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007036075A
Other languages
English (en)
Other versions
JP2007250537A5 (ja
JP2007250537A (ja
Inventor
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007036075A priority Critical patent/JP5130738B2/ja
Publication of JP2007250537A publication Critical patent/JP2007250537A/ja
Publication of JP2007250537A5 publication Critical patent/JP2007250537A5/ja
Application granted granted Critical
Publication of JP5130738B2 publication Critical patent/JP5130738B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、集電体と、集電体の表面に形成された電極活物質層とを有する非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池に関する。
近年、非水電解質二次電池の高容量化のための電極活物質(以下、活物質ともいう)として、Si(ケイ素)やSn(スズ)などの元素を含む電極材料が注目されている。例えば、Siの理論放電容量は約4199mAh/gであり、黒鉛の理論放電容量の約11倍である。
しかしながら、これらの活物質は、リチウムイオンを吸蔵する際に構造が大きく変化し、膨張する。その結果、活物質粒子が割れたり、集電体から活物質層が剥がれたりすることによって、活物質と集電体との間の電子伝導性が低下し、結果としてサイクル特性といった電池特性が低下する。
そのため、放電容量が若干低下するがSiやSnの酸化物、窒化物または酸窒化物を用いることによって膨張収縮を軽減することが試みられている。
また、活物質層に、リチウムイオン吸蔵時の膨張空間をあらかじめ設けておくことが提案されている。
例えば特許文献1には、リチウム(Li)とは合金化しない材料からなる集電体上に、Liと合金化する金属またはこの金属を含有する合金からなる薄膜が形成された非水電解質二次電池用電極板(以下、電極板ともいう)が開示されている。この従来例においては、集電体上に所定のパターンで選択的に凹凸状電極活物質層を形成し、この凹凸状電極物質層の形成にはフォトレジスト法とメッキ技術などを適用している。さらに、柱状に形成された活物質間の空隙が活物質の体積膨張を吸収することによって、活物質の破壊を回避する内容を開示している。また、集電体の上に凹凸状にパターン化されて形成された活物質層を備える電極を用いて、従来の電池と同様にセパレータを介して正極活物質と対向させた非水電解質二次電池が開示されている。
また特許文献2には、Li合金メッキ型の電極において、充放電サイクルの繰り返しや捲回時のメッキ電極層のクラックを防止するために、集電体の幅方向の両端部にメッキ層を含まない構成が開示されている。
特開2004−127561号公報 特開平8−130005号公報
しかしながら、前記特許文献1に記載の構成を有する電極板は、活物質層を構成する粒子が充放電時に顕著に膨張収縮するために、集電体に働く応力が大きく、集電体の幅方向の端部で破断が生じやすい。また、前記特許文献2に記載の構成を有する電極のように、集電体の幅方向の両端部に活物質層を形成しない部分を設けた場合には、容量の低下が大きい上に、この集電体露出部分の集電体材料が削れやすく、電池組立工程で微粉が発生し、電池性能のバラツキが生じるおそれがある。
本発明は、前記従来の課題を解決するもので、高容量活物質を用い、かつリチウムイオ
ンの吸蔵による膨張収縮時の、集電体箔の幅方向の両端部における応力の低減を、顕著な容量低下なしに実現することが出来る非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池を提供することを目的とする。
前記従来の課題を解決するために、本発明の非水電解質二次電池用電極板は、集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な電極活物質を含む電極活物質層と、を有する用電極板であって、
前記電極活物質層は、集電体の中央部に形成された第1の活物質層と、集電体の幅方向の両端部に形成された、第1の活物質層よりも薄い第2の活物質層とからなることを特徴とするものである。
また本発明の電極板は、前記第2の活物質層の厚さが、前記第1の活物質層の厚さの0%以上、50%以下であること、を特徴とするものである。さらに前記電極活物質層は気相法で作製された層であること、を特徴とするものである。
本構成を有する非水電解質二次電池用電極板を用いた場合には、集電体の幅方向の両端部に対する応力を軽減することが可能となるので、集電体の破断を防止することが出来る。
また、本発明の電池は、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、本発明の非水電解質二次電池用電極板からなる負極板と、セパレータと、から構成される極板群と、リチウムイオン伝導性を有する電解質と、を含む電池であって、
極板群は、正極板と電極板とをセパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とする。
本構成の非水電解質二次電池は、信頼性の高い非水電解質二次電池用電極板を用いることで、高容量で信頼性の高い非水電解質二次電池とすることが出来る。
本発明の非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池によれば、高容量活物質を用い、かつリチウムイオンの吸蔵による活物質膨張収縮時の集電体端部に対する応力を軽減することで、集電体の破断を防止することが出来る。その結果、高容量で信頼性の高い電池とすることが出来る。
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
(実施の形態)
図1は本発明の実施の形態における電極板の概略平面図であり、図2は図1におけるA−A’における断面構造を示す概略断面図である。図1と図2とにおいて、同じ構成要素については同じ符号を用いる。図1および図2において、電極板20は、集電体22と、集電体22の表面上に形成された電極活物質層24とを有する。図2に示すように集電体22の両面に電極活物質層24が形成されていてもよいし、集電体22の片方の面にのみ電極活物質層24が形成されていてもよい。電極活物質層24は、集電体22の中央部に形成された第1の活物質層21と、集電体22の幅方向の両端部に形成され、第1の活物質層よりも薄い第2の活物質層23と、からなる。第2の活物質層23は集電体22の幅方向の両端部に所定の幅Wで形成されている。
さらに、第2の活物質層23の厚さは、第1の活物質層21の厚さに対して0%より大
きく50%以下である。ここで、集電体22の中央部に形成された第1の活物質層21とは、電池構成時に正極板と対向し、充放電に関与する活物質層を意味し、通常ほぼ均一な厚さで形成されている。また、集電体22の幅方向の両端部とは、図1に示すようにある程度の面積を有しており、集電体22の端部断面部を意味するものではない。
従来の電極板においては、電極活物質層が集電体の端部までほぼ均一に設けられているか、あるいは前述した特許文献2に示されるように、集電体の幅方向の両端部において電極活物質層を形成しない領域が設けられていた。
電極活物質層が集電体の幅方向の端部までほぼ均一に設けられている従来の電極板では、充放電による電極活物質層の膨張収縮に伴う応力が、集電体の中央付近と幅方向端部とで同程度に発生する。これに対して集電体の実用的な機械的強度は、集電体中央部付近では集電体材料の引っ張り強度によって規定されるが、集電体の幅方向端部では実用的な機械強度が集電体材料の引き裂き強度によって規定される。例えば集電体材料としてCu箔を用いた場合、電池製造工程時の極板スリットの工程で、集電体の切断面に微小なキズが発生することがあり、充放電による膨張収縮時に前記微小クラック部分を基点にした集電体の破断が生じやすい。
これに対して本発明の電極板20においては、集電体22の幅方向端部における電極活物質層(第2の活物質層23)の厚みは幅方向中央部における電極活物質層(第1の活物質層21)の厚みに比べて薄く、そのため充放電による膨張収縮による集電体22への応力が低減できる。そのため充放電を繰り返したときにも、集電体端部を基点とした集電体22および電極板20の破断を防止することが出来る。
一方、電極活物質層そのもののクラックを防止するために、特許文献2に示されるように集電体の幅方向の両端部において電極活物質層を形成しない領域を設けることが開示されている。特許文献2の場合には、また、電極活物質層が全く形成されていない集電体端部領域と電極活物質層形成領域で集電体にかかる応力の差が大きく、充放電の結果、二つの領域の境界で集電体の損傷が発生しやすい。また、正極板に対向する位置の電極板上に電極活物質層が全く存在しないとリチウムの析出が顕著に発生し、電池の信頼性が低下するため、正極板と電極板の位置あわせに高い精度が要求され、生産性が低下する。さらには集電体の幅方向の両端部の電極活物質層が形成されない領域は集電体箔が露出しており、電池製造工程における電極板のスリットや巻き取りの際に集電体の露出部分が工程設備と摺動接触する可能性が高い。そのため、集電体22の表面の削り取りや脱落により、集電体材料からなる微粉が発生する場合がある。こうした金属材料の微粉は電池信頼性の低下要因となる。
これに対して本発明の電極板20の構成においては、集電体22の幅方向の端部にまで第2の活物質層23が形成されているので、集電体22の端部領域と第1の活物質層22の形成領域とで集電体22にかかる応力の差は小さい。従って、充放電を繰り返しても、二つの領域の境界における集電体22の損傷は発生しにくい。また、集電体22の幅方向端部にまで第2の活物質層23が形成されているので、正・電極板の位置あわせがずれた場合にもリチウムの析出が軽微であり、電池の信頼性低下を防止できる。さらには、集電体22は幅方向端部まで第2の活物質層23に覆われているので、電池製造工程における取扱いを経ても集電体22材料の削れが生じにくく、金属微粉の発生による電池信頼性の低下を防止できる。
集電体22の幅方向における、第2の活物質層23が形成されている領域の幅Wは、1mm以上10mm以下であることが望ましい。この幅Wが1mm未満では集電体端部での破断防止の効果が小さく、幅Wが10mmを超えないことが、高エネルギー密度な電池を
得るために望ましい。この幅Wは電極板20の全長に亘って通常一定であるが、本発明の効果を損なわない範囲で有れば、一定である必要はない。また、集電体22の一方の端部に形成された第2の活物質層23の幅ともう一方の端部に形成された第2の活物質層23の幅とが同じでも良く、異なっていても良い。
また、電極活物質層24(第1の活物質層21および第2の活物質層23)に含まれる活物質としては、リチウムと電気化学的に反応するものであれば特に制限はないが、リチウムとの反応性が比較的高く、高容量が期待できるケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種を含むことが好ましい。本発明による改善度合いが顕著となるからである。
第1の活物質層21の集電体22の中央部での厚みは作製する電池の性能によって異なるが、概ね3〜40μmの範囲である。第1の活物質層21の厚さが3μm未満になると、電池全体に占める活物質の割合が小さくなり、電池のエネルギー密度が低下する。また、第1の活物質層21の厚さが40μmを超えると、活物質層の剥がれが発生しやすくなったり、充放電時の活物質層の膨張収縮による集電体22と第1の活物質層21との界面における応力が大きくなったり、本発明の構成を用いた場合でも集電体の変形などが発生しやすくなる。
リチウムとの反応性の観点からは、活物質は非晶質または低結晶性であることが好ましい。ここでいう低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。なお結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また非晶質とは、X線回折分析で得られる回折像において、2θ=15〜40°の範囲にブロードなピークを有することを言う。
集電体22には銅、ニッケルなどを含む金属箔を用いることが出来る。強度、電池としての体積効率、取り扱いの容易性などの観点から集電体22の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。集電体22の表面は平滑であってもよいが、電極活物質層24との付着強度を高めるために、Ra=0.1〜4μm程度の凹凸があってもよい。集電体表面の凹凸は電極活物質層24を構成する粒子間に空隙を形成する効果を併せ持つ。付着力、コストなどの点から、より好ましくはRa=0.4〜2.5μmである。
本実施の形態における電極板20は、例えば以下に示す方法によって作製可能である。図3および図4は、本実施の形態における電極板20を構成するための製造装置の一例を示す概略図であり、図4は後述する遮蔽体移動機構の一例を示す概略斜視図である。図3において、真空槽2内は排気ポンプ1で排気されている。真空槽2中で巻き出しロール8から巻き出された集電体22は、搬送ローラ5および円筒状の第1キャン6および第2キャン7の周面に沿って走行し、巻き取りロール3に巻き取られる。ここで使用する集電体22は銅、ニッケルなどからなるシート状の箔である。活物質付与源9には、ケイ素またはスズが坩堝などに入れられている。活物質付与源9は電子ビームなどの加熱装置(図示せず)により加熱され、ケイ素またはスズが蒸発する。
遮蔽板10の開口部において、集電体22が第1キャン6に沿った状態で活物質付与源9から飛来するケイ素やスズなどにさらされることにより、集電体22上にケイ素やスズの第1の活物質層21(図示せず)が形成される。次に第2キャン7に沿った状態で集電体22が活物質付与源9から飛来するケイ素やスズなどにさらされることにより、もう一方の面にもケイ素やスズの第1の活物質層21(図示せず)が形成される。この際、第1キャン6および第2キャン7に近接して、集電体22の走行方向に平行な線状遮蔽体41
が、集電体22や活物質層から所定の距離を保って、多条に設置される。蒸発源から飛来する活物質材料の一部は、線状遮蔽体41により集電体22上への付着を阻害される。そのため線状遮蔽体41に相対する位置では、集電体22上に形成される活物質層の厚みを薄くすることで、第2の活物質層23が出来る。なお、第2の活物質層23の形成に影響が出ない程度に線状遮蔽体41の一部が集電体22や活物質層に接触していても良い。
線状集電体41の上への活物質材料の堆積量が多くなると、活物質層が薄くなる領域が広がってくる。そこで、長時間の成膜を行う際には、遮蔽体移動機構により、線状遮蔽体41を移動させることが望ましい。この遮蔽体移動機構は、線状遮蔽体41を送出リール44と回収リール45とで移動させる遮蔽体移動機構42Bのような方式であっても良いし、線状遮蔽体41を巡回する遮蔽体移動機構42Aのような方式であっても良い。遮蔽体移動機構が遮蔽体移動機構42Bのように送出リール44と回収リール45を有する場合には、常に新しい線状遮蔽体41が供出されるので、線状遮蔽体41による対向部の活物質層厚み低減度合いが一定となる。また、遮蔽体移動機構が遮蔽体移動機構42Aのよう巡回方式である場合には、図4に示すように、途中に高屈曲部43を設けることにより、線状遮蔽体41に付着した活物質材料の大半を脱落させ、それによって線状遮蔽体41による対向部の活物質層厚み低減度合いを一定とすることが出来る。
線状遮蔽体41にはステンレスなどの金属線や金属帯、ポリイミドなどの耐熱性樹脂からなる線状長尺体を用いることが出来る。線状遮蔽体41の直径あるいは幅は、作製する第2の活物質層23の幅や、作製する電池の形状によって異なるが、後述するスリットの際に第2の活物質層23の幅Wを確保できる幅で有ればよい。
集電体上22に電極活物質層24を形成した後、電池製造工程のためにスリットを行う。スリットは線状遮蔽体41の対向位置、すなわち第2の活物質層23に沿って行われる。これによって集電体22の幅方向の両端部において第2の活物質層23を有する電極板20を形成することが出来る。
第2の活物質層23の形成状態は、線状遮蔽体41の厚さ、直径や幅、線状遮蔽体41と集電体22との距離、活物質付与源9と集電体22との距離などによって、第2の活物質層23の幅と厚さとを調整することが出来る。線状遮蔽体41と集電体22とは一部接触していても良く、両者の距離は0〜80mm程度であることが第2の活物質層23の幅を限定する上で望ましい。線状遮蔽体41と集電体22との距離は、線状遮蔽体41の直径あるいは幅の4倍以下であることが、線状遮蔽体41の効果により第2の活物質層23を設ける上で望ましい。活物質付与源9と集電体22との距離は真空蒸着法などの気相法を用いる場合には100〜600mm程度であることが、膜厚分布や材料利用効率の点から望ましい。
ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズと酸素とを含む化合物、またはスズと窒素とを含む化合物の活物質層を形成する場合には、酸素ガスや窒素ガスをガス導入管11から導入し、これらのガス雰囲気下や、そのイオン化雰囲気下で活物質付与源9からケイ素やスズを蒸発させることにより、本発明の電極板20が得られる。ガスをイオン化する場合には高周波の印加やイオン銃の使用等がガスの反応性向上に有効である。
本発明の構成を持つ電極活物質層24の作製方法は、本発明の構造を得ることが出来るものであれば特に限定されないが、蒸着法、スパッタ法、CVD法などの気相法(ドライプロセス)を用いることが好ましい。上述した製造方法のように、気相法を用いると、電極活物質層24(第1の活物質層21および第2の活物質層23)の形成厚さや幅、形成位置などの制御が、他の製法と比較して容易だからである。
こうした手法により得られた電極板20は、LiCoO、LiNiO、LiMnなどといった一般的に使用される正極活物質を含む正極板と、微多孔性フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどをエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類に溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解液と共に用いることで、非水電解質二次電池を作製出来る。
また、本発明の電極は様々な形状の非水電解質二次電池に適用可能であり、電池の形状や封止形態は特に限定されないが、本発明は特に折り畳み型や捲回型の二次電池に対して有効である。捲回型非水電解質二次電池に適用する場合には、以下に示す構成を有することが好ましい。図面を参照しながら説明する。
図5は、本発明の捲回型非水電解質二次電池の概略断面図である。図5において、正極31と本発明の帯状の電極板20とは、それらの間に配置された、両極板よりも幅広な帯状のセパレータ33とともに捲回され、極板群32を形成している。正極31にはアルミニウムなどからなる正極リード34が接続され、その一端は周縁にポリプロピレンなどからなる絶縁パッキン40が配された封口板39に接続されている。電極板20には銅などからなる電極リード35が接続され、その一端は極板群32を収容する電池缶38に接続されている。電極リード35は、例えば第2の活物質層23の一部を剥離して集電体22を露出させ、そこに溶接などにより電気的接続がされている。また、予め集電体22に、わずかに露出部を形成しておき、そこに電極リード35を接続しても良い。極板群32の上下には、それぞれ上部絶縁リング36および下部絶縁リング37が配されている。極板群32には、前述したリチウムイオン伝導性を有する電解質(図示せず)が含浸されている。電池缶38の開口は、封口板39で塞がれている。
ここで、電極板20として形成された、集電体22上の幅方向の両端部に形成された第2の活物質層23の厚みは、集電体22上の中央部に形成された第1の活物質層21の厚みに対して0%を超えて50%以下の領域を有する。これによって充放電による電極活物質層24が膨張収縮を繰り返しても集電体22端部を基点とした破断を防止することが出来る。なお、電極板20の全長にわたって第2の活物質層23の厚みが第1の活物質層21の厚みに対して0%を超えて50%以下である必要は必ずしもなく、電池設計や工程上の都合で極板の一部に限って、上記の範囲から逸することは本発明の主旨を損なうものではない。
以下では本発明を具体的な実施例により説明する。
(実施例1)
古河サーキットホイル(株)製の粗面化銅箔(35ミクロン厚、第1の面はRa=2ミクロン、第2の面はRa=1ミクロン)を集電体とし、第1の面上に真空蒸着法によって電極活物質層を形成し、電極を作製した。電極活物質層は、0.005Paまで真空槽を排気後、日本電子(株)製の270度偏向型電子銃を用いてシリコンを酸素導入雰囲気中(流量 30sccm)で加熱することによって蒸発させ、集電体上に堆積させることによって行った。第1の活物質層は20nm/秒の堆積速度で集電体上に堆積させて形成し、第2の活物質層の厚みが第1の活物質層の厚みの25%程度となるように遮蔽部の位置を集電体から20mm程度にして調整した。なお電極物質層は、集電体の幅方向に第1の活物質層が約58mm継続した後、第2の活物質層が2mm程度形成されるような繰り返し構造とした。次に第2の活物質層の中央線付近に沿ってカミソリ刃を用いて切断し、集電体の中央部に形成された第1の活物質層と、集電体の幅方向の端部に形成された第2の活物質層と、からなる電極を得た。研磨断面のSEM観察では、第2の活物質層の厚さは5ミクロン、第1の活物質層の厚さは20ミクロンであった。
作製した電極(60mm幅、4m長)を、活物質層が石英製四角柱の高さ方向の角に接するように、張力1.2kg、折れ角160度(鈍角)で押しつけて、速度2m/分で走行させた。電極を1m走行させた後の石英製四角柱の、電極が摺動した角を光学顕微鏡観察した。図6はその結果である。図6において、白い部分が石英製四角柱の表面であり、黒い部分は空間である。図6に示すとおり、石英製四角柱の、電極が摺動した角付近の表面には、電極から微粉が剥離したことに起因する汚れはほとんど無かった(図6)。また、電極上の活物質層表面には、石英製四角柱の角との摺動により発生する摺動痕は、目視では確認できなかった。
(比較例1)
実施例1と同様の集電体の上に真空蒸着法によって電極活物質層を形成し、電極を作製した。電極活物質層は、実施例1と同様の方法および条件でシリコンを酸素導入雰囲気気で蒸発させ、集電体上に堆積させることによって行った。また、電極活物質層は、集電体の中央部に形成し、集電体の長さ方向に別のテープ形状の銅箔であらかじめマスキングすることによって、活物質層が形成されない領域を設けた。なお電極物質層は、集電体の幅方向に第1の活物質層が約58mm継続した後、活物質層が形成されずに銅箔露出する部分が2mm程度形成されるような繰り返し構造とした。次に銅箔露出部分の長さ方向に沿って両端を、カミソリ刃を用いて切断し、集電体の幅方向両端部に第2の活物質層を形成せずに、銅箔を露出させた電極(60mm幅、4m長)を得た。研磨断面のSEM観察より、第1の活物質層の厚さは20ミクロンであった。
作製した電極を、実施例1と同様の配置で石英製の角柱に相対させ、幅方向あたりの張力200g/cmで2m/分の速度で摺動した。1m走行後、実施例1と同様の手法により石英製四角柱の、電極が摺動した角を光学顕微鏡観察した。図7において、白い部分が石英製四角柱の表面であり、黒い部分は空間である。図7に示すとおり、集電体から剥がれ落ちた銅粉が、石英製四角柱の、電極が摺動した角付近の表面に白い点として観察された。一方、電極の銅箔露出部分の表面には、石英製四角柱の角との摺動により発生した摺動痕が目視で確認できた。
本発明にかかる非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池は、高容量活物質を用い、かつ表面が粗面化した集電体を用いても電池組立時等の集電体の削れを軽減することができ、電池の信頼性が向上するので、非水電解質二次電池用電極、およびそれを用いた非水電解質二次電池として有用である。
また電気二重層キャパシタの一方の電極の活物質を、カーボンブラックからグラファイトに変更し、電解液をリチウムイオン含有の非水電解液へ変更することによりエネルギー密度を向上させた電気化学キャパシタが検討されている。本発明の電極板を、このような電気化学キャパシタのグラファイト電極に代えて使用することにより、電気化学キャパシタの信頼性を向上させることができる。
本発明の実施の形態における電極板の概略平面図 本発明の実施の形態における電極板の概略断面図 本発明の実施の形態における製造装置の一例を示す概略図 本発明の実施の形態における遮蔽体移動機構の一例を示す概略斜視図 本発明の実施の形態における捲回型非水電解質二次電池の概略断面図 本発明の実施例における石製製角柱の表面顕微鏡写真 比較例における石製製角柱の表面顕微鏡写真
符号の説明
1 排気ポンプ
2 真空槽
3 巻き取りロール
5 搬送ローラ
6 第1キャン
7 第2キャン
8 巻き出しロール
9 活物質付与源
10 遮蔽板
11 ガス導入管
20 電極板
21 第1の活物質層
22 集電体
23 第2の活物質層
24 電極活物質層
31 正極板
32 極板群
33 セパレータ
34 正極リード
35 電極リード
36 上部絶縁リング
37 下部絶縁リング
38 電池缶
39 封口板
40 絶縁パッキン
41 線状遮蔽体
42A、42B 遮蔽体移動機構
43 高屈曲部
44 送出リール
45 回収リール

Claims (4)

  1. リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、
    Ra=0.1〜4μmの凹凸を有する集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な電極活物質を含む電極活物質層と、を有する非水電解質二次電池用電極板からなる負極と、セパレータと、から構成される極板群と、
    リチウムイオン伝導性を有する電解質と、を含む非水電解質二次電池であって、
    前記電極活物質層は、前記集電体の中央部に形成された第1の活物質層と、前記正極の正極活物質と対向しない電極部分である前記集電体の幅方向の端部に、長さ方向端部以外の幅方向の両端部において前記集電体の面が露出しないように形成され、前記第1の活物質層よりも薄い第2の活物質層とからなり、
    前記第2の活物質層の厚さは、前記第1の活物質層の厚さの0%より大きく50%以下であることを特徴とする非水電解質二次電池。
  2. 前記正極の正極活物質と対向する電極部分の電極活物質層は、第1の活物質層のみからなる請求項1に記載の非水電解質二次電池。
  3. 前記電極活物質層は気相法で作製された層であること、を特徴とする請求項1に記載の非水電解質二次電池。
  4. 前記極板群は、前記正極板と前記非水電解質二次電池用電極板とを前記セパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とする請求項1に記載の非水電解質二次電池。
JP2007036075A 2006-02-16 2007-02-16 非水電解質二次電池 Expired - Fee Related JP5130738B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036075A JP5130738B2 (ja) 2006-02-16 2007-02-16 非水電解質二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006038991 2006-02-16
JP2006038991 2006-02-16
JP2007036075A JP5130738B2 (ja) 2006-02-16 2007-02-16 非水電解質二次電池

Publications (3)

Publication Number Publication Date
JP2007250537A JP2007250537A (ja) 2007-09-27
JP2007250537A5 JP2007250537A5 (ja) 2010-03-11
JP5130738B2 true JP5130738B2 (ja) 2013-01-30

Family

ID=38594571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036075A Expired - Fee Related JP5130738B2 (ja) 2006-02-16 2007-02-16 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP5130738B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960266A (zh) * 2023-09-21 2023-10-27 河南锂动电源有限公司 一种极片补锂装置、极片补锂系统及极片补锂方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261075A (ja) * 1990-03-10 1991-11-20 Bridgestone Corp 非水電解質二次電池
JPH10241725A (ja) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd アルカリ二次電池
JP2000268813A (ja) * 1999-03-19 2000-09-29 Toyota Motor Corp 電池及びキャパシタの電極構造、並びに電極の製造方法
KR100765053B1 (ko) * 2003-06-09 2007-10-09 산요덴키가부시키가이샤 리튬 이차 전지 및 그의 제조 방법
JP4368193B2 (ja) * 2003-12-26 2009-11-18 三洋電機株式会社 リチウム前駆体電池及びリチウム二次電池の製造方法
JP4526825B2 (ja) * 2004-01-23 2010-08-18 パナソニック株式会社 エネルギーデバイス

Also Published As

Publication number Publication date
JP2007250537A (ja) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4038233B2 (ja) 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池用電極を備えた非水電解質二次電池
JP5210162B2 (ja) 非水電解質二次電池用負極とその製造法および非水電解質二次電池
JP4036889B2 (ja) 電池
JP4647014B2 (ja) 電池、電極およびこれらに用いる集電体
KR101460153B1 (ko) 부극 및 그것을 이용한 전지, 및 부극의 제조 방법
WO2008044683A1 (fr) Électrode négative pour accumulateur secondaire à électrolyte non aqueux
JP4850405B2 (ja) リチウムイオン二次電池及びその製造方法
JP5189210B2 (ja) 非水電解質二次電池用負極および非水電解質二次電池
JP4745459B2 (ja) 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
JP2010097843A (ja) リチウムイオン二次電池
JP4876531B2 (ja) リチウム二次電池用負極およびリチウム二次電池の製造方法
JP2011018637A (ja) 電気化学素子用電極の製造方法
JP4368193B2 (ja) リチウム前駆体電池及びリチウム二次電池の製造方法
JP2007220450A (ja) リチウム二次電池用負極板、およびそれを用いたリチウム二次電池
JP5130737B2 (ja) 非水電解質二次電池
JP5076305B2 (ja) リチウム二次電池用負極の製造方法およびリチウム二次電池の製造方法
JP5130738B2 (ja) 非水電解質二次電池
JP4957167B2 (ja) 集電体、非水電解質二次電池用極板、およびそれを用いた非水電解質二次電池の製造方法
JP2008111160A (ja) 真空蒸着装置
JP5103789B2 (ja) リチウム二次電池用負極およびそれを用いたリチウム二次電池
JP2008010419A (ja) 電気化学素子用電極およびこれを含む電気化学素子の製造方法
JP2007328932A (ja) リチウム二次電池用負極およびこれを用いたリチウム二次電池
JP5034236B2 (ja) リチウム二次電池用負極、およびそれを用いたリチウム二次電池
JP2011187395A (ja) 非水電解質二次電池用負極板とその非水電解質二次電池用負極板の製造方法およびこれを用いた非水電解質二次電池
JP2011154786A (ja) 電気化学素子の極板製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees