JP5111034B2 - 排熱回収ボイラの制振構造体 - Google Patents

排熱回収ボイラの制振構造体 Download PDF

Info

Publication number
JP5111034B2
JP5111034B2 JP2007248946A JP2007248946A JP5111034B2 JP 5111034 B2 JP5111034 B2 JP 5111034B2 JP 2007248946 A JP2007248946 A JP 2007248946A JP 2007248946 A JP2007248946 A JP 2007248946A JP 5111034 B2 JP5111034 B2 JP 5111034B2
Authority
JP
Japan
Prior art keywords
casing
damping device
vibration damping
gas flow
brace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007248946A
Other languages
English (en)
Other versions
JP2009079822A (ja
Inventor
匡博 伊福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007248946A priority Critical patent/JP5111034B2/ja
Publication of JP2009079822A publication Critical patent/JP2009079822A/ja
Application granted granted Critical
Publication of JP5111034B2 publication Critical patent/JP5111034B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、水平方向にガス流路を設けた排熱回収ボイラ(横型HRSG)に関し、特に、動的地震力の低減を考慮した横型HRSGの制振構造体に関する。
図15に一部内部構造を示すHRSGの斜視図を示すが、HRSGは、伝熱管群5によりガスタービンで仕事をした後の排ガスの持つエネルギーを回収して蒸気を発生させ、外部の蒸気タービンに供給して発電する複合発電プラント(コンバインドサイクル発電プラント)に使用される。この発電方式は発電効率が高く、さらに負荷応答性が良好であり、電力需要の時間変動への対応が容易であるという特徴を有する。
図16には図15に示すHRSGの内部構造などの側断面略図(図16(a))と図16(a)のa−a線断面矢視図(図16(b))を示す。
前記ガスタービンからの排ガスは、HRSGの煙道入口では排ガス温度が600〜700℃程度に達する。排ガスの煙道であるケーシング1は、鋼板からなる左右側壁面と上下壁面と、該鋼材を補強する型鋼などの補強部材から構成された筐体構造であり、排ガスはケーシング1内で前記伝熱管群5と熱交換したのち、200℃以下程度となりケーシング1の出口に連接して設けられた下流側の図示しない煙突から又は煙道を介して煙突から大気中に放散される。
前記ケーシング1の口径は、例えば25m(高さ)×10〜15m(幅)あり、ケーシング1の内部に吊り梁9により吊下げられている伝熱管群5は大きいHRSGでは約2000トンにもなる大重量物であり、さらに図15に示すようなケーシング1内には脱硝用触媒20が配置されている。また、ケーシング1の上面には合計で500トン以上になる汽水分離ドラム6および配管機器類がケーシング1の補強部材である梁3、11、14,柱10(図17参照)などにより支持されて設けられている。
このように、ケーシング1は大型構造物であり、さらに重量物であるさまざまな機器をサポートすることが要求されることから、大型かつ大重量の構造物としての強度を確保する必要があり、特に、地震時や暴風時に作用する水平力に対して十分な強度がなければならない。
なお、本明細書の補強材である梁3は長手方向が水平方向に向いた上壁面ケーシング1を補強する構造部材であり、梁11は長手方向がガス流れに直交する方向に向いた下壁面ケーシング1を補強する構造部材であり、梁14は下壁面ケーシング1のガス流れ方向に長手方向が向いた補強部材であり、柱10は長手方向が鉛直方向を向いた構造部材であり、これらの梁3、11、14,柱10を各壁面ケーシング1の構成部材とし扱う。
次に、HRSGは、ケーシング1の内部における高温の排ガスからの熱吸収効率の向上と安全面から外部への遮熱を厳密に行うために保温材を施工する必要があり、ケーシング1の内側に保温材13を施工する内部保温構造か、ケーシング1の外側に保温材を施工する外部保温構造のどちらかの構造が採用されている。
ケーシング1の外部に保温材を施工する外部保温構造にした場合、ケーシング1の内面が高温のガスに晒されるためにケーシング1の補強部材である梁3、11、14または柱10の内部で温度差が生じ、過大な熱応力を発生させるという問題がある。これに対してケーシング1の内部に保温材13を施工する内部保温構造を採用した場合には、前記梁3、11、14または柱10が高温に加熱されることがなくなるので梁3、11、14または柱10の内部で温度差は生じない。したがって、ケーシング1の構造部材の温度上昇による強度低下を防止し、ケーシング1の重量を出来る限り小さくすると共に、HRSGケーシング1全体としての熱伸びが少ないことから、HRSGのケーシング1の保温構造は付属配管等の支持構造を簡素化できる内部保温構造が一般に採用されている。
図17は、HRSGケーシング1の側面外観図(図17(a))、図17(a)のa−a線断面矢視図(図17(b))、図17(b)の円A内のブレースの詳細構造図(図17(c))と円B内のブレースの詳細構造図(図17(d))を示す。
ケーシング全体は、左右側壁面と上下壁面とを有する筐体であるケーシング1の下壁面から延長して下部に設けられた型鋼からなる柱脚12により地盤上に自立支持されている。ケーシング1は、板厚6〜9mmの鋼板2とその補強部材として配置される型鋼であるスチフナ4およびケーシング1を含めたケーシング全体の荷重サポ−ト用としてケーシング1の左右側壁面および上下壁面に対して鉢巻き状に配置され、主に梁3、11、14と柱10により構成されており、前記梁11及び14の下部は前記柱脚12と一体的に接続している。
ケーシング1の内部に設置されている伝熱管群5は、ケーシング1の上壁面から吊り梁9を介して吊り下げられ、脱硝装置20はケーシング1の下壁面に図示していない荷重受け部材を介して自立しており、ケーシング1の全体は柱脚12により地盤上に支持されるが、地震時及び暴風時に発生する水平力は各々で負担する。ケーシング1の内部には、図17(b)に示すように、ガス流れ方向から見て二等辺三角形状の山形の内部ブレ−ス7を設置し、水平力を負担する構造部材が設置されている。図17(c)に示すように上壁面中央部のケーシング1に取り付けられたブラケット17にはブレ−ス用板18が接続され、該ブレ−ス用板18とブラケット17を介して内部ブレ−ス7がケーシング1に支持されている。内部ブレース7の上端部が固着したブレ−ス用板18は、該ブレ−ス用板18に設けたルーズ穴18aに挿通したピン16を介してブラケット17に連結している。また、図17(d)に示すよう下壁面と側壁面のケーシング1と内部ブレ−ス7の下端部はブラケット17を介して接続している。内部ブレース7の下端部もブラケット17にピン16を介して接続している。
また、図18(a)に図17(a)のa−a線断面矢視図を示し、図18(b)に図18(a)の円B内の内部ブレース7とケーシング1との接合部の詳細構造図を示す。なお、図18の円A内には図17(c)と同じ構造のケーシング1と内部ブレース7との接続部が設けられている。
上壁面のケーシング1の中央部と側壁面のケーシング1の中央部はそれぞれブラケット17を介して内部ブレース7と接続し、さらに下壁面のケーシング1の中央部と内部ブレース7もブラケット17を介して接続され、全体として、ケーシング1内にはガス流れ方向から見て菱形形状の内部ブレ−ス7が配置される場合もある。
上述のように排ガスが水平方向に流れるものは横型HRSGと称するが、横型HRSGについては、構造物の高さが比較的低いことにより、これまで横型HRSGにかかる地震力は電気事業法による静的震度法の規定が適用されてきた。
この構造物に対して動的解析手法を適用した場合の地震応答加速度を図19に示す。建築基準法の応答加速度に対して、一般の地震波による地震応答加速度が固有周期T=0.4秒から1秒程度までで、かなり大きくなっている。横型HRSGに対して従来は静的震度法による弾性設計であったが、今後は、動的解析手法を適用しての制震構造を適用することが必要になってくるものと想定されている。
従来は、ガス流れ方向に直列配置した伝熱管群5は図20(a)に示すように、複数の上部管寄せ15を一体型支持部材24にまとめて上壁面ケーシング1の支持梁3、9の下方にリンク式連結金具23からなる吊り装置により吊り下げる構造を採用しているため、連結金具23で負担した水平荷重は上壁面ケーシング1の支持梁3を経由し、柱10により柱脚12に伝達される。
また、伝熱管群5の下部に発生するガス流れ方向の水平力は図20(b)に示すように、複数の管寄せ15と一体型の支持部材25でまとめてサポート金具26により下壁面ケーシング1の補強用の梁14を経由して、柱10により柱脚12に伝達される。
また上下管寄せ15、15に発生するガス流れに直交する方向の水平力は図20(c)に示すように上管寄せ一体型支持部材24と下管寄せ一体型支持部材25の端部に設置しているスペーサ27により側面ケーシング1の柱10に支持されたサポート金具26を経由して本体フレームにより基礎に伝達される。
このように、ケーシング1は伝熱管群5をはじめとする重量物をサポ−トすることを要求され、構造物としての必要強度を確保する必要があり、特に、地震時や暴風時に作用する水平力に対し、強度を満足しなければならない。このため、ケーシング1を構成しているフランジ(柱10、梁3、11,14)は大きな荷重を負担する関係で梁せい(梁3の縦断面方向で上端から下端までの高さ)が3mにも達する大きなサイズになることもある。
特許第3181371号公報 特開2004−092988号公報
本出願人は特願2006−263364号の発明の横型HRSGにおいて、ケーシング1のガス流れに直交する方向のフランジの断面上において梁3、11、14と内部ブレース7の接合部や、梁11、14や柱脚12と外部ブレース22の接合部に大きな塑性変形を繰り返し作用させることのできる制振装置30,31を設けることによって地震時の応答荷重を低減する構造を提案している。
しかし、上記特願2006−263364号で提案した制振装置30,31を備えた構成は、梁3、11、14や柱10と鋼板2と内部ブレ−ス7及び外部ブレース22により、地震時の水平力を負担し、基礎(柱脚12)まで荷重を伝達する構造物であるが、全ての構造部材を弾性設計しているため、大きな塑性変形を繰り返し許容することに配慮しておらず、動的地震応答量の低減が困難であった。
本発明の課題は、前記従来技術の欠点を解消し、大きな塑性変形を安定して許容し、地震応答荷重を好適に低減する制振装置を有する横型HRSG支持構造を提供することにある。また、本発明の課題は、繰り返し作用する大きな弾塑性変形を安定して許容し、地震応答荷重を低減可能な支持構造を有する排熱回収ボイラの制振構造体を提供することにある。
本発明の上記課題は次の解決手段で解決される。
すなわち、内部に伝熱管群(5)と上、下部管寄せ(15,15)を配置し、水平方向に流れるガスの熱を吸収して前記伝熱管群(5)でガスの熱を吸収して蒸気を発生させる横型筐体からなる排熱回収ボイラの制振構造体において、筐体構造の排ガス入口部と出口部の間の排ガス流れに沿う両側壁面と上下壁面を構成するケーシング(1)と、該ケーシング(1)の内面に設けた保温材(13)と、ケーシング(1)内の排ガス流れに対して直交する方向の横断面内に設けられ、前記ケーシング(1)との間に接続部を有する内部ブレース(7)と、前記ケーシング(1)の下部に設けられ、地盤上に自立支持された柱脚(12)と、該柱脚(12)と下壁面ケーシング(1)との間に設けられた外部ブレース(22)とを設け、さらに、前記ケーシング(1)と内部ブレース(7)の接合部に複数の挟み込み式制振装置(30)を設け、前記ケーシング(1)と外部ブレース(22)の接合部に複数のY字式制振装置(31)を設け、上部管寄せ(15)と上壁面ケーシング(1)の連結部及び下部管寄せ(15)と下壁面ケーシングの連結部には挟み込み式制振装置(30断塑性材からなり水平方向に横板を入れた断塑性型制振装置32又はリンク機構からなるリンク式制振装置33の少なくともいずれかを設置し、前記挟み込み式制振装置(30)、断塑性型制振装置(32)、リンク式制振装置(33)の設置方法として、設置スペースが比較的狭い場合で前記保温材(13)の厚さが比較的厚い部位には挟み込み式制振装置(30)を取り付けると共に、前記保温材(13)の厚さが比較的薄い部位には断塑性型制振装置(32)を取り付ける一方、設置スペースが比較的広い場合はリンク式制振装置(33)を取り付けた排熱回収ボイラの制振構造体である。
特願2006−263364号で提案した構成により、横型HRSGの支持構造体における内部ブレ−ス7と梁3、11、14の間に制振装置30、梁14と柱脚12と外部ブレーズ22の間に制振装置31を設置することにより、地震時に作用する振動に対して弾塑性エレメントである制振装置30,31が塑性変形を繰り返し、好適に地震エネルギーを吸収し効率的に地震応答を抑制し、経済的なケーシング1構造を提供することが出来た。
図13は特願2006−263364号の発明で述べた挟み込み式制振装置30とY形制振装置31(31a,31b)を横型HRSGの支持構造体に適用した例を示す。
また、図14に動的解析による地震応答加速度の比較を示しており、一般の地震波(ELCENTRO TAFT 八戸)による地震応答解析を行った結果である。図14に示す動的解析はHRSGの図13に示す位置に制振装置30を合計12個(4×3)取り付け、制振装置31を合計3個取り付けた場合の結果である。
図13に示す制振装置30、31を設置した構成では第一層(柱脚12と梁11のある部分で測定)と第二層(梁3のある部分で測定)共に一次設計地震動レベルにおいては、制振装置30、31を設置していない従来技術に比べて、地震応答加速度が約20%低減可能であることが分かった。また、この地震応答加速度の低減は地震動レベルが大きくなるほど低減効果も大きくなる。
本発明では図13に示す制振装置30、31を設置した構成に加えてケーシング内部の上部管寄せ15及び下部管寄せ15とケーシング1とを連結させるための制振装置32、33をさらに設置することで、図13に示す制振構造より、さらなる地震応答の抑制を図っている。このとき、HRSG内部には排ガスが流れ、排ガスと伝熱管群5との間で熱交換することが必要であるため、制振装置30,31,32,33がガス流路を妨げない事が必要である。また、下部管寄せ15に接続した断塑性型制振構造32については、管寄せ15自体がボイラと同様の吊下げ構造(振り子構造)となっており、HRSGケーシング1の高さが約25mもある事から、図19に示す固有周期を長周期化する事で地震応答加速度を低減出来る。
まず、挟み込み式制振装置30は、1組の内部ブレース7とフランジ3の接合部に対して設置可能である。内部ブレース7は排ガスに曝されるため高温となり得るが、内部ブレース7はV字型に配置されているため、フランジ3に対して直角に熱伸びすることになる。
上記挟み込み式制振装置30は図13に示すように内部ブレース7の頂部を挟み込むことで地震力を伝達することから内部ブレース7とケーシング1との間に設けた制振装置30で地震力を吸収するだけでなく、熱伸び差も吸収する。
さらに、ガス流路を妨げないように、挟み込み式の制振装置30の適用箇所は伝熱管群5の上下バッフル18、18(図16)のスペースに設置することが望ましく、その中でもメンテナンスを考慮した場合、容易に保守のできる下部が最も理想的な配置となる。
また、図11に示す例では菱形に配置された内部ブレース7の下部の梁11との交差部に挟み込み式制振装置30を適用している。内部ブレース7はV字形になっており、内部ブレース7は排ガスに曝されるため高温となり熱伸びが生じる。これに対して、挟み込み式制振装置30はケーシング1に接続した上で内部保温材13により包み込み、制振装置30自体の温度上昇を抑制する。また、内部ブレース7の熱伸びに対しては挟み込み式制振装置30との連結部がスライド式であることにより内部ブレース7の熱伸びを拘束することなく加振方向の水平力を伝達することができる。
次にY形制振装置31は、図13に示すようにHRSGのガス流れ方向に沿った側面に対して、外部ブレース22の2本が山形に配置され、梁11と交差する接合部に設置する。当該個所は一般の制振装置の適用個所と同じである。また、図13にはHRSGのガス流れに直交する方向の断面に対してY形制振装置31bを設置し、ガス流れに沿った方向の側面にはY形制振装置31aを設置した例を示す。
また、挟み込み式の制振装置30は保温材13の厚さが比較的厚い部位に使用し、断塑性型制振構造32は挟み込み式の制振装置30が使えない保温材13の厚さが比較的薄い部位に使用するのに適している。従って、断塑性型制振構造32は水平方向に横板を入れ、コンパクトの割には高い強度を持たせている。
リンク式制振装置33は、塑性変形する部分が板材ではなくて棒材または管材からなり、管寄せ15からケーシング1までの距離が比較的長い場合に使用するのに適している。
本発明によれば、ケーシング(1)と内部ブレース(7)の接合部の弾塑性変形により排ガス流れに対して直交方向に作用する地震エネルギーを吸収する複数の挟み込み式制振装置(30)を設け、ケーシング補強用の梁(14)と外部ブレース(22)の接合部にガス流れに沿った方向に作用する地震エネルギーを吸収する複数のY字式制振装置(31)を設け、さらに上部管寄せ(15)と上壁面ケーシング(1)の連結部および下部管寄せ(15)と下壁面ケーシング1の連結部又は下壁面ケーシング1と外部ブレース22との連結部には挟み込み式制振30、断塑性型制振装置32又はリンク式制振装置33などを設置したことにより、無理なく大きな塑性変形が可能な制振装置をHRSG支持構造に適用できることから、地震応答荷重の低減が可能となる。
こうして本発明によれば、従来技術に比べ、地震応答荷重低減効果が高く、安全性の高い横型HRSG支持構造を提供することが可能となり、また、既設の横型HRSGにおいても、本発明の制振装置の追加が可能であり、本発明を適用することで、既設横型HRSGの耐震性能を向上することができる。
本発明の実施の形態について以下、図面とともに詳細に説明する。
図7に本実施例で使用する制振装置30、31の概略図を示す。図7に示す制振装置30、31は先の特願2006−263364号に開示さた制振装置であり、これについては後述し、先に本発明で新たに採用した制振装置32、33について説明する。
図1の概略図に制振装置32の代表例を示す。制振装置32は断塑性材からなる制振装置であり、断塑性型制振装置32と呼ぶことがある。図1(a)には断塑性型制振装置32を連結金具23と下壁面ケーシング1の梁11との間に設置する例を説明する。図1(b)は図1(a)のA−A線断面図である。
断塑性型制振装置32は横板32aと縦板32bを格子状に組み合わせ、連結金具23と連結する横板32a側にはピン止め金具32cが固着されている。横板32aと縦板32bと間に補強のためにウエブ32dを取り付けている。
また、図2には他の実施例の断塑性型制振装置32を示す。図2に示す断塑性型制振装置32は下部管寄せ15と下壁面ケーシング1の梁14との連結部に設置されるものである。図2(a)には断塑性型制振装置32をガス流れに沿った方向の側面に設置する例を説明する。図2(b)は図2(a)の制振装置32をガス流れに直交する方向から見た図であり、図2(c)は図2(a)のA−A線断面矢視図である。
梁14からなる下壁面ケーシング1にはブラケット19を介して断塑性型制振装置32が設けられ、該断塑性型制振装置32は管寄せ一体型支持部材25に支持された一対のサポート金具26に挟まれた状態で、該サポート金具26に連結される。管寄せ一体型支持部材25には複数の管寄せ15が支持されている。
また、図3(a)には断塑性型制振装置32を管寄せ一体型支持部材25と下壁面ケーシング1(梁11)との間であってガス流れに沿った方向の側面に設置する例を説明する。図3(b)は図3(a)の断塑性型制振装置32をガス流れに沿った方向から見た図であり、図3(c)は図3(a)のA−A線断面矢視図である。また、図4(a)には断塑性型制振装置32を管寄せ一体型支持部材24と上壁面ケーシング1(梁3)との間であってガス流れに直交する方向の側面に設置する例を説明する。図4(b)は図4(a)の断塑性型制振装置32をガス流れに沿った方向から見た図であり、図4(c)は図4(a)のA−A線断面矢視図である。
また、図5にはリンク式サイスミッタタイピンからなる制振装置の代表的な構造図を示し、リンク式制振装置33ということがある。図5(a)にはリンク式制振装置33を管寄せ15の連結金具23とケーシング1との間に設置した例である。図5(b)は図5(a)で用いる2つのピン33a、33bの平面図、図5(c)は図5(b)のピン33a、33bの側面図である。また図5(d)にはピン33a、33bの各両端部を連結するリンク材33c、33dの側面図を示す。
図5(a)のリンク式制振装置33は、ケーシング1(柱10)に固着された止め金具33eの図示しない開口部に一方のピン33bを挿入して固定しておき、該ピン33bの両端部の平坦部33b1を各リンク材33c、33dの一対の係止端部33c1.33d1の間にそれぞれ挿入して、ピン33a、33bの平坦部33a1、33b1に設けられた穴とリンク材33c、33dの一対の係止端部33c1、33d1に設けられた穴に図示しないロッドを貫通させて一対のリング材33c、33cを図示しないロッドを中心に回動自在とする。連結金具23の端部も前記止め金具33eと同様にしてピン33aの中央部に固定させる。
こうして一対のピン33a、33bと一対のリング材33c、33dが平行四辺形状に連結するが、一対のリング材33c、33dが変形しながら一対のピン33aとピン33bを塑性変形させることで制振効果が得られる。
断塑性型制振装置32は、後述する挟み込み式制振装置30と同様にケーシング1内に収納される機器を設置する空間に限りがある場合に利用され、設置空間の大きさに応じて制振装置32と制振装置30は使い分けられる。
一方、連結間隔が比較的長い場合、例えば上部管寄せ15とケーシング1との間の連結にはリンク式制振装置33を主に使用し、リンク構造が必要でない場合、例えば下部管寄せ15とケーシング1との間などには断塑性型制振装置32を使用する。なお図3にも示したように断塑性型制振装置32を上部管寄せ15とケーシング1との間に使用しても良い。
また、図6には他の実施例のリンク式制振装置33を示す。図6に示すリンク式制振装置33は上部管寄せ15の連結金具23と上壁面ケーシング1(梁9)との連結部に設置されるものである。図6(a)にはリンク式制振装置33を上部管寄せの連結金具23と上壁面ケーシング1(梁9)との間のガス流れに沿った方向の側面に設置した図を示し、図6(b)は図6(a)の制振装置33をガス流れに直交する側面から見た図であり、図6(c)は図6(a)の下方から見た図である。
この図6に示すようにリンク式制振装置33は上壁面ケーシング1(梁9)に取り付けられたブラケット19の下面に設けられた一対の止め金具33eの穴33e1にピン33bの両端を回動自在に係止させ、該ピン33bの中央部に上部管寄せ15の連結金具23を連結させた構成から成る。図6に示すリンク式制振装置33は一対のピン33e,33eを用いてそれぞれに上部管寄せ15の連結金具23を連結させた構成である。
次に挟み込み式制振装置30とY形制振装置31の構造の説明をする。これらの制振装置は前述の特願2006−263364号で述べた制振装置である。
図7(a)の側面図と図7(b)の図7(a)の矢印A方向から見た図に示す制振装置は挟み込み式制振装置30であり、ケーシング1の内部の内部ブレース7とケーシング1の接合部に設置する。図7(c)に示す側面簡略図と図7(d)に示す図7(c)の装置に地震力P(t)が作用した場合に構造材料がΔ(mm)だけ変形した場合を示す制振装置はY形制振装置31(アーム21と一対の外部ブレース22、22からなる)であり、エネルギー吸収性能が大きく、安定した履歴挙動を示すものであり、一般のビル鉄骨と同様に使用するものである。なお、図7(e)には制振装置31の図面左右方向に地震力が作用した場合の構造材の履歴挙動を示す。
制振装置30は上板30aと下板30bと、該上板30aと下板30bの間に複数枚の鋼板30cと、リンク材30dとからなる弾塑性エレメントと上板30aに設けられた制振対象物の部材との接続部とからなる。
リンク材30dは両端の鋼板30cの内側に配置され、上板30aと下板30bを連結し、上板30aと下板30bの平行移動が大きくなり過ぎないように振動を抑制する部材である。複数枚の鋼板30cは並列に間隔を空けて配置される。また、上板30aに設けられた制振対象物の部材とは本実施例の場合は、内部ブレース7の下端部に固定接続したブラケット7aと該ブラケット7aに固定接続され、上板30aに上下動自在に挿入されるフレーム7bからなる。
制振装置30は地震時に前記複数の鋼板30cの平面に直交する方向の振動方向(図7の場合は、図面左右方向)に外力(本実施例の場合は内部ブレース7の先端部が移動した際の力)が作用すると前記弾塑性エレメント(30a〜30d)が弾塑性変形することにより制振作用を奏する。
なお、前記内部ブレース7は高温のガスに晒されているため、運転中は熱伸びが生じるため、制振装置30の上板30aには図示しないが内部ブレース7の上下方向の伸び代に対する逃げ代を設けている。
挟み込み式制振装置30は、1組の内部ブレース7とケーシング1の接合部に対して設置可能である。内部ブレース7は排ガスに曝されるために高温となるが、内部ブレース7はV字型に配置されているためにケーシング1に対して直交する方向に熱伸びすることになる。これに応じて挟み込み式制振装置30は内部ブレース7の頂部を挟み込むことで地震力を伝達することから、内部ブレース7は制振装置30との間で、この熱伸び差を吸収することができる。
すなわち、図7(a)及び図7(b)に示すように、内部ブレース7のフレーム7bは挟み込み式制振装置30の中を上下移動自在であるので内部ブレース7と制振装置30との間の熱伸びによるずれを吸収できる。こうして挟み込み式制振装置30は内部ブレース7の熱伸びを拘束することなく加振方向の水平力を伝達することができる。
また、ケーシング1の内部には排ガスが流れ、伝熱管群5との間で熱交換することが必要であるため、ガス流路を妨げない事が必要である。そのため、挟み込み式制振装置30の適用箇所はケーシング1内の上下と両側方に設けられる保温材保護用のバッフル(図示せず)のスペースに設置することが望ましく、その中でもメンテナンスを考慮した場合、容易に保守のできる伝熱管群5が配置されていないケーシング1の内部が最も理想的な配置箇所となる。
内部ブレース7の一つはケーシング内の排ガス流れに対して直交する方向にある横断面であって、HRSGの熱伸びの起点を含む面(図13の構面Y)に設けられているので、この部分に設ける制振装置30は上下方向の伸びを考慮するだけでよく、制振装置30の小型化、性能向上が可能となる。また前記熱伸びの起点は脱硝装置20の直前または直後に設定するが、後述するように温度域も安定しており好適な位置である。
次にY形制振装置31であるが、これは梁14と柱脚12とを接続する一対の外部ブレース22と梁14とが交差する接合部に設置する。図13に示す例ではY形制振装置31aはアーム21(図7参照)と一対の外部ブレース22で梁14に山形に取り付けられている。
これらの制振装置30、31の取付けにより、あらゆる地震エネルギーの作用方向に効果的な制振機能を持たせた排熱回収ボイラとすることができる。制振装置30、31は、その設置個所に合わせ使い分けたことに本実施例の特徴がある。
また、図8には図7に示す挟み込み式制振装置30を上部管寄せ15の連結金具23と上壁面ケーシング1(梁9)との連結部であってガス流れ方向の側面に設置した場合の構成例を示す。図8(a)には制振装置30をガス流れ方向の側面に設置した側面図であり、図8(b)は図8(a)には制振装置30をガス流れに直交する側面から見た図であり、図8(c)は図8(a)の矢印A方向から見た図(図8(c))である。
また、図9には図7に示す挟み込み式制振装置30を下部管寄せ15の連結金具23と下壁面ケーシング1(梁14)との連結部であってガス流れ方向の側面に設置した場合の構成例を示す。図9(a)には制振装置30をガス流れ方向の側面に設置した側面図であり、図9(b)は図9(a)には制振装置30をガス流れに直交する方向から見た図であり、図9(c)は図9(a)のA−A線断面矢視図である。
さらに、図10には図7に示す挟み込み式制振装置30を下部管寄せ15の連結金具23と下壁面ケーシング1(梁11)との連結部であってガス流れに直交する方向に設置した場合の構成例を示す。図10(a)は制振装置30をガス流れに直交する平面を見た図であり、図10(b)は図10(a)には制振装置30をガス流れ方向から見た図であり、図10(c)は図10(a)のA−A線断面矢視図である。
本実施例では、上記挟み込み式制振装置30とY形制振装置31を図13で説明したようにHRSGの上壁面ケーシング1(梁9)と下壁面ケーシング1(梁11)に設置すると共に制振装置31と制振装置32をHRSGの上壁面ケーシング1(梁9)と上部管寄せの間および下壁面ケーシング1(梁11)と下部管寄せの間に設置する。
図11はHRSGのガス流れに対して直交する方向の横断面(構面Y)に対しての制振装置30の設置例を示し、梁11の中央部に位置するケーシング1と内部ブレース7との接合部に制振装置30を設けた例を示している。
内部ブレース7のケーシング1との接合部に図7に示す制振装置30が配置されるが、制振装置30の上板30aに内部ブレース7の下端部(フレーム7b)が上下動自在に取り付けられ、制振装置30の下板30bにケーシング1が固定接続している。なお、図11に示す内部ブレース7は菱形形状であるが、対向する側壁面ケーシング1の中央部同士と菱形ブレース7との接続部を掛け渡す水平ブレース8を設けた例を示し、さらに、ケーシング1の下部に設けられ、地盤上に自立支持された型鋼からなる柱脚12と梁14との間にV字状の外部ブレース22が設けられている。
内部ブレース7は菱形になっており、内部ブレース7は排ガスに曝されるため高温となり熱伸びが生じる。これに対して、挟み込み式制振装置30はケーシング1に接続し、内部保温材13により包み込まれており、制振装置30自体の温度上昇が抑制される。なお保温材13としては、温度条件などにより異なるが、ロックウール、セラミックファイバーなどが用いられる。
前記制振装置30は図11に示すようにケーシング1の下壁面に一箇所設けてもよく、さらに左右側壁面及び/又は上壁面に設けることにより制振性能がより高くなる。
前記内部ブレース7は、ケーシング1のガス流れ方向から見て、図7に示すように山形形状または図11に示すように菱形形状であるが、本実施例でブレース7とケーシング1の接続部に制振装置30を設けることにより、ガス流れに対して直交方向に作用する地震エネルギーを効果的に吸収することができる。
また、前記ケーシング1は、その下部に設けられた下部柱脚12により地盤上に自立支持されており、該下部柱脚部12に接続されたブレース22と補強用の梁14との接合部にY形制振装置31のアーム21を設けることにより、さらに効果的に地震エネルギーを吸収することができる。
図12はHRSGのガス流れ方向のケーシング1の側壁面より下部に設けたY形制振装置31の設置例を示す。このY形制振装置31をケーシング1の側壁面に沿う方向の地震エネルギーを吸収するように配置することで、ガス流れに沿った方向に対して制振効果がある。
図12に示すY形制振装置31は、各一端を柱脚12に接続した2本の外部ブレース22とその2本の外部ブレース22の他端を梁14に接続したアーム21からなり、全体として山形(三角形)をなす構成で配置される。さらに、図12のY形制振装置31の設置例の斜視図に相当する図13には補強用の梁14に、ガス流れ方向に作用する地震エネルギーを弾塑性変形により吸収する制振装置31aを設けた構成図を示す。また、図13に示すように、HRSGのガス出口部のケーシング1の下壁面の補強部材である梁11の中央部とケーシング1の下方の柱脚12とをそれぞれ両端部に接続した外部ブレース22と前記梁11の接続部には ガス流れ方向に直交する方向に作用する地震エネルギーを弾塑性変形により吸収するY形制振装置31bを配置している。
前述のように、排熱回収ボイラ内には伝熱管群5が充填され、さらにケーシング1の上部には汽水分離ドラム6などが搭載され、さらにケーシング1の外部には蒸気タービンへの配管などが縦横に存在している。特にケーシング1の内部の伝熱管群5は個々の伝熱管パネルがガス流れ方向に連続して並列配列されており、さらに、それぞれの伝熱管パネルは複数の連絡管で連絡されている。そのため、ガス流れ方向に弾塑性変形により地震エネルギーを吸収する構造の制振装置を用いると、機器の移動が生じるために、機器同士が接触して損傷などを生じる可能性があり、さらに機器の復旧のための調整箇所数の増加などが生じる可能性があり、ガス流れ方向に弾塑性変形する制振構造は好ましくない。
そこで、本実施例ではガス流れ方向に作用する地震エネルギーを吸収する機能についてはケーシング1の側壁面の補強部材を延長した下部柱脚12に設けた前記弾塑性変形により吸収する制振装置31a(図13)に取り付ける。
特に図13に示す制振装置31aは、内部ブレース7が設けられた熱伸びの起点を含む横断面(図13の構面Y)から垂下した面を支持する排ガス流れと並行する方向に平面が向いたケーシング1の補強部材である梁14と外部ブレース22の接合部に設けることにより制振装置31の小型化、性能向上が可能となる。
また、図13に示す前記3つの構面Yの内の最後流側のケーシング1の下壁面の中央部と内部ブレース7の接続部にはガス流れに対して直交方向に弾塑性変形による制振機能がある制振装置30を設けているが、制振装置30の下方には制振装置31bを設け、これらの制振装置30、31でHRSGのガス流れに対して直交方向に弾塑性変形による制振機能を持たせることができ、HRSG出口部より下流側の煙道又は煙突との接続面の変形を少なくしている。
図2、図4、図6、図8、図9はHRSG内のガス流れに沿った方向の側面に制振装置30、32、33をそれぞれ配置した各詳細図を示し、図3、図10はガス流れに直交する方向の平面に対して制振装置30、32を配置した各詳細図を示す。図2、図4、図6、図8、図9に示すように上部管寄せ15とケーシング1の連結部にリンク式連結金具23を介して挟み込み式制振装置30、断塑性型制振装置32又はリンク式制振装置33を内部保温材13の内部に好適に設置することが望ましい。
また、下部管寄せ15については吊下げ構造である下部管寄せ15の地震応答特性を効率的に低減する役割があり、図2に示すように伝熱管群5の熱延びを考慮してサポート金具26によりガス流れに沿った方向の水平力を伝達する構造になっており、制振装置30,32を図のように適用した。
この際、高温となるガス流れ前流側の炭素鋼の使用可能領域(400℃以下)に制振装置30,32を設置する必要があるため、図2に示すように内部保温材13で包み込む。さらに、上記ガス流れ前流側では排ガス入口部に近づく程、高温となり、熱伸び代が大きくなる。そのため構造的に複雑になるので、それを避けるために、例えば、図2に示す装置について言えば、支持部材25の中央部に設置されているスペース金具26と制振装置32との挟み込み部をガス下流側にずらして、より低温部に設けることにより、熱伸びに対する逃げ代を小さくして小型化を図っている。
また、一方、前記ガス流れの前流側に続く脱硝装置20の設置部より前流側の領域では、ガス温度が400℃以下となるため、内部保温材13をケーシング1の内側に張り付ける必要性がなく、それぞれの管寄せ15に独立して制振装置30、33を設ける事が出来る。
図10で説明した管寄せ15のガス流れに直交する方向の水平力を制振装置30、32で受ける構成にする方法であるが、ガス流れに直交する方向の振動については管寄せ15とケーシング1の隙間が小さく地震応答を好適に低減するためには、ガス流れに直交する方向の隙間を大きくする必要がある。
以上のようにHRSGの前後方向(ガス流れに沿った方向)及び左右方向(ガス流れに直交する方向)について、いくつかの実施例を紹介したが、ガス流れに直交する方向の制振についてはモーメントフレームとなる内部ブレース7に対して制振装置30を設置し、外部ブレース22に対して制振装置31を設置する事で効果的な応答特性の低減を図ることができ、さらに、ガス流れに沿った方向の管寄せ15とケーシング1の連結部に制振装置30、32、33を設置し、ガス流れに直交する方向の管寄せ15とケーシング1の連結部には制振装置30、32を設置することで地震力の低減を図ることができる。
これらの制振装置30〜33の取付けにより、あらゆる地震エネルギーの作用方向に効果的な制振機能を持たせた排熱回収ボイラとすることができる。制振装置30〜33は、その設置個所に合わせ使い分けたことに本実施例の特徴がある。
現在の耐震設計で主として採用される静的震度法による地震力より大きくなる。本発明ではその動的地震力を好適に低減することに対して効果があり、産業上の利用可能性が高い。
本発明に使用する断塑性型制振装置の概要を示し、図1(a)は断塑性型制振装置の側面図、図1(b)は図1(a)のA−A線断面矢視図である。 本発明に使用する断塑性型制振装置を下部管寄せの管群連結金具と下壁面ケーシングとの間であってガス流れに沿った方向の側面に設置した図(図2(a))、図2(a)の制振装置をガス流れに直交する方向から見た図(図2(b))、図2(a)のA−A線断面矢視図(図2(c))である。 本発明に使用する断塑性型制振装置を下部管寄せの一体型支持部材と下壁面ケーシングとの連結部であってガス流れに直交する方向の側面に設置した図(図3(a))と図3(a)の断塑性型制振装置をガス流れに沿った方向から見た図(図3(b))、図3(a)のA−A線断面矢視図(図3(c))である。 本発明に使用する断塑性型制振装置を上部管寄せの一体型支持部材と上壁面ケーシングとの連結部であってガス流れに沿った方向の側面に設置した図(図4(a))と図4(a)の断塑性型制振装置をガス流れに沿った方向から見た図(図4(b))、図4(a)のA−A線断面矢視図(図4(c))である。 本発明に使用するリンク式制振装置の概要を示し、図5(a)はリンク式制振装置の側面図、図5(b)はリンク式制振装置の一構成部材であるピンの平面図、図5(c)はピンの側面図、図5(d)はリンク式制振装置の一構成部材であるリンクの側面図である。 本発明に使用するリンク式制振装置を上部管寄せの管群連結金具と上壁面ケーシングとの連結部であってガス流れに沿った方向の側面に設置した図(図6(a))と図6(a)の制振装置をガス流れに直交する側面から見た図(図6(b))と図6(a)の下方から見た図(図6(c))である。 本発明に使用する制振装置の概要を示し、図7(a)は挟み込み式制振装置の側面図、図7(b)は図7(a)の矢印A方向から見た図、図7(c)はY形制振装置の側面簡略図、図7(d)は図7(c)の装置に地震力が作用した場合に構造材料が変形した場合の履歴挙動を示す図であり、図7(e)は図7(c)のY形制振装置の図面左右方向に地震力が作用した場合の構造材の履歴挙動を示す。 本発明に使用する挟み込み式制振装置を上部管寄せの管群連結金具と上壁面ケーシングとの連結部であってガス流れに沿った方向の側面に設置した場合の側面図(図8(a))、図8(a)の制振装置をガス流れに直交する側面から見た図(図8(b))、図8(a)の矢印A方向から見た図(図8(c))である。 本発明に使用する挟み込み式制振装置を下部管寄せの管群連結金具と下壁面ケーシングとの連結部であってガス流れに沿った方向の側面に設置した場合の側面図(図9(a))、図9(a)には制振装置をガス流れに直交する方向から見た図(図9(b))、図9(a)のA−A線断面矢視図(図9(c))である。 本発明に使用する挟み込み式制振装置を下部管寄せの管群連結金具と下壁面ケーシングとの連結部であってガス流れに直交する方向に設置した場合の側面図(図10(a))、図10(a)の制振装置をガス流れに沿った方向から見た図(図10(b))、図10(a)のA−A線断面矢視図(図10(c))である。 特願2006−263364号の発明のガス流れに直交する方向に平面に挟み込み型制振装置を設置した場合の説明図である。 本発明で使用するガス流れに沿った方向の平面に配置されるY形制振装置の説明図である。 特願2006−263364号の発明における制振装置の設置箇所と種類の説明図である。 特願2006−263364号の発明による動的地震応答量低減状態の説明図である。 排熱回収ボイラ(HRSG)の全体構造の斜視説明図である。 排熱回収ボイラ(HRSG)の内部構造などの側断面略図(図16(a))と図16(a)のa−a線断面矢視図(図16(b))である。 従来のHRSGの側面外観図(図17(a))、図17(a)のa−a線断面矢視図(図17(b))、図17(b)の円A内のブレースの詳細構造図(図17(c))と円B内のブレースの詳細構造図(図17(d))である。 HRSGケーシングの図17(a)のa−a線断面矢視図(図18(a))と図18(a)の円B内のブレースとケーシングとの接合部の詳細構造図(図18(b))である。 従来HRSGの動的地震応答特性の概念説明図である。 従来のHRSGの管寄せ振れ止め構造の説明図(図20(a)はHRSGの側面(ガス流れの沿った方向)から見た図、図20(b)は図20(a)の矢印A方向から見た図、図20(c)はHRSGの平面(ガス流れの沿った方向)から見た図)である。
符号の説明
1 ケーシング 2 鋼板
3、9、11、14 梁 4 スチフナ
5 伝熱管群 6 汽水分離ドラム
7 内部ブレース 8 水平ブレース
9 吊り梁 10 柱
12 柱脚 13 内部保温材
15 管寄せ 16 ピン
17 ブラケット 18 ブレース用板
18a ルーズ穴 19 ブラケット
20 脱硝装置 21 アーム
22 外部ブレース 23 連結金具
24,25 管寄せ一体型支持部材
26 サポート金具 30 挟み込み式制振装置
30a 上板 30b 下板
30c 鋼板 30d リンク材
31 Y形制振装置 32 断塑性型制振装置
32a 横板 32b 縦板
32c ピン止め金具 32d ウエブ
33 リンク式制振装置 33a、33b ピン
33c、33d リンク材 33e 止め金具

Claims (1)

  1. 内部に伝熱管群(5)と上、下部管寄せ(15,15)を配置し、水平方向に流れるガスの熱を吸収して前記伝熱管群(5)でガスの熱を吸収して蒸気を発生させる横型筐体からなる排熱回収ボイラの制振構造体において、
    筐体構造の排ガス入口部と出口部の間の排ガス流れに沿う両側壁面と上下壁面を構成するケーシング(1)と、該ケーシング(1)の内面に設けた保温材(13)と、ケーシング(1)内の排ガス流れに対して直交する方向の横断面内に設けられ、前記ケーシング(1)との間に接続部を有する内部ブレース(7)と、前記ケーシング(1)の下部に設けられ、地盤上に自立支持された柱脚(12)と、該柱脚(12)と下壁面ケーシング(1)との間に設けられた外部ブレース(22)とを設け、さらに、前記ケーシング(1)と内部ブレース(7)の接合部に複数の挟み込み式制振装置(30)を設け、前記ケーシング(1)と外部ブレース(22)の接合部に複数のY字式制振装置(31)を設け、上部管寄せ(15)と上壁面ケーシング(1)の連結部及び下部管寄せ(15)と下壁面ケーシングの連結部には挟み込み式制振装置(30断塑性材からなり水平方向に横板を入れた断塑性型制振装置32又はリンク機構からなるリンク式制振装置33の少なくともいずれかを設置し
    前記挟み込み式制振装置(30)、断塑性型制振装置(32)、リンク式制振装置(33)の設置方法として、設置スペースが比較的狭い場合で前記保温材(13)の厚さが比較的厚い部位には挟み込み式制振装置(30)を取り付けると共に、前記保温材(13)の厚さが比較的薄い部位には断塑性型制振装置(32)を取り付ける一方、設置スペースが比較的広い場合はリンク式制振装置(33)を取り付けたことを特徴とする排熱回収ボイラの制振構造体。
JP2007248946A 2007-09-26 2007-09-26 排熱回収ボイラの制振構造体 Active JP5111034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248946A JP5111034B2 (ja) 2007-09-26 2007-09-26 排熱回収ボイラの制振構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248946A JP5111034B2 (ja) 2007-09-26 2007-09-26 排熱回収ボイラの制振構造体

Publications (2)

Publication Number Publication Date
JP2009079822A JP2009079822A (ja) 2009-04-16
JP5111034B2 true JP5111034B2 (ja) 2012-12-26

Family

ID=40654703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248946A Active JP5111034B2 (ja) 2007-09-26 2007-09-26 排熱回収ボイラの制振構造体

Country Status (1)

Country Link
JP (1) JP5111034B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375557B2 (ja) 2009-03-27 2013-12-25 日産自動車株式会社 車両用アクセルペダル反力付与装置及びその方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763856B2 (ja) * 1994-06-23 2006-04-05 バブコック日立株式会社 伝熱管群支持装置
JPH09242188A (ja) * 1996-03-12 1997-09-16 Ohbayashi Corp ブレースにおける制振部材の取付け構造
JP2966807B2 (ja) * 1997-03-21 1999-10-25 戸田建設株式会社 制震架構
JP4076014B2 (ja) * 2002-08-30 2008-04-16 バブコック日立株式会社 排熱回収ボイラ及びその据付方法

Also Published As

Publication number Publication date
JP2009079822A (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
US7275503B2 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
AU2003252325B2 (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
US6244330B1 (en) Anti-vibration ties for tube bundles and related method
JP5111034B2 (ja) 排熱回収ボイラの制振構造体
JP5000249B2 (ja) 排熱回収ボイラ
JP6142518B2 (ja) 排熱回収ボイラの支持構造
JP6122744B2 (ja) ボイラ制振用のサイスミックタイおよびこれを用いたボイラ耐震構造体
JP4076014B2 (ja) 排熱回収ボイラ及びその据付方法
JP7465792B2 (ja) 排熱回収ボイラのサポート機構
WO2013141210A1 (ja) ボイラ制振用のサイスミックタイおよびこれを用いたボイラ耐震構造体
JP3763856B2 (ja) 伝熱管群支持装置
JP6805085B2 (ja) 弾塑性エレメント及びそれを備えたサイスミックタイ、ならびにボイラの支持構造体
JP2939294B2 (ja) 排熱回収ボイラの支持架台
JPH0341719B2 (ja)
JPH0311524Y2 (ja)
JP2653570B2 (ja) 排熱回収ボイラの管寄せ支持装置
CN219177761U (zh) 一种水冷壁卫燃带加固装置
CN111520921B (zh) 一种薄壁熔盐吸热器管屏
KR100362917B1 (ko) 복합발전용폐열보일러핀튜브블럭의롤러를이용한지지구조
JPH11270519A (ja) ボイラの管寄支持装置
JPH0740805Y2 (ja) 廃熱回収装置
JP2016065684A (ja) 排熱回収ボイラ
WO2020031774A1 (ja) 排熱回収ボイラ
McGill Mechanical design
JPH04165202A (ja) 排熱回収ボイラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350