JP5114244B2 - クロック再生回路 - Google Patents

クロック再生回路 Download PDF

Info

Publication number
JP5114244B2
JP5114244B2 JP2008044414A JP2008044414A JP5114244B2 JP 5114244 B2 JP5114244 B2 JP 5114244B2 JP 2008044414 A JP2008044414 A JP 2008044414A JP 2008044414 A JP2008044414 A JP 2008044414A JP 5114244 B2 JP5114244 B2 JP 5114244B2
Authority
JP
Japan
Prior art keywords
histogram
phase
value
clock signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008044414A
Other languages
English (en)
Other versions
JP2009206594A (ja
Inventor
昌春 柳舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008044414A priority Critical patent/JP5114244B2/ja
Priority to US12/391,568 priority patent/US8306173B2/en
Priority to EP09002585A priority patent/EP2096785B1/en
Publication of JP2009206594A publication Critical patent/JP2009206594A/ja
Application granted granted Critical
Publication of JP5114244B2 publication Critical patent/JP5114244B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、入力信号に同期するクロック信号を生成するクロック再生回路に関する。
無線通信では、ジッタを有する受信信号からデータを再生するために使用するクロック信号を生成するクロック再生回路が使用される。クロック再生回路では、受信信号とクロック信号を正確に同期させる必要がある。これに関して特許文献1には、クロック信号の位相を最適化するため、受信信号から、信号変化点の位置毎の検出回数を示すヒストグラムを生成し、生成したヒストグラムの最大値に基づいて代表位相を決定する方法が記載されている。
特開平10−215289号公報
しかし、特許文献1に記載された方法では、受信信号にランダム成分のジッタが含まれる場合、ヒストグラムの生成に使用する受信データが少ないとヒストグラムの形状が正規分布とならず、ヒストグラムの最大値を使用した位相調整では最適な位相が得られない状況が発生する。また、符号間干渉(Inter-Symbol Interference)等により、ヒストグラムのピークが一定範囲内にばらつくようなジッタが受信信号に含まれる場合にも、ヒストグラムの最大値を使用した位相調整では最適な位相が得られないこととなる。さらに、ヒストグラムの形状が左右非対称となるようなジッタが受信信号に含まれる場合には、ヒストグラムの最大値の位置が偏るため、ヒストグラムの最大値を使用した位相調整では最適な位相が得られないこととなる。
本発明は、上述した課題に鑑みてなされたものであって、クロック信号の位相調整の精度を向上することができるクロック再生回路を提供することを目的とする。
本発明は、上記の課題を解決するためになされたもので、入力信号に同期するクロック信号を生成するクロック再生回路において、前記入力信号の変化点を検出する検出部(図3のエッジ抽出回路8に対応)と、前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部(図3のANDゲートブロック9、エッジ数カウンタブロック10に対応)と、前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部(図3のヒストグラム演算回路11に対応)と、前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部(図3のクロック位相調整回路12に対応)とを備え、前記演算処理部(図3のヒストグラム演算回路11に対応)は、前記第1のヒストグラムを構成する各々の前記部分期間の前記変化点の頻度に対して、隣接する前記部分期間の前記変化点の頻度を加算し、前記部分期間毎の加算値を示す第2のヒストグラムを生成し、前記加算値が最大となる前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出することを特徴とするクロック再生回路である。
また、本発明のクロック再生回路は、入力信号に同期するクロック信号を生成するクロック再生回路において、前記入力信号の変化点を検出する検出部(図3のエッジ抽出回路8に対応)と、前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部(図3のANDゲートブロック9、エッジ数カウンタブロック10に対応)と、前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部(図9のヒストグラム演算回路28に対応)と、前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部(図3のクロック位相調整回路12に対応)とを備え、前記演算処理部(図9のヒストグラム演算回路28に対応)は、前記第1のヒストグラムを構成する前記変化点の頻度が多い方から複数の前記部分期間を抽出し、抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出することを特徴とする。
また、本発明のクロック再生回路において、前記演算処理部(図9のヒストグラム演算回路28に対応)は、前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置と、前記第1のヒストグラムを構成する前記変化点の頻度が最大となる前記部分期間の時間的位置とに基づいて前記クロック信号の位相調整値を算出することを特徴とする。
また、本発明のクロック再生回路は、入力信号に同期するクロック信号を生成するクロック再生回路において、前記入力信号の変化点を検出する検出部(図3のエッジ抽出回路8に対応)と、前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部(図3のANDゲートブロック9、エッジ数カウンタブロック10に対応)と、前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部(図12のヒストグラム演算回路44に対応)と、前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部(図3のクロック位相調整回路12に対応)とを備え、前記演算処理部(図12のヒストグラム演算回路44に対応)は、前記第1のヒストグラムを構成する前記変化点の頻度が基準値以上または基準値以下となる前記部分期間を抽出し、抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出することを特徴とする。
また、本発明のクロック再生回路は、入力信号に同期するクロック信号を生成するクロック再生回路において、前記入力信号の変化点を検出する検出部(図3のエッジ抽出回路8に対応)と、前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部(図3のANDゲートブロック9、エッジ数カウンタブロック10に対応)と、前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部(図17のヒストグラム演算回路51に対応)と、前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部(図3のクロック位相調整回路12に対応)とを備え、前記演算処理部(図17のヒストグラム演算回路51に対応)は、前記第1のヒストグラムを構成する前記変化点の頻度が第1の基準値以上となる前記部分期間を抽出し、抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、前記第1のヒストグラムを構成する前記変化点の頻度が前記第1の基準値よりも小さい第2の基準値以上となる前記部分期間を抽出し、抽出した前記部分期間毎の前記変化点の頻度を示す第3のヒストグラムを生成し、前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置または前記第3のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出することを特徴とする。
上記において、括弧で括った部分の記述は、後述する本発明の実施形態と本発明の構成要素とを便宜的に対応付けるためのものであり、この記述によって本発明の内容が限定されるわけではない。
本発明によれば、第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、第2のヒストグラムに基づいてクロック信号の位相調整値を算出することによって、クロック信号の位相調整の精度を向上することができるという効果が得られる。
以下、図面を参照し、本発明の実施形態を説明する。以下の各実施形態では、画像データをフレーム単位で間欠的に通信する画像通信システム用の受信機に本発明を適用した場合を例に説明を行う。
(第1の実施形態)
まず、本発明の第1の実施形態を説明する。図1は、本実施形態の通信データの構成を示している。図示したように画像データはフレーム単位にまとめられ、フレーム100毎のフレームデータとして通信される。また、休止期間110を置いて間欠的に通信が行われる。
フレームデータ中の画像データは、所定の単位で複数のデータブロックに分割される。フレームデータの先頭にはプリアンブル120aが付加され、各ブロックの先頭には同期パターン(UW:ユニークワード)が付加されている。本実施形態のプリアンブルは、通信の開始を検出し高周波処理回路の動作を安定させるために付加されている。同期パターンは、画像データ中には発生しないパターンで構成されたデータである。本実施形態では、通信データ中の同期パターンが相関演算により検出される。
相関演算は、シンボルレートの整数倍の周波数に設定されている基準クロックを用いて通信データをサンプリングし、サンプリング結果を同期パターンと比較することにより行う。相関演算では、通信データが同期パターンと完全に一致した場合に同期パターン検出信号が‘1’(HI)となる。そのため、図1に示したように同期パターンの最後の1bitの受信タイミングが同期パターンの検出タイミングとなる。
本実施形態のデータブロックには、図1に示したように情報ブロック120bと画像ブロック120cの2種類がある。情報ブロック120bはプリアンブル120aの直後のブロックであり、情報ブロック120bであることを示す同期パターン(UW_1)と送信機の識別番号やタイムスタンプ等のフレーム情報データとで構成されている。画像ブロック120cは、情報ブロックに続いて送られるブロックであり、画像ブロック120cであることを示す同期パターン(UW_2)と画像データとで構成されている。
フレーム情報データと画像データは受信機中の再生クロック信号でキャプチャ処理される。フレーム情報データの受信中の期間における再生クロック信号の位相は、上記の相関演算により検出する同期パターン(UW_1)の検出タイミングに基づいて調整される。この位相調整方法は特許文献1等により公知であるので説明を省略する。
画像データの受信中の期間における再生クロック信号の位相は以下のようにして調整される。すなわち、2値化処理後の受信データの位相分布がブロック単位で測定されてヒストグラムが生成され、得られたヒストグラムが演算処理されて代表位相が検出され、得られた代表位相に基づいて再生クロック信号の位相が調整される。具体的には、図1に示したように、ヒストグラム生成期間130aにおいて情報ブロック120b中のフレーム情報データの位相分布が測定されてヒストグラムが生成される。続いて、同期パターン(UW_2)の受信中の期間130bにおいてヒストグラムが演算処理されて代表位相が検出され、得られた代表位相に基づいて再生クロック信号の位相が調整される。
さらに、ヒストグラム生成期間130cにおいて最初の画像ブロック120c中の画像データの位相分布が測定されてヒストグラムが生成される。続いて、次の画像ブロック120cの同期パターン(UW_2)の受信中の期間130dにおいてヒストグラムが演算処理されて代表位相が検出され、得られた代表位相に基づいて再生クロック信号の位相が調整される。このように前ブロックのデータの位相分布を測定し、その結果に基づいて次ブロックの受信時の再生クロック信号の位相調整を行う処理はフレーム期間内に継続して実施される。
図2は、本実施形態による無線通信システムの構成を示している。無線通信システムは、通信データを無線で送信する送信機1と、送信機1から送信された通信データを受信する受信機2とを備えている。受信機2は、RF回路3、データラッチ回路4、クロック再生回路5、同期検出回路6、およびデータ処理回路7を備えている。
受信機2では、通信データはRF回路3により復調処理されて、2値化されたデータ信号に変換された後、データラッチ回路4、クロック再生回路5、および同期検出回路6に供給される。同期検出回路6は、図1に示した同期パターン(UW_1,UW_2)の検出を行う。その結果、図1に示した同期パターン検出信号A,Bがクロック再生回路5とデータ処理回路7に供給される。クロック再生回路5は、RF回路3からのデータ信号と同期検出回路6からの同期パターン検出信号とを用いて再生クロック信号の位相を調整し、位相調整後の再生クロック信号をデータラッチ回路4とデータ処理回路7に供給する。データラッチ回路4はRF回路3からのデータ信号を再生クロック信号に同期してキャプチャし、データ処理回路7に出力する。データ処理回路7は、データラッチ回路4からのデータ信号、同期検出回路6からの同期パターン検出信号、およびクロック再生回路5からの再生クロック信号を用いて画像の再構成やファイル化を行う。
図3はクロック再生回路5の構成を示している。クロック再生回路5は、エッジ抽出回路8、ANDゲートブロック9、エッジ数カウンタブロック10、ヒストグラム演算回路11、クロック位相調整回路12、位相ゲート信号生成回路13、タイミングコントロール回路14、逓倍回路15、および発振器16を備えている。
エッジ抽出回路8は、データ信号の変化点である立上り/立下りの両エッジを検出し、エッジ信号を生成する。生成されたエッジ信号はANDゲートブロック9に入力される。発振器16は、シンボルレートに対応した周波数のシステムクロックを供給する。逓倍回路15は、PLL回路で構成されており、システムクロックを12逓倍した逓倍クロックを生成する。位相ゲート信号生成回路13は、基準期間となる1シンボル期間を12個の部分位相(以下、省略して位相と記す)に分割し、各位相毎にHIレベルとなる12本のゲート信号(位相(1)_ゲート信号〜位相(12)_ゲート信号)を生成する。
ANDゲートブロック9は、エッジ信号とゲート信号を用いて、エッジ信号がどの位相に発生しているのかを検出し、各位相に対応したエッジ数カウンタにカウントアップ信号(位相(1)_カウントアップ信号〜位相(12)_カウントアップ信号)を供給する。このANDゲートブロック9は、2入力のANDゲートが12個組み合わされた構造を有し、片側の入力にはエッジ抽出回路8からのエッジ信号が加えられ、もう片側の入力には位相ゲート信号生成回路13からのゲート信号が加えられている。各ANDゲートから出力された信号はエッジ数カウンタブロック10中のエッジ数カウンタ(1)〜エッジ数カウンタ(12)に供給される。
エッジ数カウンタブロック10は、位相の数に応じた12個のエッジ数カウンタ(1)〜エッジ数カウンタ(12)で構成されている。このエッジ数カウンタブロック10は、各位相毎のエッジ数をカウントすることにより、データ信号の位相毎のエッジの検出頻度を示すヒストグラムを生成する。ヒストグラム演算回路11は、ヒストグラムを演算処理して別のヒストグラムを生成し、そのヒストグラムから、再生クロック信号の位相調整に使用する代表位相を示す代表位相値を算出する。ヒストグラム演算回路11の詳細は後述する。
クロック位相調整回路12は、逓倍回路15からの逓倍クロック、ヒストグラム演算回路11からの代表位相値、およびタイミングコントロール回路14からの制御信号を用いて、再生クロック信号の位相を部分位相単位で調整する。再生クロック信号の位相は、代表位相から1/2周期分ずれた位置に立上りエッジが来るように調整される。タイミングコントロール回路14は、発振器16からのシステムクロック、逓倍回路15からの逓倍クロック、および同期検出回路6からの同期パターン検出信号から、クロック再生回路5内の各回路に供給する制御信号を生成する。
次に、図4を参照しながら、クロック再生回路5でのヒストグラムの生成方法を説明する。クロック再生回路5は、1シンボル期間を12個の位相に分割し、データ信号のエッジがどの位相に位置するのかを検出し、検出結果を位相毎に累積することによりヒストグラムを生成する。
図4において、位相測定単位を構成する1つの区間400が1シンボル期間である。1シンボル期間は、逓倍クロックの12クロック期間に相当する期間であり、タイミングコントロール回路14により設定される。データ信号の立上りエッジと逓倍クロックの位置関係が、図示した関係となっている場合、データ信号がHIに変化した直後の逓倍クロックの立上りから次の立上りまで、エッジ信号はHIとなって出力される。
また、各ゲート信号が順番にHIとなるように、位相(1)_ゲート信号〜位相(12)_ゲート信号がHI期間をずらしながら生成される。前述したように、エッジ信号と各位相ゲート信号はANDゲートブロック9に入力されており、図示した例では、エッジ信号(HI)と位相(6)_ゲート信号(HI)が入力されるANDゲートの出力(位相(6)_カウントアップ信号)がHIとなる。
エッジ数カウンタ(1)〜エッジ数カウンタ(12)はカウントアップ信号の立上りエッジでカウントアップを行う。図示した例では、エッジ数カウンタ(6)のカウントアップが行われ、エッジ数カウンタ(6)の値はMからM+1にカウントアップする。図1に示したヒストグラム生成期間において上記の動作が繰り返されることにより、ヒストグラムが生成される。また、エッジ数カウンタブロック10の各エッジ数カウンタは、タイミングコントロール回路14からのカウンタリセット信号によりヒストグラム生成期間の開始直前にリセットされる。
次に、ヒストグラム演算回路11の構成および動作を説明する。ヒストグラム演算回路11は、ヒストグラムを構成する値(ヒストグラム値)を部分的に加算することによって新たなヒストグラムを生成し、そのヒストグラムを構成するヒストグラム値の最大値に対応した位相を代表位相として選択する。加算は、中心位相とその前後の位相を含む範囲で行われる。例えば、位相(1)に対する加算は、位相(12)、位相(1)、および位相(2)のヒストグラム値を加算することにより行われる。また、位相(2)に対する加算は、位相(1)、位相(2)、および位相(3)のヒストグラム値を加算することにより行われる。
図5はヒストグラム演算回路11の構成を示している。ヒストグラム演算回路11は、カウンタセレクタ17、位相カウンタバッファ18,19,20、加算回路21、加算値バッファ22、最大値バッファ23、位相値バッファ24、代表位相値バッファ25、比較回路26、および演算制御回路27を備えている。ヒストグラム演算回路11内の各回路の動作は、演算制御回路27からの制御信号(図示せず)により制御されている。また、ヒストグラム演算回路11は、タイミングコントロール回路14からのコントロール信号により制御されている。
エッジ数カウンタブロック10内の各エッジ数カウンタからの出力値はカウンタセレクタ17に加えられる。カウンタセレクタ17は、演算制御回路27からの制御信号に応じて、いずれかのエッジ数カウンタからの出力値を選択し、位相カウンタバッファ18に出力する。カウンタセレクタ17は、選択するカウンタを順次変更する。これに伴い、位相カウンタバッファ19に格納されている値が位相カウンタバッファ20に格納され、位相カウンタバッファ18に格納されている値が位相カウンタバッファ19に格納され、カウンタセレクタ17から出力された値が位相カウンタバッファ18に格納される。このように、カウンタ値が位相カウンタバッファ18,19,20を順次移行する。
位相カウンタバッファ18,19,20から出力された値は加算回路21に入力される。加算回路21は各々の値を加算する。加算結果は加算値バッファ22に格納される。加算値バッファ22に加算結果が格納されると同時に、加算処理された位相のうち中央位相の値が演算制御回路27から位相値バッファ24に送られて格納される。上記の処理は、カウンタセレクタ17による選択の切替に応じて順次行われる。
以下、図6〜図8に示す例を用いて説明を行う。図8は各位相毎のヒストグラム値と加算値を示している。図6は、図8に示すヒストグラム値のグラフ(第1のヒストグラム)であり、図7は、図8に示す加算値のグラフ(第2のヒストグラム)である。加算処理での中央位相は位相(1)から位相(12)まで順に設定される。全位相分の動作を行うため、カウンタセレクタ17は、最初にエッジ数カウンタ(12)からの出力値を選択し、続いてエッジ数カウンタ(1)、エッジ数カウンタ(2)、・・・、エッジ数カウンタ(12)の順に出力値を選択する。最後に、カウンタセレクタ17はエッジ数カウンタ(1)を選択して終了する。
カウンタセレクタ17がエッジ数カウンタ(2)からの出力値を選択し、エッジ数カウンタ(2)からの出力値が位相カウンタバッファ18に格納され、加算回路21の加算結果が加算値バッファ22に格納された時点で、位相値バッファ24には、加算された位相の中央位相値として‘1’が格納される。このとき、位相カウンタバッファ18,19,20には、それぞれ位相(12)、位相(1)、位相(2)のヒストグラム値(全て‘0’)が格納されているので、加算回路21の出力は‘0’となり、加算値バッファ22には‘0’が格納される。
加算値バッファ22の値は、比較回路26によって最大値バッファ23の値と比較される。加算値バッファ22の値の方が大きい場合、加算値バッファ22の値が最大値バッファ23に格納され、位相値バッファ24の値が代表位相値バッファ25に格納される。動作開始時点では最大値バッファ23は空であるので、加算値バッファ22の値‘0’が最大値バッファ23に格納され、位相値バッファ24の値‘1’が代表位相値バッファ25に格納される。
次の動作で、位相カウンタバッファ18,19,20には、それぞれ位相(1)、位相(2)、位相(3)のヒストグラム値(‘0’,‘0’,‘1’)が格納されるので、加算回路21の出力は‘1’となり、加算値バッファ22には‘1’が格納される。また、位相値バッファ24には‘2’が格納される。その結果、加算値バッファ22の値‘1’が最大値バッファ23の値‘0’よりも大きくなり、最大値バッファ23には‘1’が格納され、代表位相値バッファ25には‘2’が格納される。上記の動作が繰り返され、カウンタセレクタ17によってエッジ数カウンタ(1)からの出力値が選択された後、最大値バッファ23には‘43’が格納されており、代表位相値バッファ25には‘7’が格納されている。
図6に示したヒストグラムでは、ヒストグラム値が最大となる位相(8)はヒストグラムの分布の中心からずれている。一方、図7に示した加算値のグラフでは、加算値が最大となる位相(7)は加算値の分布のほぼ中心に位置する。クロック信号の位相調整を精度良く行うためには、ヒストグラムの形状を考慮した分布の中心の位相を代表位相とすることが望ましい。したがって、位相(8)よりも位相(7)を代表位相とすることが望ましく、上記の動作により、正確な代表位相を検出することが可能となる。
上述したように、本実施形態によれば、受信信号のエッジ位置を検出して得られたヒストグラムに基づいて演算処理を行って新たなヒストグラムを生成し、そのヒストグラムに基づいてクロック信号の代表位相値を算出することによって、通信時の信号劣化によりヒストグラムにバラツキが発生した場合でも、ヒストグラムの形状を考慮した真の中心の位相を検出することが可能となり、クロック信号の位相調整の精度を向上することができる。特に、ヒストグラムを構成するヒストグラム値を所定の位相範囲内で加算することによって、ヒストグラム値が平均化されるため、検出回数が少ない場合や、ランダムジッタ等のジッタによる信号劣化が激しい場合に発生するヒストグラムの局所的な乱れに対しても、その影響を抑えて最適な代表位相値を求めることができる。
(第2の実施形態)
次に、本発明の第2の実施形態を説明する。図9は、図3に示したヒストグラム演算回路11に対応する本実施形態のヒストグラム演算回路28の構成を示している。ヒストグラム演算回路28は、カウンタセレクタ29、バッファセレクタ30、最大値バッファ31、第2値セレクタ32、第2値バッファ33、第3値セレクタ34、第3値バッファ35、比較回路36、演算制御回路37、最大位相バッファ38、第2位相セレクタ39、第2位相バッファ40、第3位相セレクタ41、第3位相バッファ42、および代表位相検出回路43を備えている。
本実施形態のヒストグラム演算回路28は、位相(1)から位相(12)まで順番にヒストグラム値を比較して、ヒストグラム値の大きな順に3個の位相を検出し、それら3個の位相のヒストグラム値で構成されるヒストグラムの位相の配置に基づいて代表位相を選択する。検出した3個の位相が連続している場合、中央位置にある位相が代表位相として選択される。また、検出した3個の位相が連続していない場合、それら3個の位相を含む位相範囲の中心に近く、かつヒストグラム値が最大となる位相に近い位相が代表位相として選択される。
以下、図8に示した例を用いて説明を行う。ヒストグラム演算回路28内の各回路の動作は、演算制御回路37からの制御信号により制御されている。また、ヒストグラム演算回路28は、タイミングコントロール回路14からのコントロール信号により制御されている。タイミングコントロール回路14から演算開始のコントロール信号を受け取った演算制御回路37はカウンタセレクタ29を制御し、エッジ数カウンタ(1)からの出力値‘0’をカウンタセレクタ29から出力させる。カウンタセレクタ29から出力された値は最大値バッファ31に格納される。同時に、演算制御回路37は位相値‘1’を出力し、最大位相バッファ38に格納する。
続いて、演算制御回路37はカウンタセレクタ29を制御し、エッジ数カウンタ(2)からの出力値‘0’をカウンタセレクタ29から出力させる。カウンタセレクタ29からの出力値は比較回路36に入力される。また、演算制御回路37はバッファセレクタ30を制御し、最大値バッファ31の値を比較回路36に出力させる。比較回路36は、カウンタセレクタ29からの出力値と最大値バッファ31からの出力値とを比較し、比較の結果、両者が同値であると判定し、演算制御回路37に判定結果を通知する。
本実施形態では、比較結果が同値である場合、カウンタセレクタ29から先に出力された値が優先される。具体的には、比較回路36からの通知を受けた演算制御回路37は、最大値バッファ31の値は変更せず、カウンタセレクタ29からの出力値を第2値バッファ33に格納するように第2値セレクタ32を制御する。また、演算制御回路37は位相値‘2’を出力し、第2位相セレクタ39を介して第2位相バッファ40に格納する。
続いて、演算制御回路37はカウンタセレクタ29を制御し、エッジ数カウンタ(3)からの出力値‘1’をカウンタセレクタ29から出力させる。カウンタセレクタ29からの出力値は比較回路36に入力される。また、比較回路36には、まずバッファセレクタ30を介して最大値バッファ31の値‘0’が入力され、続いて第2値バッファ33の値‘0’が入力され、比較演算が2回行われる。
比較回路36は、カウンタセレクタ29からの出力値‘1’と最大値バッファ31からの出力値‘0’とを比較し、続いてカウンタセレクタ29からの出力値‘1’と第2値バッファ33からの出力値‘0’とを比較する。比較回路36は、比較の結果、カウンタセレクタ29からの出力値が最大値バッファ31の値および第2値バッファ33の値よりも大きいと判定し、演算制御回路37に判定結果を通知する。
比較回路36からの通知を受けた演算制御回路37は、第3値セレクタ34を介して第2値バッファ33の値‘0’を第3値バッファ35に格納し、第2値セレクタ32を介して最大値バッファ31の値‘0’を第2値バッファ33に格納し、カウンタセレクタ29からの出力値‘1’を最大値バッファ31に格納する。また、演算制御回路37は、第3位相セレクタ41を介して第2位相バッファ40の値‘2’を第3位相バッファ42に格納し、第2位相セレクタ39を介して最大位相バッファ38の値‘1’を第2位相バッファ40に格納し、位相値‘3’を最大位相バッファ38に格納する。
続いて、演算制御回路37はカウンタセレクタ29を制御し、エッジ数カウンタ(4)からの出力値‘7’をカウンタセレクタ29から出力させる。カウンタセレクタ29からの出力値は比較回路36に入力される。また、比較回路36には、まずバッファセレクタ30を介して最大値バッファ31の値‘1’が入力され、続いて第2値バッファ33の値‘0’が入力され、続いて第3値バッファ35の値‘0’が入力され、比較演算が3回行われる。
比較回路36は、カウンタセレクタ29からの出力値‘7’と最大値バッファ31からの出力値‘1’とを比較し、続いてカウンタセレクタ29からの出力値‘7’と第2値バッファ33からの出力値‘0’とを比較し、続いてカウンタセレクタ29からの出力値‘7’と第3値バッファ35からの出力値‘0’とを比較する。比較回路36は、比較の結果、カウンタセレクタ29からの出力値が最大値バッファ31の値、第2値バッファ33の値、および第3値バッファ35の値よりも大きいと判定し、演算制御回路37に判定結果を通知する。
以降は上記と同様の手順で処理が位相(12)まで繰り返され、適宜、最大値バッファ31、第2値バッファ33、第3値バッファ35、最大位相バッファ38、第2位相バッファ40、および第3位相バッファ42の値が更新される。
カウンタセレクタ29からの出力値が、最大値バッファ31の値、第2値バッファ33の値、および第3値バッファ35の値のうち少なくともいずれかの値よりも小さい場合には、カウンタセレクタ29からの出力値よりも少ない値を保持しているバッファの値がシフトし、空いたバッファにカウンタセレクタ29からの出力値が格納される。また、これに対応して最大位相バッファ38、第2位相バッファ40、および第3位相バッファ42のうち少なくともいずれかのバッファの値がシフトし、空いたバッファに演算制御回路37からの位相値が格納される。
例えば、カウンタセレクタ29によってエッジ数カウンタ(7)の出力値‘12’が選択された時点では、最大値バッファ31には‘15’、第2値バッファ33には‘9’、第3値バッファ35には‘7’、最大位相バッファ38には‘6’、第2位相バッファ40には‘5’、第3位相バッファ42には‘4’が格納されている。カウンタセレクタ29からの出力値‘12’は、最大値バッファ31の値‘15’よりも小さく、第2値バッファ33の値‘9’および第3値バッファ35の値‘7’よりも大きい。このため、演算制御回路37は、第2値バッファ33の値を第3値バッファ35に格納し、カウンタセレクタ29からの出力値を第2値バッファ33に格納する。また、演算制御回路37は、第2位相バッファ40の値を第3位相バッファ42に格納し、位相値‘7’を第2位相バッファ40に格納する。
上記の手順により、最大位相バッファ38、第2位相バッファ40、および第3位相バッファ42にはヒストグラム値の大きい順に位相値が格納される。代表位相検出回路43は、最大位相バッファ38の位相値、第2位相バッファ40の位相値、および第3位相バッファ42の位相値から代表位相値を生成する。前述したように、3個の位相値が連続している場合、中央位置にある位相が代表位相として選択される。また、3個の位相値が連続していない場合、3個の位相を含む位相範囲の中心に近く、かつヒストグラム値が最大となる位相に近い位相が代表位相として選択される。
以下、代表位相値の具体的な決定方法を説明する。図10および図11は異なるヒストグラムの例を示している。図10では、上位3つのヒストグラム値に対応した位相値は、ヒストグラム値が多い方から8,6,7となる。3つの位相値が連続しているため、3つの位相からなる位相範囲(位相(6)〜位相(8))の中央位置の位相(7)が代表位相となる。また、図11では、上位3つのヒストグラム値に対応した位相値は、ヒストグラム値が多い方から8,6,5となる。3つの位相値が連続しておらず、3つの位相からなる位相範囲(位相(5)〜位相(8))の中央位置は位相(6)または位相(7)となる。最大位相バッファ38の位相値が8であるため、位相(8)に近い位相(7)が代表位相となる。
上述したように、本実施形態によれば、第1の実施形態と同様に、通信時の信号劣化によりヒストグラムにバラツキが発生した場合でも、ヒストグラムの形状を考慮した真の中心の位相を検出することが可能となり、クロック信号の位相調整の精度を向上することができる。特に、エッジの検出回数が多い複数の位相からなる位相範囲の中央に相当する位相の値を代表位相値とすることによって、符号間干渉等によりヒストグラムのピークが一定範囲内にばらつくようなジッタが受信信号に含まれる場合でも、最適な代表位相値を求めることができる。また、複数の代表位相値の候補がある場合に、ヒストグラム値が最大となる位相に近い位相の値を代表位相値とすることによって、ヒストグラムの真の中心に近い位相を選択することができる。
(第3の実施形態)
次に、本発明の第3の実施形態を説明する。図12は、図3に示したヒストグラム演算回路11に対応する本実施形態のヒストグラム演算回路44の構成を示している。ヒストグラム演算回路44は、カウンタセレクタ45、比較回路46、基準値バッファ47、位相群生成回路48、代表位相検出回路49、および演算制御回路50を備えている。
本実施形態のヒストグラム演算回路44は、位相(1)から位相(12)まで順番にヒストグラム値を基準値と比較し、ヒストグラム値が基準値以上または基準値以下となる位相を検出し、検出した位相のヒストグラム値で構成される位相群(ヒストグラム)を生成する。ヒストグラム演算回路44は、生成した位相群から代表位相を選択する。ヒストグラム値が基準値以上となる位相を検出して位相群を生成した場合、位相群の中央の位相が代表位相として選択される。また、ヒストグラム値が基準値以下となる位相を検出して位相群を生成した場合、位相群の中央の位相から1/2周期ずれた位置の位相が代表位相として選択される。
以下、図13および図14を参照しながら、ヒストグラム値が基準値以上となる位相を検出して位相群を生成し、代表位相を選択する例を説明する。図13はヒストグラム値と位相群の関係を示しており、図14はヒストグラム内で位相群として選択される位相を示している。
ヒストグラム演算回路44内の各回路の動作は、演算制御回路50からの制御信号により制御される。また、ヒストグラム演算回路44は、タイミングコントロール回路14からのコントロール信号により制御されている。タイミングコントロール回路14から演算開始のコントロール信号を受け取った演算制御回路50は、カウンタセレクタ45を制御し、エッジ数カウンタ(1)からの出力値‘0’をカウンタセレクタ45から出力させる。カウンタセレクタ45から出力された値は比較回路46に入力される。比較回路46には基準値バッファ47から基準値も入力される。以下では、基準値が‘10’であるものとして説明する。
比較回路46は、カウンタセレクタ45からの出力値を基準値‘10’と比較し、基準値以上の場合に値‘1’を位相群生成回路48に出力し、基準値未満の場合に値‘0’を位相群生成回路48に出力する。カウンタセレクタ45からの出力値が‘0’であるため、比較回路46の出力値は‘0’となる。
上記の手順を位相(1)から位相(12)まで繰り返し行うと、図13の位相群として示した内容を有する情報が位相群生成回路48内に生成される。図13に示した例では、位相群を構成する位相は位相(6)、位相(7)、および位相(8)となる。位相群の情報は位相群生成回路48から代表位相検出回路49に出力される。代表位相検出回路49は、ヒストグラム値が基準値以上となる位相を検出して位相群を生成した場合には、位相群の中央の位相を代表位相として選択する。図13に示した例では、位相値‘7’が代表位相値として選択され、出力される。
次に、図15および図16を参照しながら、ヒストグラム値が基準値以下となる位相を検出して位相群を生成し、代表位相を選択する例を説明する。図15はヒストグラム値と位相群の関係を示しており、図16はヒストグラム内で位相群として選択される位相を示している。
ヒストグラム演算回路44内の各回路の動作は、演算制御回路50からの制御信号により制御される。タイミングコントロール回路14から演算開始のコントロール信号を受け取った演算制御回路50は、カウンタセレクタ45を制御し、エッジ数カウンタ(1)からの出力値‘0’をカウンタセレクタ45から出力させる。カウンタセレクタ45から出力された値は比較回路46に入力される。比較回路46には基準値バッファ47から基準値も入力される。以下では、基準値が‘1’であるものとして説明する。
比較回路46は、カウンタセレクタ45からの出力値を基準値‘1’と比較し、基準値以下の場合に値‘1’を位相群生成回路48に出力し、基準値を超える場合に値‘0’を位相群生成回路48に出力する。カウンタセレクタ45からの出力値が‘0’であるため、比較回路46の出力値は‘1’となる。
上記の手順を位相(1)から位相(12)まで繰り返し行うと、図15の位相群として示した内容を有する情報が位相群生成回路48内に生成される。図15に示した例では、位相群を構成する位相は位相(1)、位相(2)、および位相(12)となる。位相群の情報は位相群生成回路48から代表位相検出回路49に出力される。代表位相検出回路49は、ヒストグラム値が基準値以下となる位相を検出して位相群を生成した場合には、位相群の中央の位相から1/2周期ずれた位相を代表位相として選択する。図15に示した例では、位相群の中央の位相(1)から1/2周期ずれた位相(7)の位相値‘7’が代表位相値として選択され、出力される。
上述したように、本実施形態によれば、第1の実施形態と同様に、通信時の信号劣化によりヒストグラムにバラツキが発生した場合でも、ヒストグラムの形状を考慮した真の中心の位相を検出することが可能となり、クロック信号の位相調整の精度を向上することができる。特に、ヒストグラム値が基準値以上または基準値以下となる位相を抽出して位相群を生成し、位相群を構成する位相の中央に相当する位相の値に基づいて代表位相値を選択することによって、符号間干渉等によりヒストグラムのピークが一定範囲内にばらつくようなジッタが受信信号に含まれる場合でも、最適な代表位相値を求めることができる。
また、基準値との比較結果を用いて位相群を生成することによって、ヒストグラム演算回路44の構成を簡易にすることができる。さらに、ヒストグラム値が基準値以下となる位相を抽出して位相群を生成し、位相群を構成する位相の中央に相当する位相の値に基づいて代表位相値を選択する場合には、所定値以上のヒストグラム値の分布の形状に無関係に代表位相値を選択するため、デューティーサイクル歪み等の影響により、ヒストグラム値の分布が左右非対称なヒストグラムを用いた場合でも、最適な代表位相値を求めることができる。
(第4の実施形態)
次に、本発明の第4の実施形態を説明する。図17は、図3に示したヒストグラム演算回路11に対応する本実施形態のヒストグラム演算回路51の構成を示している。ヒストグラム演算回路51は、カウンタセレクタ52、比較回路53,56、基準値バッファ54,57、位相群生成回路55,58、代表位相検出回路59、および演算制御回路60を備えている。
本実施形態のヒストグラム演算回路51は、位相(1)から位相(12)まで順番にヒストグラム値を2個の基準値と比較し、各々の基準値に対して、ヒストグラム値が基準値以上となる位相を検出し、検出した位相のヒストグラム値で構成される位相群(ヒストグラム)を2個生成する。ヒストグラム演算回路44は、生成した2個の位相群から、所定の条件に従って1個の位相群を選択し、その位相群から代表位相を選択する。
具体的には、第1の基準値に対して生成した第1の位相群に含まれる位相が存在する場合(ヒストグラム値が第1の基準値よりも大きな位相が少なくとも1つ存在する場合)、第1の位相群の中央の位相が代表位相として選択される。また、第1の位相群に含まれる位相が存在しない場合(ヒストグラム値が第1の基準値よりも大きな位相が1つも存在しない場合)、第2の基準値(第2の基準値<第1の基準値)に対して生成した第2の位相群の中央の位相が代表位相として選択される。
以下、図18〜図20を参照しながら、代表位相を選択する例を説明する。図18は、第1の基準値に対応した第1の位相群に登録される位相がある場合のヒストグラム値と位相群の関係を示しており、図19は、第1の位相群に登録される位相がない場合のヒストグラム値と位相群の関係を示している。図20は、図19に示す例における2個の基準値とヒストグラムおよび位相群の関係を示している。
ヒストグラム演算回路51内の各回路の動作は、演算制御回路60からの制御信号により制御される。また、ヒストグラム演算回路51は、タイミングコントロール回路14からのコントロール信号により制御されている。タイミングコントロール回路14から演算開始のコントロール信号を受け取った演算制御回路60は、カウンタセレクタ52を制御し、エッジ数カウンタ(1)からの出力値‘0’をカウンタセレクタ52から出力させる。カウンタセレクタ52から出力された値は比較回路53,56に入力される。比較回路53には基準値バッファ54から第1の基準値も入力される。また、比較回路56には基準値バッファ57から第2の基準値も入力される。以下では、第1の基準値が‘10’、第2の基準値が‘2’であるものとして説明する。
比較回路53は、カウンタセレクタ52からの出力値を第1の基準値‘10’と比較し、第1の基準値以上の場合に値‘1’を位相群生成回路55に出力し、第2の基準値未満の場合に値‘0’を位相群生成回路55に出力する。また、比較回路53は、カウンタセレクタ52からの出力値を第2の基準値‘2’と比較し、第2の基準値以上の場合に値‘1’を位相群生成回路58に出力し、第2の基準値未満の場合に値‘0’を位相群生成回路58に出力する。位相群生成回路55,58はそれぞれ第1の位相群、第2の位相群の情報を生成し、代表位相検出回路59に出力する。代表位相検出回路59は、第1の位相群および第2の位相群を用いて代表位相を選択する。
第1の基準値が‘10’、第2の基準値が‘2’であるので、図18に示した例では、第1の位相群を構成する位相値は“6,7,8”となり、第2の位相群を構成する位相値は“4,5,6,7,8,9,10,11”となる。代表位相検出回路59は、第1の位相群に3個の位相値が入っているので、第1の位相群を用いて代表位相を選択する。すなわち、代表位相検出回路59は、位相値“6,7,8”の中央値である位相値‘7’を代表位相値として出力する。
また、図19に示した例では、第1の位相群を構成する位相値は存在せず、第2の位相群を構成する位相値は“3,4,5,6,7,8,9,10,11”となる。代表位相検出回路59は、第1の位相群に位相値が入っていないので、第2の位相群を用いて代表位相を選択する。すなわち、代表位相検出回路59は、位相値“3,4,5,6,7,8,9,10,11”の中央値である位相値‘7’を代表位相値として出力する。
上述したように、本実施形態によれば、第1の実施形態と同様に、通信時の信号劣化によりヒストグラムにバラツキが発生した場合でも、ヒストグラムの形状を考慮した真の中心の位相を検出することが可能となり、クロック信号の位相調整の精度を向上することができる。特に、2種類の基準値に対応した2種類の位相群を生成し、いずれかの位相群を用いて代表位相を選択することによって、ヒストグラムの状況に応じて代表位相の決定方法が変更されるため、通信中の信号劣化の状態に対応して、最適な代表位相値を求めることができる。
以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明の第1の実施形態における通信データの構成を示す参考図である。 本発明の第1の実施形態による無線通信システムの構成を示すブロック図である。 本発明の第1の実施形態による無線通信システムが備えるクロック再生回路の構成を示すブロック図である。 本発明の第1の実施形態におけるヒストグラムの生成方法を説明するためのタイミングチャートである。 本発明の第1の実施形態による無線通信システムが備えるヒストグラム演算回路の構成を示すブロック図である。 本発明の第1の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第1の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第1の実施形態における代表位相値の決定方法を説明するための参考図である。 本発明の第2の実施形態による無線通信システムが備えるヒストグラム演算回路の構成を示すブロック図である。 本発明の第2の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第2の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第3の実施形態による無線通信システムが備えるヒストグラム演算回路の構成を示すブロック図である。 本発明の第3の実施形態における代表位相値の決定方法を説明するための参考図である。 本発明の第3の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第3の実施形態における代表位相値の決定方法を説明するための参考図である。 本発明の第3の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。 本発明の第4の実施形態による無線通信システムが備えるヒストグラム演算回路の構成を示すブロック図である。 本発明の第4の実施形態における代表位相値の決定方法を説明するための参考図である。 本発明の第4の実施形態における代表位相値の決定方法を説明するための参考図である。 本発明の第4の実施形態における代表位相値の決定方法を説明するためのヒストグラムである。
符号の説明
1・・・送信機、2・・・受信機、3・・・RF回路、4・・・データラッチ回路、5・・・クロック再生回路、6・・・同期検出回路、7・・・データ処理回路、8・・・エッジ抽出回路、9・・・ANDゲートブロック、10・・・エッジ数カウンタブロック、11,28,44,51・・・ヒストグラム演算回路、12・・・クロック位相調整回路

Claims (5)

  1. 入力信号に同期するクロック信号を生成するクロック再生回路において、
    前記入力信号の変化点を検出する検出部と、
    前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部と、
    前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部と、
    前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部と、
    を備え
    前記演算処理部は、
    前記第1のヒストグラムを構成する各々の前記部分期間の前記変化点の頻度に対して、隣接する前記部分期間の前記変化点の頻度を加算し、
    前記部分期間毎の加算値を示す第2のヒストグラムを生成し、
    前記加算値が最大となる前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出する
    ことを特徴とするクロック再生回路。
  2. 入力信号に同期するクロック信号を生成するクロック再生回路において、
    前記入力信号の変化点を検出する検出部と、
    前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部と、
    前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部と、
    前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部と、
    を備え、
    前記演算処理部は、
    前記第1のヒストグラムを構成する前記変化点の頻度が多い方から複数の前記部分期間を抽出し、
    抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、
    前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出する
    ことを特徴とするクロック再生回路。
  3. 前記演算処理部は、
    前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置と、前記第1のヒストグラムを構成する前記変化点の頻度が最大となる前記部分期間の時間的位置とに基づいて前記クロック信号の位相調整値を算出する
    ことを特徴とする請求項2に記載のクロック再生回路。
  4. 入力信号に同期するクロック信号を生成するクロック再生回路において、
    前記入力信号の変化点を検出する検出部と、
    前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部と、
    前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部と、
    前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部と、
    を備え、
    前記演算処理部は、
    前記第1のヒストグラムを構成する前記変化点の頻度が基準値以上または基準値以下となる前記部分期間を抽出し、
    抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、
    前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出する
    ことを特徴とするクロック再生回路。
  5. 入力信号に同期するクロック信号を生成するクロック再生回路において、
    前記入力信号の変化点を検出する検出部と、
    前記クロック信号の基準期間を複数に分割した部分期間と前記変化点とを対応させ、前記部分期間毎の前記変化点の頻度を示す第1のヒストグラムを生成するヒストグラム生成部と、
    前記第1のヒストグラムに基づいて演算処理を行って第2のヒストグラムを生成し、前記第2のヒストグラムに基づいて前記クロック信号の位相調整値を算出する演算処理部と、
    前記位相調整値に基づいて前記クロック信号の位相を調整する位相調整部と、
    を備え、
    前記演算処理部は、
    前記第1のヒストグラムを構成する前記変化点の頻度が第1の基準値以上となる前記部分期間を抽出し、
    抽出した前記部分期間毎の前記変化点の頻度を示す第2のヒストグラムを生成し、
    前記第1のヒストグラムを構成する前記変化点の頻度が前記第1の基準値よりも小さい第2の基準値以上となる前記部分期間を抽出し、
    抽出した前記部分期間毎の前記変化点の頻度を示す第3のヒストグラムを生成し、
    前記第2のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置または前記第3のヒストグラムを構成する前記部分期間からなる時間的範囲の中央に相当する前記部分期間の時間的位置に基づいて前記クロック信号の位相調整値を算出する
    ことを特徴とするクロック再生回路。
JP2008044414A 2008-02-26 2008-02-26 クロック再生回路 Active JP5114244B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008044414A JP5114244B2 (ja) 2008-02-26 2008-02-26 クロック再生回路
US12/391,568 US8306173B2 (en) 2008-02-26 2009-02-24 Clock regeneration circuit
EP09002585A EP2096785B1 (en) 2008-02-26 2009-02-24 Clock regeneration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044414A JP5114244B2 (ja) 2008-02-26 2008-02-26 クロック再生回路

Publications (2)

Publication Number Publication Date
JP2009206594A JP2009206594A (ja) 2009-09-10
JP5114244B2 true JP5114244B2 (ja) 2013-01-09

Family

ID=40673196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044414A Active JP5114244B2 (ja) 2008-02-26 2008-02-26 クロック再生回路

Country Status (3)

Country Link
US (1) US8306173B2 (ja)
EP (1) EP2096785B1 (ja)
JP (1) JP5114244B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169513A1 (ja) * 2011-06-10 2012-12-13 オリンパスメディカルシステムズ株式会社 データ再生装置および受信装置
JP5575082B2 (ja) * 2011-09-30 2014-08-20 三菱電機株式会社 Ponシステムのcdr回路およびcdr回路におけるパルス幅歪自己検出方法とパルス幅歪自己補償方法
JP5817516B2 (ja) * 2011-12-27 2015-11-18 富士通株式会社 受信回路
JP6032945B2 (ja) * 2012-05-28 2016-11-30 サターン ライセンシング エルエルシーSaturn Licensing LLC 信号処理装置、及び、信号処理方法
DE102012108696B4 (de) * 2012-09-17 2020-08-06 Wago Verwaltungsgesellschaft Mbh Datenbusteilnehmer und Verfahren zur Synchronisation von Datenbusteilnehmern
US9927489B2 (en) * 2014-01-15 2018-03-27 International Business Machines Corporation Testing integrated circuit designs containing multiple phase rotators
JP6281337B2 (ja) * 2014-03-12 2018-02-21 サクサ株式会社 通信装置、通信装置を備えた検針システム、及び通信装置における駆動信号検出方法
CN112422256B (zh) * 2019-08-23 2023-12-05 微芯片技术股份有限公司 数字时钟和数据恢复的快速初始相位搜索的装置和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185136A (ja) * 1987-01-27 1988-07-30 Toshiba Corp サンプリングクロツク再生回路
US5220581A (en) * 1991-03-28 1993-06-15 International Business Machines Corporation Digital data link performance monitor
US5245637A (en) * 1991-12-30 1993-09-14 International Business Machines Corporation Phase and frequency adjustable digital phase lock logic system
US5371766A (en) * 1992-11-20 1994-12-06 International Business Machines Corporation Clock extraction and data regeneration logic for multiple speed data communications systems
US5400370A (en) * 1993-02-24 1995-03-21 Advanced Micro Devices Inc. All digital high speed algorithmic data recovery method and apparatus using locally generated compensated broad band time rulers and data edge position averaging
JPH10215289A (ja) * 1996-06-04 1998-08-11 Matsushita Electric Ind Co Ltd 同期装置
JP3438529B2 (ja) * 1997-05-22 2003-08-18 三菱電機株式会社 ビット同期方式
JPH11163845A (ja) * 1997-12-01 1999-06-18 Fujitsu Ltd バースト同期回路
US6584163B1 (en) * 1998-06-01 2003-06-24 Agere Systems Inc. Shared data and clock recovery for packetized data
JP2004015112A (ja) * 2002-06-03 2004-01-15 Mitsubishi Electric Corp クロック抽出回路
JP2008044414A (ja) 2006-08-11 2008-02-28 Sanyo Electric Co Ltd 電動補助自転車

Also Published As

Publication number Publication date
JP2009206594A (ja) 2009-09-10
US8306173B2 (en) 2012-11-06
EP2096785A3 (en) 2011-09-21
EP2096785A2 (en) 2009-09-02
US20090213973A1 (en) 2009-08-27
EP2096785B1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5114244B2 (ja) クロック再生回路
JP5471962B2 (ja) クロックデータ再生回路およびクロックデータ再生方法
US7936793B2 (en) Methods and apparatus for synchronizing data transferred across a multi-pin asynchronous serial interface
US20110216863A1 (en) Receiving apparatus and method for setting gain
KR20070106798A (ko) 미약 전력에 의한 스펙트럼 확산 통신방법 및 시스템,고주파 무선기
JP2016522604A (ja) デジタル無線伝送処理
CN105099442B (zh) 模块化信号采集与检测的装置和方法
EP1174721B1 (en) Jitter detecting apparatus and phase locked loop using the detected jitter
US6757024B2 (en) Timing recovery apparatus and method for digital TV using envelope of timing error
US11025356B2 (en) Clock synchronization in a master-slave communication system
US8514987B2 (en) Compensation for data deviation caused by frequency offset using timing correlation value
JP5770077B2 (ja) 周波数オフセット除去回路及び方法並びに通信機器
JP4952488B2 (ja) 同期追従回路
JP5962988B2 (ja) 通信システム、それに用いられる送信器と受信器、及び通信方法
JP2010028615A (ja) クロック・データ・リカバリ回路
US7480359B2 (en) Symbol clock regenerating apparatus, symbol clock regenerating program and symbol clock regenerating method
JP2010200220A (ja) タイミング調整回路及びその調整方法
JP3931969B2 (ja) 同期検出方法とその回路、無線基地局
JP2010212763A (ja) データ再生装置
JP2004129207A (ja) 復調方法及び復調器
JPH06268700A (ja) タイミング再生回路
JP2001268040A (ja) Ofdm信号モード判定装置
JP6360578B1 (ja) デスキュー回路及びデスキュー方法
JP5922286B2 (ja) 周波数オフセット除去回路及び方法並びに通信機器
JP2006094168A (ja) 受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5114244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250