JP5128823B2 - ガス改質器 - Google Patents

ガス改質器 Download PDF

Info

Publication number
JP5128823B2
JP5128823B2 JP2007007844A JP2007007844A JP5128823B2 JP 5128823 B2 JP5128823 B2 JP 5128823B2 JP 2007007844 A JP2007007844 A JP 2007007844A JP 2007007844 A JP2007007844 A JP 2007007844A JP 5128823 B2 JP5128823 B2 JP 5128823B2
Authority
JP
Japan
Prior art keywords
steam
reformer
gas
reforming
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007007844A
Other languages
English (en)
Other versions
JP2008179487A (ja
Inventor
藤 功 一 後
井 潔 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007007844A priority Critical patent/JP5128823B2/ja
Publication of JP2008179487A publication Critical patent/JP2008179487A/ja
Application granted granted Critical
Publication of JP5128823B2 publication Critical patent/JP5128823B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、ごみ燃焼排ガス中に設置されるガス改質器に関する。
第1の従来技術として考えられている廃棄物処理の排熱を利用した水素製造システムの1つを、図9を用いて説明する。なお、これ以降、全ての図において、物質の搬送に用いる機器は図中に描かない事とする。
焼却炉1に一般廃棄物などの処理したい廃棄物2と燃焼用空気3を流入させ、廃棄物2を燃焼させる。燃焼によって灰4と第1の燃焼排ガス23が発生し、灰4は焼却炉1から排出される。ボイラ6にはボイラ給水7が流入し、第1の燃焼排ガス23によって加熱され蒸発し、ボイラ蒸気5となって流出する。ボイラ6は節炭器、蒸発器、過熱器から構成されており、ボイラ蒸気5は熱利用先に熱を渡す事で冷却され水になり、循環しボイラ給水7となるが、図には描いていない。またボイラ蒸気5を、発電機に接続した蒸気タービン43に流す事で、発電してから、圧力温度ともに低下した蒸気タービン排気蒸気41を、河川水や大気を用いた復水器40で冷却して水にしてボイラ給水7にする廃棄物発電の構成にしてもよいが、図には描いていない。燃焼排ガス23は熱を与えた分、温度低下し、焼却炉排ガス8となって流出し、バグフィルタ流入ガス9となる。バグフィルタ以降については説明を割愛する。
焼却炉1の内部に、改質触媒を内蔵した改質器10を設置する。改質器10に、改質器投入物である都市ガス12と、蒸気13を混合した改質原料11を流入させる。都市ガス12は脱硫器によって脱硫された状態の都市ガスであるが、脱硫器は図に描いていない。改質原料11は燃焼排ガス23により加熱され、水蒸気改質し、改質ガス17となって流出する。改質ガス17は一酸化炭素、二酸化炭素、水素、蒸気、メタンから構成される。改質ガス17は一酸化炭素変成器19に流入し、適当な温度状態にされる。一酸化炭素の多くは蒸気と反応し、二酸化炭素に変化すると同時に、蒸気は水素に変化する。変成ガス18となって流出し、二酸化炭素分離器15に流入させ、二酸化炭素21を分離する。二酸化炭素分離器15から二酸化炭素以外である分離済みガス22を流出させる。二酸化炭素分離器15にて二酸化炭素21を分離する方法は幾つかあるが、例えば熱炭酸カリウム方式を用いる。分離済みガス22は水素分離器16に流入する。分離済みガス22は、圧力スイング吸着法などの方法により、水素14と水素以外のガス20に分離される。このように製造された水素28は、燃料電池や水素エンジンや水素燃焼タービンの燃料や、冷媒水素として用いられる。また、水素28を分離しないで、一酸化炭素と水素の混合ガスのままでエンジンや燃焼タービンの燃料に用いる事もできる。なお、水素製造のみが目的である場合は、二酸化炭素分離過程はなくてもよい。
第2の従来技術として、第1の従来技術を改良した水素製造システムの1つを、図10を用いて説明する。第1の従来技術と異なる部分のみを説明する。
ボイラ蒸気5を分岐し、分岐蒸気24を得た後、減圧弁25で、都市ガス12と同じか近い圧力まで減圧し前記蒸気13とする。ボイラ蒸気5は熱利用先に熱を渡す事で冷却され水になり、循環しボイラ給水7の一部になる。その循環する水に、分岐蒸気24と同じ流量の補給水を合流させ、ボイラ給水7にするが、図には描いていない。水蒸気改質反応を用いた水素製造では、軟水装置を通した水から発生させた蒸気が必要なので、水をポンプで搬送し、軟水装置を通し、加熱によって蒸気を発生させる事が必要だが、図10に示す第2の従来技術では、軟水装置を通した水であるボイラ給水7から発生させたボイラ蒸気5の一部である、分岐蒸気24を用いる事で、適当な蒸気が容易に導入できる。その他は第1の従来技術と同じである。
特開2005−111381号公報
ごみ焼却炉1内に設置した改質器10の表面は、ごみ燃焼排ガス23に曝されているが、ごみ燃焼排ガス23は腐食性ガスかつ高温ガスであるため、改質器10の材料が腐食しやすい。特に表面温度が後述する高温腐食温度域ならば、溶融塩腐食による減肉が極めて激しい。表面温度が高温腐食温度域より低くなるように、ボイラ6により冷却され排ガス温度がより低くなっている排ガス流路部分に改質器10を設置したり、改質器10内を流通する作動流体(入口時点では改質原料11)の流量を増やしたりする事は可能だが、表面温度が低いと改質器10内を流通する作動流体の温度も低くなる。ボイラ6の蒸発管では表面温度を高温腐食温度域より低温側に回避するので、製造蒸気温度が低くなるだけで済む。しかし、改質器10の場合は改質温度が低くなると、都市ガス12の転化率が低くなり、水素14の製造効率が低下する。改質器10を高温腐食温度域より低温域に設置すると、都市ガス12が同じ流量の場合の製造水素量は数割低減してしまう。一般に金属と異なりセラミックは腐食しないが、例えば代表的なセラミックであるSiCは燃焼排ガス23中のダストに含まれるNaOと化学反応するため、改質器10の材料としては使用できない。
本発明はこのような点を考慮してなされたものであり、ごみ燃焼排ガス中に設置しながら、水素の製造効率が低くならない改質器を提供することを目的とする。
本発明は、燃焼排ガス流路を有し廃棄物を燃焼処理する焼却炉の内部に設置されたガス改質器において、前記燃焼排ガス流路の中の溶融塩腐食領域より高温の領域に設置され、炭化水素とエーテルとアルコールの内1つ以上を含む改質器投入物と蒸気とが流入し、燃焼排ガスからの熱を用いて水蒸気改質させる事で水素を含む改質ガスを発生させる、ことを特徴とするガス改質器である。
本発明は、炭化水素とエーテルとアルコールの内1つ以上を含む改質器投入物と、蒸気を流入させ、水蒸気改質させる事で水素を含む改質ガスを発生させる反応器であるガス改質器であって、廃棄物を燃焼処理する焼却炉の燃焼排ガス流路に設置された熱交換器に、ボイラ給水の一部を流入させ、燃焼排ガスからの熱で加熱製造した蒸気の流路内に設置され、かつ、前記熱交換器から流出した蒸気を、水蒸気改質用の蒸気とする、ことを特徴とするガス改質器である。
第1の実施の形態
以下、本発明の第1の実施の形態について、図1を参照して説明する。
ここで、図1は、本発明の第1の実施の形態を示す概略図であり、図2は、腐食速度の温度依存性を示す図である。
図1に示すように、改質器10を、ごみ燃焼排ガス23流路の中の溶融塩腐食領域より高温の領域に設置する。ごみ焼却炉環境における炭素鋼の腐食速度の温度依存性は図2のようであり、例えば500〜700℃は溶融塩腐食が激しい高温腐食温度域である。表面温度が800〜950℃ならば、付着物であるごみ燃焼排ガス23中のダストが溶融しないので、溶融塩腐食が充分に小さい。そこで、例えば900℃の領域に改質器10を設置する。
他は図10に示す第2の従来技術と同じである。なお、本実施の形態では都市ガス12を用いたが、その他の炭化水素やアルコールやエーテルでもよく、硫黄分がなければ、改質器投入物の脱硫工程はない。本実施の形態では、ボイラ蒸気5から分岐蒸気24を分岐したが、ボイラ蒸気5の一部を前記蒸気13として改質器10に流入させているが、ボイラ蒸気5の全部を前記蒸気13にしてもよい。この場合、ボイラ蒸気5を分岐する構成を具備しないで、全量を前記蒸気13にする。また前記蒸気13はボイラ蒸気5でなく別途供給された蒸気を用いてもよい。
本実施の形態には以下のような効果がある。改質器10の表面温度が例えば750℃になっても、高温腐食温度域ほど腐食は大きくない。よって、改質温度を高くでき、都市ガス12の転化率が低くならない。例えば改質温度830℃であれば、転化率0.995以上が容易に実現できる。
前記のように、ごみ燃焼排ガス23内に設置しながら、水素14の製造効率が低くならない改質器10が提供される。また、改質器10は腐食減肉を想定して、初期肉厚を大きくしておくのだが、腐食減肉が小さくなる分、初期肉厚が小さくでき熱抵抗が減るので、より改質温度が高くなり転化率が高くなる上、より軽量になる。
第2の実施の形態
次に、本発明の第2の実施の形態について説明する。
第1の実施の形態において、少なくとも前記燃焼排ガス流路に存在している部分に、耐熱合金を用いる。金属は高温状態のまま充分な時間が経つと、クリープ強度が激しく低下するが、耐熱合金は同じ温度における強度が高い。改質器10の材料強度が許容強度以下になるまでの時間が寿命に相当するので、寿命が長くなる効果がある。
第3の実施の形態
次に、本発明の第3の実施の形態図1について説明する。
第1の実施の形態において、少なくとも前記燃焼排ガス流路に存在している部分に、耐熱耐食合金を用いる。第2の実施の形態の効果に加え、より腐食されにくくなる効果がある。
第4の実施の形態
次に、本発明の第4の実施の形態について説明する。
第2の実施の形態および第3の実施の形態において、前記耐熱合金あるいは耐熱耐食合金を、鉄基固溶強化型合金、鉄基弱析出強化型合金、鉄基強析出強化型合金、ニッケル基固溶強化型合金、ニッケル基析出強化型合金、またはコバルト基合金とする。第3の実施の形態および第4の実施の形態の効果がより強くなる。
第5の実施の形態
次に、本発明の第5の実施の形態について説明する。
第2の実施の形態、第3の実施の形態、および第4の実施の形態において、前記耐熱合金あるいは耐熱耐食合金をクロムの重量比15%以上の物とする。より腐食されにくくなる効果がある。例えばInconel625を用いる。改質器10内部の流路は、保護皮膜が800〜900℃ならば安定なので水蒸気酸化しない。
第6の実施の形態
次に、本発明の第6の実施の形態について説明する。
第2の実施の形態、第3の実施の形態、第4の実施の形態、および第5の実施の形態において、前記耐熱合金あるいは前記耐熱耐食合金を通算4年間、850℃以下であった状態のラプチュア応力が40MPa以上である物とする。改質触媒の寿命は4年程度である事が多く、改質触媒の交換間隔より改質器10の材料の寿命を長くできる効果がある。
第7の実施の形態
次に、本発明の第7の実施の形態について説明する。
第1の実施の形態において、改質器10を設置する燃焼排ガス23の温度域の制約を排除する。そして改質器10を、腐食進行または強度低下が所定許容値以上になる以前に、改質原料11や改質ガス17の流路を未使用物に交換しながら使用する。例えば500℃といった、ある程度、高温腐食する温度域に改質器10を設置し、短期間で交換し続ける。この場合、改質温度が低くなるが、耐熱合金や耐食合金といった高価な材料を使用しないので、一定年数当たりの改質器コストは低下する。転化率低下に伴う都市ガス消費量増加によるコスト増加に比べて、充分に低下するので、一定期間の消費コスト総額が低下する効果がある。
第8の実施の形態
次に、本発明の第8の実施の形態について説明する。
第7の実施の形態において、前記改質器投入物や前記水素の流路の材料を、クリープ破断に到る時間が、前記内蔵改質触媒の寿命以下である状態にする。金属種類や温度や発生応力を考慮した設計により、クリープ破断に到る時間を調節する。改質触媒の交換間隔より改質器10の材料の寿命を長くできる効果がある。
第9の実施の形態
次に、本発明の第9の実施の形態について説明する。
第7の実施の形態および第8の実施の形態において、改質原料11や改質ガス17の流路の材料を、クリープ破断に到る時間が、1年以下である状態にする。金属種類や温度や発生応力を考慮した設計により、クリープ破断に到る時間を調節する。ごみ焼却炉1はメンテナンスのため1年以内に1回以上、例えば半年に1回、停止する。停止のたびに改質器10を交換する事が可能であり、寿命を長くして高価にするより、安価な材料の改質器10を繰り返す方が、一定年数の総額は安価になる。
第10の実施の形態
次に、本発明の第10の実施の形態について図3を用いて説明する。図3は寸法比を無視した図であり、U字管33は多数本並列に存在しているが代表して1本しか描いていない。
第1の実施の形態乃至第9の実施の形態において、改質原料11や改質ガス17の流路が、前記燃焼排ガス23流路の天井壁28を貫通する構造にする。改質器10外部から入口ヘッダ30に流入した改質原料11である都市ガス12と蒸気13の混合ガスは、多数本のU字管33に分配される。U字管33内部には少なくとも途中から改質触媒が封入されており、燃焼排ガス23から熱を受け取りながら、改質反応が起こる。改質原料11は改質ガス17に変化した後、多数のU字管33から排出され出口ヘッダ29にて合流し、改質器10外部に流出する。この時、U字管33が天井壁28を貫通する構造とする。
天井壁28の上には、ヘッダ29、30を設置できるスペースがある上、改質器10を吊下げる事により、設置構造は改質器10の上側のみで済む。よって、設置しやすい構造になる効果がある。既設のごみ焼却炉1に設置する場合であっても、設置が容易な構造になる。
第11の実施の形態
次に、本発明の第11の実施の形態について図3を用いて説明する。
第1の実施の形態乃至第10の実施の形態において、改質原料や改質ガスの流路が、複数の金属から構成される部分を具備しており、異なる金属同士の溶接部31を、炉壁貫通部分または、管を分岐するヘッダと炉壁貫通部分との間における管突合せとする。図3では当該炉壁は天井壁28である。前記燃焼排ガス流路に存在している部分以外、例えばヘッダ29、30にはダストの付着がないので溶融塩腐食がない。そのため耐食性に優れていない金属を用いる事ができ、安価にできる。しかし異なる金属を溶接接続する場所には、温度変化による応力が発生しやすく、許容応力を越える可能性も高くなる。そこで、溶接部は、管軸方向や管壁厚み方向の温度変化がほとんどない領域、即ち、熱授受のない燃焼排ガス23流路でない炉壁貫通部に設け、さらに、熱伸び差に起因する応力の発生が少ない管突合せ溶接にする。発生応力を抑える効果がある。
第12の実施の形態
次に、本発明の第12の実施の形態について図4を用いて説明する。
第1の実施の形態乃至第11の実施の形態において、前記燃焼排ガス23により加熱されながらかつ前記改質原料11を流通させない時は、前記改質原料11の流路に蒸気または水38を流通させる。水素製造運転中は改質器10の内部を流通する改質原料11が熱を受ける事で、改質器10の材料は冷却され表面温度の上昇が抑えられているが、水素製造非運転時に改質原料11の流通を停止すると、改質器10の材料温度はごみ燃焼排ガス23の温度と同じ温度まで上昇してしまう。温度が高いほどクリープ強度が低下し許容応力以下になるまでの時間が充分に短くなる。そこで、前記改質原料11の流路に蒸気または水38を流通させる。この時、弁25、26、35、37はそれぞれ開、閉、開、閉の状態である。なお水素製造運転中は、それぞれ開、開、閉、開の状態である。内部を流通する流体により改質器10の材料は冷却され、表面温度の上昇が抑えられ、寿命が短くなる事が抑えられる。蒸気あるいは水38の流入量は、弁25の開度で調節し、改質器10を流出した蒸気または水36は、一酸化炭素変成器19には流入させない。なお、水を流入させた場合、改質器10内部で沸騰し、水と蒸気の混合状態あるいは、蒸気のみの状態になって流出する場合もある。
第13の実施の形態
次に、本発明の第13の実施の形態について図5を用いて説明する。
第12の実施の形態において、前記燃焼排ガス23により加熱されながらかつ前記改質原料11を流通させない時に、前記改質原料11の流路に流す蒸気または水を、前記焼却炉1内に設置したボイラ6にて、前記燃焼排ガス23の熱を利用して製造したボイラ蒸気5の一部または全部とする。分岐蒸気24を減圧弁25で、都市ガス12と同じか近い圧力まで減圧し蒸気13としてから改質器10に流入させる。この時、弁25、26、35、37はそれぞれ開、閉、開、閉の状態である。なお水素製造運転中は、それぞれ開、開、閉、開の状態である。分岐蒸気24を用いる事で、適当な蒸気が容易に導入できる効果がある。
第14の実施の形態
次に、本発明の第14の実施の形態について図6を用いて説明する。
第12の実施の形態において、前記燃焼排ガス23により加熱されながらかつ前記改質原料11を流通させない時に、前記改質原料11の流路に流す蒸気または水を、前記焼却炉1内に設置したボイラ6の給水の一部とする。分岐水39を減圧弁38で、都市ガス12と同じか近い圧力まで減圧してから改質器10に流入させる。この時、弁25、26、36、37、38はそれぞれ閉、閉、開、閉、開の状態である。なお水素製造運転中は、それぞれ開、開、閉、開、閉の状態である。分岐水39を用いる事で、適当な冷却流体が容易に導入できるだけでなく、改質器10の材料との温度差がより大きくかつ気化潜熱が存在する事で、改質器10の冷却がしやすくなるという効果がある。改質器10内部で沸騰し、水と蒸気の混合状態あるいは、蒸気のみの状態に変化して流出する場合もある。
第15の実施の形態
次に、本発明の第15の実施の形態について図5および図6を用いて説明する。
第12の実施の形態、第13の実施の形態、および第14の実施の形態において、前記燃焼排ガス23により加熱されながらかつ前記改質原料11を流通させない時、前記改質器10から流出した蒸気または水36の圧力が、前記焼却炉1内に設置したボイラ6の製造蒸気5の圧力より高い状態であり、前記蒸気または水36を前記製造蒸気5の流路に流す。そして熱利用先に熱を渡す事で冷却され水になり、循環しボイラ給水7になる。ボイラ蒸気5と合流する事になり、改質器10内を通過した蒸気または水36の処理のために新たに処理機能を追設する必要がない。蒸気または水36が、蒸気のみの状態でなくても、流量がボイラ蒸気5より充分に小さいので、合流すると全てが蒸気状態になるので、合流後の蒸気により駆動する蒸気タービンを設けたシステムも可能であり、この場合はタービン蒸気流量が減らない効果もある。
第16の実施の形態
次に、本発明の第16の実施の形態について図7を用いて説明する。
第12の実施の形態、第13の実施の形態、および第14の実施の形態において、前記焼却炉1内に設置したボイラ6の製造蒸気5により駆動する蒸気タービン43を設け、改質器10が前記燃焼排ガス23により加熱されながらかつ前記改質原料11を流通させない時、前記改質器10から流出した蒸気または水36を、前記蒸気タービンの排気41の流路または前記排気41が流入する復水器40に流す。図7では、前記改質原料11の流路に流す蒸気または水を、前記焼却炉1内に設置したボイラ給水7の分岐水39とし、前記改質器10から流出した蒸気または水36を、前記蒸気タービンの排気41に合流させ、蒸気タービン蒸気42にしている。第15の実施の形態と異なり、前記改質器10から流出した蒸気または水36の圧力が、前記焼却炉1内に設置したボイラ6の製造蒸気5の圧力より低くても流れる。前記蒸気タービン排気41は前記復水器40により冷却され水になり、ボイラ給水7となって循環するが、改質器10内を通過した蒸気または水36も、ボイラ給水7として利用されるという効果がある。また第15の実施の形態と同様の効果もある。
第17の実施の形態
次に、本発明の第17の実施の形態について説明する。
第1の実施の形態乃至第16の実施の形態において、改質器10の外表面に高圧蒸気を吹き付けるスートブロワを具備し、前記改質器投入物を流通させない時に前記スートブロワを作動させる事ができるようにする。溶融塩腐食を抑えるために改質器10の外表面に付着したダストを除去したいが、スートブロワで高圧蒸気を吹き付けて除去しようとすると、改質温度が低下して転化率が下がる。ボイラによる蒸気製造は運転が停止する事はないが、改質器10は水素製造運転をしない時があり、例えば1日数時間停止するので、その間にスートブロワを作動させる。水素製造効率を低下させずに、溶融塩腐食を抑える効果がある。
第18の実施の形態
次に、本発明の第18の実施の形態について図3を用いて説明する。
第1の実施の形態乃至第17の実施の形態において、前記改質原料11の流路の内、前記改質触媒が封入された部分をU字管構造流路の一部とする。改質器10外部から入口ヘッダ30に流入した改質原料11である都市ガス12と蒸気13との混合ガスは、多数本のU字管33に分配される。U字管33内部には少なくとも途中から改質触媒が封入されており、燃焼排ガス23から熱を受け取りながら、改質反応が起こる。改質原料11は改質ガス17に変化した後、多数のU字管33から排出され出口ヘッダ29にて合流し、改質器10外部に流出する。内部流体即ち改質原料11や改質ガス17が下降する部分と上昇する部分は、内部流体の温度が異なるため熱伸び差が生じるが、鉛直下側にヘッダを設けて拘束されている構造ではないため、高い応力の発生を抑える事になる。
第19の実施の形態
次に、本発明の第19の実施の形態について図1を用いて説明する。
第1の実施の形態乃至第18の実施の形態において、改質器10の出口から流出する流体である前記改質ガス17の圧力を圧力計27で監視し、前記圧力が所定値より低くなった場合、都市ガス12の弁26を閉じて前記改質原料の流入を遮断する。蒸気13の弁25は閉じる方が望ましいが、即時実施する必要はない。改質器10に腐食等の理由で、穴があいた場合、改質器10の内部流体の圧力が燃焼排ガス23の圧力より高いため、内部流体が焼却炉1内に漏れる。その時、改質器10の出口圧力は低下する。圧力低下を検知し弁26を閉じた時、改質原料11の内、少なくとも可燃性ガスである都市ガス12の流入を停止する事になる。改質器10の内部流体である改質原料11や改質ガス17がごみ焼却炉1内に流出した場合、可燃成分である炭化水素、水素、一酸化炭素は燃焼するが、流出が止まるまでのごく短時間で抑える事ができる。
第20の実施の形態
次に、本発明の第20の実施の形態について図8を用いて説明する。
図1に示す第1の実施の形態と異なる部分のみを説明する。ごみ焼却炉1の燃焼排ガス23流路に熱交換器32を設置し、ボイラ給水7を分岐した分岐水39を流入させ、燃焼排ガス23からの熱で加熱し沸騰させ、加熱後蒸気44として流出させる。加熱後蒸気44の流路に改質器10を設置し、前記加熱後蒸気44からの熱で水蒸気改質を行う。改質原料11に熱を奪われた蒸気を、改質器10に流入する蒸気13とし、都市ガス12と合流させ改質原料11とする。この時、ごみ燃焼排ガス23から熱交換器32が奪った熱は全て水蒸気改質に用いられ、全体システムの外部には出ていかない。さて、改質原料11や改質ガス17の流路はごみ燃焼排ガスに接していないので腐食しない。よって、仮に熱交換器32に腐食による穴があいた場合、熱交換器32の内部流体の圧力が燃焼排ガス23の圧力より高いため、内部流体が焼却炉1内に漏れるが、内部流体は分岐蒸気39であり、可燃成分は含まれていない。よって、可燃成分が焼却炉1内部に漏れる事がなくなる。
本発明の第1の実施の形態および第19の実施の形態を示す概略図。 腐食速度の温度依存性を示す図。 本発明の第10の実施の形態、第11の実施の形態、および第18の実施の形態を示す概略図。 本発明の第12の実施の形態を示す概略図。 本発明の第13の実施の形態および第15の実施の形態を示す概略図。 本発明の第14の実施の形態および第15の実施の形態を示す概略図。 本発明の第16の実施の形態を示す概略図。 本発明の第20の実施の形態を示す概略図。 第1の従来技術を示す概略図。 第2の従来技術を示す概略図。
符号の説明
1 ごみ焼却炉
2 廃棄物
3 燃焼用空気
4 灰
5 ボイラ蒸気
6 ボイラ
7 ボイラ給水
8 燃焼炉排ガス
9 バグフィルタ流入ガス
10 改質器
11 改質原料
12 都市ガス
13 蒸気
14 水素
15 二酸化炭素分離器
16 水素分離器
17 改質ガス
18 変成ガス
19 一酸化炭素変成器
20 水素以外の物質
21 二酸化炭素
22 分離済みガス
23 燃焼排ガス
24 分岐蒸気
25 弁
26 弁
27 圧力計
28 天井壁
29 出口ヘッダ
30 入口ヘッダ
31 溶接部
32 熱交換器
33 U字管
34 弁
35 弁
36 蒸気または水
37 弁
38 蒸気または水
39 分岐水
40 復水器
41 蒸気タービン排気
42 蒸気タービン蒸気
43 蒸気タービン
44 加熱後蒸気

Claims (2)

  1. 燃焼排ガス流路を有し廃棄物を燃焼処理する焼却炉の内部に設置されたガス改質器において、
    前記燃焼排ガス流路の中の溶融塩腐食領域より高温の領域に設置され、炭化水素とエーテルとアルコールの内1つ以上を含む改質器投入物と蒸気とが流入し、燃焼排ガスからの熱を用いて水蒸気改質させる事で水素を含む改質ガスを発生させる、ことを特徴とするガス改質器。
  2. 炭化水素とエーテルとアルコールの内1つ以上を含む改質器投入物と、蒸気を流入させ、水蒸気改質させる事で水素を含む改質ガスを発生させる反応器であるガス改質器であって、
    廃棄物を燃焼処理する焼却炉の燃焼排ガス流路に設置された熱交換器に、ボイラ給水の一部を流入させ、燃焼排ガスからの熱で加熱製造した蒸気の流路内であって前記燃焼排ガス流路外に設置され、かつ、前記熱交換器から流出した蒸気を、水蒸気改質用の蒸気とする、ことを特徴とするガス改質器。
JP2007007844A 2006-12-28 2007-01-17 ガス改質器 Expired - Fee Related JP5128823B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007844A JP5128823B2 (ja) 2006-12-28 2007-01-17 ガス改質器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006355847 2006-12-28
JP2006355847 2006-12-28
JP2007007844A JP5128823B2 (ja) 2006-12-28 2007-01-17 ガス改質器

Publications (2)

Publication Number Publication Date
JP2008179487A JP2008179487A (ja) 2008-08-07
JP5128823B2 true JP5128823B2 (ja) 2013-01-23

Family

ID=39723689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007844A Expired - Fee Related JP5128823B2 (ja) 2006-12-28 2007-01-17 ガス改質器

Country Status (1)

Country Link
JP (1) JP5128823B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036055A1 (en) * 2021-01-29 2022-08-03 Hitachi Zosen Inova AG Process for producing a hydrogen-containing product gas using energy from waste

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695837B2 (ja) * 2010-04-01 2015-04-08 株式会社東芝 改質ガスあるいは水素の製造システム
JP6914716B2 (ja) * 2017-04-28 2021-08-04 三菱パワー株式会社 ボイラおよびその製造方法、ならびに補修方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203389A (ja) * 1982-05-22 1983-11-26 セントラル硝子株式会社 廃熱回収装置
JPS6365057A (ja) * 1986-09-05 1988-03-23 Kubota Ltd 炭化水素類の熱分解・改質反応用管
JPH0635321B2 (ja) * 1988-05-17 1994-05-11 宇部興産株式会社 流動床型改質炉
JP2576684B2 (ja) * 1990-11-13 1997-01-29 宇部興産株式会社 廃棄物を利用した発電装置
JP2002249838A (ja) * 1996-04-09 2002-09-06 Mitsubishi Heavy Ind Ltd 化石燃料燃焼装置用耐食耐熱Ni基合金
JP2000169103A (ja) * 1998-12-09 2000-06-20 Mitsubishi Materials Corp 改質器およびその改質反応部品
US7141223B2 (en) * 2000-07-04 2006-11-28 Sanyo Electric Co., Ltd. Fuel reformer
JP2004202412A (ja) * 2002-12-26 2004-07-22 Jfe Engineering Kk 衝撃波による化学反応方法およびそれを用いた水素製造方法、並びに化学反応装置およびその装置を備えた水素製造装置、および水素供給施設
JP2004018343A (ja) * 2002-06-19 2004-01-22 Hitachi Ltd 炭化水素燃料からの電力と水素の併産方法とそのプラント及びその排熱回収型改質器
JP2004092972A (ja) * 2002-08-30 2004-03-25 Tokyo Gas Co Ltd 生ごみ処理方法及び生ごみ処理装置
JP4424471B2 (ja) * 2003-01-29 2010-03-03 住友金属工業株式会社 オーステナイト系ステンレス鋼およびその製造方法
JP4424467B2 (ja) * 2003-08-29 2010-03-03 株式会社Ihi 水素製造システム
US7442265B2 (en) * 2003-10-20 2008-10-28 Kubota Corporation Heat-resistant cast steel excellent in aged ductility and creep rupture strength for hydrogen producing reaction tubes
JP5109115B2 (ja) * 2005-04-07 2012-12-26 国立大学法人 長崎大学 ニッケル基超合金及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036055A1 (en) * 2021-01-29 2022-08-03 Hitachi Zosen Inova AG Process for producing a hydrogen-containing product gas using energy from waste
WO2022161985A1 (en) * 2021-01-29 2022-08-04 Hitachi Zosen Inova Ag Process for producing a hydrogen-containing product gas using energy from waste

Also Published As

Publication number Publication date
JP2008179487A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
Sunden High temperature heat exchangers (HTHE)
US4315893A (en) Reformer employing finned heat pipes
US7926292B2 (en) Partial oxidation gas turbine cooling
US4546603A (en) Coal gasification composite power generating plant
US20090011290A1 (en) Method and apparatus for thermochemical recuperation with partial heat recovery of the sensible heat present in products of combustion
KR101241848B1 (ko) 수소 발생 장치 및 방법
JP5128823B2 (ja) ガス改質器
US20210207529A1 (en) Gasifier wall, integrated gasification combined cycle power generation equipment comprising same, and method for producing gasifier wall
JP2006206383A (ja) 炭化水素系ガスの改質器
EP3795537B1 (fr) Reacteur a lit fixe catalytique integrant un element chauffant electrique, unite de production d'hydrogene par vaporeformage comprenant un tel reacteur et un generateur de vapeur electrique, procede de fonctionnement associe
Ruth Advanced clean coal technology in the USA
JP4733612B2 (ja) 廃棄物処理設備のボイラ過熱器
RU2659410C1 (ru) Теплообменник для рекуперации отработанного тепла
JP2011178572A (ja) ケミカルループ反応システム及びこれを用いた発電システム
JP2017113746A (ja) 放射状の非触媒性の回収改質装置
CN101290113A (zh) 一种处理炼厂含硫、含氨酸性气的方法及装置
JP5695837B2 (ja) 改質ガスあるいは水素の製造システム
JP2005214013A (ja) メタン含有ガスを供給ガスとした発電システム
JP4680628B2 (ja) 重質油改質装置及び重質油焚きガスタービンシステム
JP2006002622A (ja) ガスタービン用再生器
Ganapathy Heat recovery steam generators: performance management and improvement
JP2007191370A (ja) 水素製造システム
JP2012145110A (ja) ターボ機械システム用の燃料改質システム
JP5677931B2 (ja) ボイラ装置
Hurley Applications for dispersion-strengthened alloys in thermal power systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees