JP5102720B2 - 基板処理方法 - Google Patents

基板処理方法 Download PDF

Info

Publication number
JP5102720B2
JP5102720B2 JP2008215180A JP2008215180A JP5102720B2 JP 5102720 B2 JP5102720 B2 JP 5102720B2 JP 2008215180 A JP2008215180 A JP 2008215180A JP 2008215180 A JP2008215180 A JP 2008215180A JP 5102720 B2 JP5102720 B2 JP 5102720B2
Authority
JP
Japan
Prior art keywords
gas
opening
substrate processing
processing method
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008215180A
Other languages
English (en)
Other versions
JP2010050376A (ja
Inventor
隆 曽根
栄一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008215180A priority Critical patent/JP5102720B2/ja
Priority to KR1020090077488A priority patent/KR101534350B1/ko
Priority to US12/545,144 priority patent/US8329050B2/en
Priority to TW098128381A priority patent/TWI482217B/zh
Priority to CN200910168595.0A priority patent/CN101661228B/zh
Publication of JP2010050376A publication Critical patent/JP2010050376A/ja
Application granted granted Critical
Publication of JP5102720B2 publication Critical patent/JP5102720B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask

Description

本発明は、基板処理方法に関し、特に、処理対象層、中間層、マスク層が順に積層された基板を処理する基板処理方法に関する。
シリコン基材上にCVD処理等によって形成された不純物を含む酸化膜、例えばTEOS(Tetra Ethyl Ortho Silicate)膜、導電膜、例えばTiN膜、反射防止膜(BARC膜)及びフォトレジスト膜が順に積層された半導体デバイス用のウエハが知られている(例えば、特許文献1参照)。フォトレジスト膜は、フォトリソグラフィにより所定のパターンに形成され、反射防止膜及び導電膜のエッチングの際に、マスク層として機能する。
近年、半導体デバイスの小型化が進む中、上述したようなウエハの表面における回路パターンをより微細に形成する必要が生じてきている。このような微細な回路パターンを形成するためには、半導体デバイスの製造過程において、フォトレジスト膜におけるパターンの最小寸法を小さくして、小さい寸法の開口部(ビアホールやトレンチ)をエッチング対象の膜に形成する必要がある。
特開2006−190939号公報
しかしながら、フォトレジスト膜におけるパターンの最小寸法はフォトリソグラフィで現像可能となる最小寸法によって規定されるが、焦点距離のばらつきなどに起因してフォトリソグラフィで量産可能な最小寸法には限界がある。例えば、フォトリソグラフィで量産可能な最小寸法は約80nmである。一方、半導体デバイスの小型化要求を満たす加工寸法は30nm程度である。
このように、半導体デバイスの小型化要求寸法は益々小さくなり、小型化要求を満たす寸法の開口部をエッチング対象の膜に形成するための技術の開発が望まれている。
本発明の目的は、処理対象の基板に対し、半導体デバイスの小型化要求を満たす寸法の開口部であって、エッチング対象膜に転写するための開口部をマスク膜又は中間膜に形成する基板処理方法を提供することにある。
上記目的を達成するために、請求項1記載の基板処理方法は、処理対象層、中間層及びマスク層が順に積層され、前記マスク層は前記中間層の一部を露出させる開口部を有する基板を処理する基板処理方法であって、一般式CxHyFz(x、y、zは、正の整数)で表わされるデポ性ガス及びSFガスを、混合比が1:4〜1:9となるように混合した混合ガスから生成されたプラズマによって前記マスク層の前記開口部の側壁面にデポを堆積させて前記開口部の開口幅を縮小させると共に、前記中間層をエッチングして前記縮小したマスク層の開口部に対応する開口部を形成するシュリンクエッチングステップを有することを特徴とする。ここで、Cは炭素、Hは水素、Fはフッ素である。
請求項2記載の基板処理方法は、請求項1記載の基板処理方法において、デポ性ガスは、CHFガスであることを特徴とする。
請求項記載の基板処理方法は、請求項1又は2記載の基板処理方法において、シュリンクエッチングステップにおいて、基板に50W乃至150Wのバイアス電力を印加させることを特徴とする。
請求項記載の基板処理方法は、請求項1乃至のいずれか1項に記載の基板処理方法において、シュリンクエッチングステップにおける処理時間は、1分乃至2分であることを特徴とする。
請求項記載の基板処理方法は、請求項1乃至のいずれか1項に記載の基板処理方法において、シュリンクエッチングステップにおいて、基板を収容するチャンバ内圧力を1.3Pa(10mTorr)乃至6.5Pa(50mTorr)に調整することを特徴とする。
請求項記載の基板処理方法は、請求項1乃至のいずれか1項に記載の基板処理方法において、シュリンクエッチングステップにおいて、エッチングされる中間層は、マスク層の下方に積層された反射防止膜であることを特徴とする。
請求項7記載の基板処理方法は、請求項1乃至6の何れか1項に記載の基板処理方法において、前記シュリンクエッチングステップの後に、前記デポ性ガス、SF ガス、Arガス及びN ガスの混合ガスから生成されたプラズマ又は前記デポ性ガス、Arガス及びN ガスの混合ガスから生成されたプラズマによって、前記マスク層及び前記中間層の開口幅を縮小させつつ、前記処理対象層をエッチングする処理対象層エッチングステップを有することを特徴とする。
請求項8記載の基板処理方法は、請求項7記載の基板処理方法において、前記デポ性ガス、SF ガス、Arガス及びN ガスの混合ガスの流量比は、1:2:6:2であることを特徴とする。
請求項9記載の基板処理方法は、請求項7記載の基板処理方法において、前記デポ性ガス、Arガス及びN ガスの混合ガスの流量比は、1:6:2であることを特徴とする。
請求項10記載の基板処理方法は、請求項1乃至9の何れか1項に記載の基板処理方法において、前記処理対象層は、SiN膜であることを特徴とする。
請求項1記載の基板処理方法によれば、一般式CxHyFz(x、y、zは、正の整数)で表わされるデポ性ガス及びSFガスを、混合比が1:4〜1:9となるように混合した混合ガスから生成されたプラズマによってマスク層の開口部の側壁面にデポを堆積させて開口部の開口幅を縮小させると共に、中間層をエッチングして縮小したマスク層の開口部に対応する開口部を形成するので、マスク層及び中間層に、半導体デバイスの小型化要求を満たす寸法の開口幅を有する、エッチング対象膜に転写するための開口パターンを形成することができる。また、デポ性ガスの開口幅縮小(シュリンク)効果と、SF ガスのエッチング効果との調和が最適状態に維持され、相乗作用によって、中間層をエッチングしつつマスク層の開口部及び中間層に形成された開口部の開口幅を縮小することができる。また、SF ガスに起因するS系生成物の堆積によって開口部側壁面又はマスク層上面の荒れを回避して平滑性を保持することができる。
請求項2記載の基板処理方法によれば、デポ性ガスとしてCHFガスを用いるので、マスク層の開口部の側壁面及びエッチングされた中間層の開口部側壁面に、デポを堆積させて開口幅を縮小させることができる。
請求項記載の基板処理方法によれば、シュリンクエッチングステップにおいて、基板に50W乃至150Wのバイアス電力を印加させることにより、開口部側壁面へのデポ付着を効率よく行うことができる。
請求項記載の基板処理方法によれば、シュリンクエッチングステップにおける処理時間を1分乃至2分としたので、必要最小限の処理時間でマスク層及び中間層に、縮小された開口幅の開口部を形成することができる。
請求項記載の基板処理方法によれば、シュリンクエッチングステップにおいて、基板を収容するチャンバ内圧力を1.3Pa(10mTorr)乃至6.5Pa(50mTorr)に調整するので、基板表面の荒れ及び摩耗を抑制する効果が得られる。
請求項記載の基板処理方法によれば、シュリンクエッチングステップにおいて、エッチングされる中間層をマスク層の下方に積層された反射防止膜としたので、反射防止膜にマスク層と同様の半導体デバイスの小型化要求を満たす寸法の開口部を形成することができる。
以下、本発明の実施の形態について図面を参照しながら詳述する。
まず、本発明の実施の形態に係る基板処理方法を実行する基板処理システムについて説明する。この基板処理システムは基板としての半導体ウエハW(以下、単に「ウエハW」という。)にプラズマを用いたエッチング処理やアッシング処理を施すように構成された複数のプロセスモジュールを備える。
図1は、本実施の形態に係る基板処理方法を実行する基板処理システムの構成を概略的に示す平面図である。
図1において、基板処理システム10は、平面視六角形のトランスファモジュール11と、該トランスファモジュール11の一側面に接続する2つのプロセスモジュール12、13と、該2つのプロセスモジュール12、13に対向するようにトランスファモジュール11の他側面に接続する2つのプロセスモジュール14、15と、プロセスモジュール13に隣接し且つトランスファモジュール11に接続するプロセスモジュール16と、プロセスモジュール15に隣接し且つトランスファモジュール11に接続するプロセスモジュール17と、矩形状の搬送室としてのローダーモジュール18と、トランスファモジュール11及びローダーモジュール18の間に配置されてこれらを連結する2つのロード・ロックモジュール19、20とを備える。
トランスファモジュール11はその内部に配置された屈伸及び旋回自在な搬送アーム21を有し、該搬送アーム21は、プロセスモジュール12〜17やロード・ロックモジュール19、20の間においてウエハWを搬送する。
プロセスモジュール12はウエハWを収容する処理室容器(チャンバ)を有し、該チャンバ内部に処理ガスとしてCF系デポ性ガス、例えば、CHFガス及びハロゲン系ガス、例えば、SFガスの混合ガスを導入し、チャンバ内部に電界を発生させることによって導入された処理ガスからプラズマを発生させ、該プラズマによってウエハWにエッチング処理を施す。
図2は、図1における線II−IIに沿う断面図である。
図2において、プロセスモジュール12は、処理室(チャンバ)22と、該チャンバ22内に配置されたウエハWの載置台23と、チャンバ22の上方において載置台23と対向するように配置されたシャワーヘッド24と、チャンバ22内のガス等を排気するTMP(Turbo Molecular Pump)25と、チャンバ22及びTMP25の間に配置され、チャンバ22内の圧力を制御する可変式バタフライバルブとしてのAPC(Adaptive Pressure Control)バルブ26とを有する。
載置台23には高周波電源27が整合器(Matcher)28を介して接続されており、該高周波電源27は高周波電力を載置台23に供給する。これにより、載置台23は下部電極として機能する。また、整合器28は、載置台23からの高周波電力の反射を低減して高周波電力の載置台23への供給効率を最大にする。載置台23は高周波電源27から供給された高周波電力を処理空間Sに印加する。
シャワーヘッド24は円板状のガス供給部30からなり、ガス供給部30はバッファ室32を有する。バッファ室32はガス通気孔34を介してチャンバ22内に連通する。
バッファ室32はCHFガス供給系及びSFガス供給系(共に図示しない)に接続されている。CHFガス供給系はバッファ室32へCHFガスを供給する。また、SFガス供給系はバッファ室32へSFガスを供給する。供給されたCHFガス及びSFガスはガス通気孔34を介してチャンバ22内へ供給される。
シャワーヘッド24には高周波電源35が整合器36を介して接続されており、該高周波電源35は高周波電力をシャワーヘッド24に供給する。これにより、シャワーヘッド24は上部電極として機能する。また、整合器36は整合器28と同様の機能を有する。シャワーヘッド24は高周波電源35から供給された高周波電力を処理空間Sに印加する。
このプロセスモジュール12のチャンバ22内では、上述したように、載置台23及びシャワーヘッド24が処理空間Sに高周波電力を印加することにより、シャワーヘッド24から処理空間Sに供給された処理ガスを高密度のプラズマにしてイオンやラジカルを発生させ、後述するシュリンクエッチングステップを実行する。
図1に戻り、プロセスモジュール13はプロセスモジュール12においてシュリンクエッチングが施されたウエハWを収容する処理室(チャンバ)を有し、該チャンバ内部に処理ガスとしてArガス/Nガス/SFガス/CHFガスの混合ガスを導入し、チャンバ内部に電界を発生させることによって導入された処理ガスからプラズマを発生させ、該プラズマによってウエハWにエッチング処理を施す。なお、プロセスモジュール13は、プロセスモジュール12と同様の構成を有し、Arガス供給系、Nガス供給系、SFガス供給系及びCHFガス供給系(いずれも図示省略)を備える。
プロセスモジュール14はプロセスモジュール13においてエッチング処理が施されたウエハWを収容する処理室(チャンバ)を有し、該チャンバ内部に処理ガスとしてOガスを導入し、チャンバ内部に電界を発生させることによって導入された処理ガスからプラズマを発生させ、該プラズマによってウエハWにアッシング処理を施す。なお、プロセスモジュール14も、プロセスモジュール12と同様の構成を有し、各種ガス供給系に接続されたガス供給部30からなるシャワーヘッド24の代わりに、Oガス供給系がバッファ室に接続された円板状のガス供給部のみからなるシャワーヘッド(いずれも図示しない)を備える。
トランスファモジュール11、プロセスモジュール12〜17の内部は減圧状態に維持され、トランスファモジュール11と、プロセスモジュール12〜17のそれぞれとは真空ゲートバルブ12a〜17aを介して接続される。
基板処理システム10では、ローダーモジュール18の内部圧力が大気圧に維持される一方、トランスファモジュール11の内部圧力は真空に維持される。そのため、各ロード・ロックモジュール19、20は、それぞれトランスファモジュール11との連結部に真空ゲートバルブ19a、20aを備えると共に、ローダーモジュール18との連結部に大気ドアバルブ19b、20bを備えることによって、その内部圧力を調整可能な真空予備搬送室として構成される。また、各ロード・ロックモジュール19、20はローダーモジュール18及びトランスファモジュール11の間において受渡されるウエハWを一時的に載置するためのウエハ載置台19c、20cを有する。
ローダーモジュール18には、ロード・ロックモジュール19、20の他、例えば25枚のウエハWを収容する容器としてのフープ(Front Opening Unified Pod)37がそれぞれ載置される例えば3つのフープ載置台38と、フープ37から搬出されたウエハWの位置をプリアライメントするオリエンタ39とが接続されている。
ロード・ロックモジュール19、20は、ローダーモジュール18の長手方向に沿う側壁に接続されると共にローダーモジュール18を挟んで3つのフープ載置台38と対向するように配置され、オリエンタ39はローダーモジュール18の長手方向に関する一端に配置される。
ローダーモジュール18は、内部に配置された、ウエハWを搬送するスカラ型デュアルアームタイプの搬送アーム40と、各フープ載置台38に対応するように側壁に配置されたウエハWの投入口としての3つのロードポート41とを有する。搬送アーム40は、フープ載置台38に載置されたフープ37からウエハWをロードポート41経由で取り出し、該取り出したウエハWをロード・ロックモジュール19、20やオリエンタ39へ搬出入する。
また、基板処理システム10は、ローダーモジュール18の長手方向に関する一端に配
置されたオペレーションパネル42を備える。オペレーションパネル42は、例えばLCD(Liquid Crystal Display)からなる表示部を有し、該表示部は基板処理システム10の各構成要素の動作状況を表示する。
図3は、図1の基板処理システムにおいてプラズマ処理が施される半導体ウエハの構成を概略的に示す断面図である。
図3において、ウエハWはシリコン基材50の表面に形成された処理対象層としての窒化珪素(SiN)膜51と、SiN膜51上に形成された反射防止膜(BARC膜)52と、反射防止膜52上に形成されたフォトレジスト膜(マスク層)53とを有する。
シリコン基材50はシリコンからなる円板状の薄板であり、例えばCVD処理を施すことによって表面にSiN膜51が形成される。SiN膜51上に、例えば塗布処理によって反射防止膜52が形成される。反射防止膜52は或る特定の波長の光、例えば、フォトレジスト膜53に向けて照射されるArFエキシマレーザ光を吸収する色素を含む高分子樹脂からなり、フォトレジスト膜53を透過したArFエキシマレーザ光がSiN膜51によって反射して再びフォトレジスト膜53に到達するのを防止する。フォトレジスト膜53は、反射防止膜52上に例えばスピンコータ(図示省略)を用いて形成される。フォトレジスト膜53はポジ型の感光性樹脂からなり、ArFエキシマレーザ光に照射されるとアルカリ可溶性に変質する。
このような構成のウエハWに対し、所定のパターンに反転するパターンに対応したArFエキシマレーザ光がステッパー(図示省略)によってフォトレジスト膜53に照射されて、フォトレジスト膜53におけるArFエキシマレーザ光が照射された部分がアルカリ可溶性に変質する。その後、フォトレジスト膜53に強アルカリ性の現像液が滴下されてアルカリ可溶性に変質した部分が除去される。これにより、フォトレジスト膜53から所定のパターンに反転するパターンに対応した部分が取り除かれるため、ウエハW上には所定のパターンを呈する、例えば、ビアホールを形成する位置に開口部54を有するフォトレジスト膜53が残る。
ところで、半導体デバイスの小型化要求を満たすためには、小さい寸法、具体的には幅(CD(Critical Dimension)値)が30nm程度の開口部(ビアホールやトレンチ)をエッチング対象膜に形成する必要がある。しかしながら、フォトリソグラフィで量産可能な最小寸法は例えば80nm程度であるため、ウエハWのエッチング処理において、半導体デバイスの小型化要求を満たす開口幅の開口部をエッチング対象膜に形成することは困難であった。
本発明者は、上述した半導体デバイスの小型化要求を満たす開口幅の開口部をウエハWに形成する方法を見出すために、各種実験を行ったところ、処理対象層としての、例えばSiN膜51、反射防止膜52、反射防止膜52の一部を露出させる開口部54を有するフォトレジスト膜53がシリコン基材50上に順に積層されたウエハWにおいて、CF系のデポ性ガス(C、ここでx、y、zは正の整数)とSFガスとの混合ガスを用いてプラズマ処理を施すことによってフォトレジスト膜53に設けられた開口幅約80nmの開口部54の側壁面にデポが堆積して開口幅が狭くなる(シュリンクされる)と共に、反射防止膜52をエッチングしてシュリンクされたフォトレジスト膜53の開口幅と同様の開口幅を有する開口部を形成できることを見出し、本発明に到達した。
ここで、デポ性ガスとは、当該ガスを用いたプラズマ処理によって、例えばマスク層としてのフォトレジスト膜53の開口部54の側壁面にデポ55を堆積させて開口幅を縮小させる機能を有するガスをいう。
以下、本発明の実施の形態に係る基板処理方法について詳述する。
この基板処理方法は、ウエハWのフォトレジスト膜53に形成された開口部54の開口幅をプラズマ処理に基づくデポを開口部54の側壁面に付着させることによって縮小させると共に、中間層としての反射防止膜52をエッチングするシュリンクエッチングステップを有する。
図4及び図5は、本発明の実施の形態における基板処理方法を示す工程図である。
図4において、まず、シリコン基材50上に処理対象層としてのSiN膜51、反射防止膜(BARC膜)52及びフォトレジスト膜53が順に積層されたウエハWを準備する(図4(A))。フォトレジスト膜53には開口部54が設けられており、開口部54の開口幅は、例えば83nmである。フォトレジスト膜53及び反射防止膜52の合計厚さは、例えば198nmである。このウエハWをプロセスモジュール12(図2参照)のチャンバ22内に搬入し、載置台23上に載置する。
次いで、チャンバ22内の圧力をAPCバルブ26等によって例えば3.3Pa(25mTorr)に設定する。また、ウエハWの温度を例えば80℃に設定する。そして、シャワーヘッド24のガス供給部30からCHFガスを流量100〜300sccm、好ましくは200sccmでチャンバ22内へ供給すると共に、SFガスを流量700〜900sccm、好ましくは800sccmでチャンバ22内へ供給する。そして、載置台23に100Wの高周波電力を供給すると共に、シャワーヘッド24に600Wの高周波電力を供給する。このとき、CHFガス及びSFが処理空間Sに印加された高周波電力によって励起されてプラズマになり、イオンやラジカルが発生する(図4(B))。これらのイオンやラジカルは、フォトレジスト膜53の表面及び開口部54の内壁面並びに反射防止膜52におけるフォトレジスト膜53によって覆われていない部分と衝突、反応し、当該部分にデポ55を堆積させると共に、反射防止膜52の当該部分をエッチングする。
これによって、フォトレジスト膜53の開口部54の開口幅が縮小されると共に、反射防止膜52をエッチングして当該反射防止膜52にフォトレジスト膜53における開口幅が縮小された開口部と同様の開口部が形成される。このとき、反射防止膜52の開口部の側壁面にもデポ55が堆積する(図4(C))。
デポ55の厚さは、処理開始時から次第に厚くなり、処理開始90秒後には、例えば32nm(開口幅:51nm)となった。このシュリンクエッチングステップによって、フォトレジスト膜53の開口部54の開口幅は83nmから51nmまで縮小し、同様の開口幅の開口部が反射防止膜52に形成された。シュリンクエッチングステップ終了後のフォトレジスト膜53及び反射防止膜52の合計厚さは、163nmであり、フォトレジスト膜53の厚さが35mm程度薄くなったことが分かる。
次いで、シュリンクエッチングステップによって、開口幅が51nmに縮小された開口部54を有するフォトレジスト膜53及び反射防止膜52を備えたウエハWに対して、開口部を処理対象層であるSiN膜51に転写するSiNエッチングステップが施される。
すなわち、開口部54の開口幅が51nmに縮小されたウエハWをプロセスモジュール12のチャンバ22内から搬出し、トランスファモジュール11を経由してプロセスモジュール13のチャンバ内に搬入して載置台上に載置する。その後、プロセスモジュール13のチャンバ22内の圧力をAPCバルブ26等によって例えば3.3Pa(25mTorr)に設定し、ウエハWの温度を例えば80℃に設定し、シャワーヘッド24のガス供給部30から、ArガスとNガスを流量比、例えば3:1で混合した混合ガスを流量、例えば800sccm(Arガス:600sccm、Nガス:200sccm)でチャンバ22内へ供給すると共に、CHFガスとSFガスを流量比、例えば1:2で混合した混合ガスを流量、例えば300sccm(CHFガス:100sccm、SFガス:200sccm)でチャンバ22内へ供給する。そして、載置台23に600Wの高周波電力を供給すると共に、シャワーヘッド24に200Wの高周波電力を供給する。このとき、Arガス及びNガスの混合ガス並びにCHFガス及びSFガスとの混合ガスが処理空間Sに印加された高周波電力によってプラズマになり、イオンやラジカルが発生する(図4(D))。
これらのイオンやラジカルはSiN膜51における反射防止膜52、フォトレジスト膜53及びその表面に堆積するデポ55によって覆われていない部分と衝突、反応し、SiN膜51の当該部分をエッチングする(図5(A))。SiN膜51はシリコン基材50が露出するまでエッチングされる。このとき、処理開始60秒後のSiN膜51における開口部54の上部開口幅は28nm、下部開口幅は16nmであった。また、フォトレジスト膜53及び反射防止膜52の合計厚さは44nmであり、フォトレジスト膜53の厚さがかなり薄くなったことが分かる。
このようにしてSiN膜51に、フォトレジスト膜53に形成され、シュリンクエッチングステップによってその開口幅が縮小された開口部54が転写されたウエハWをプロセスモジュール13のチャンバ22内から搬出し、トランスファモジュール11を経由してプロセスモジュール14のチャンバ内に搬入して載置台上に載置する。
次いで、チャンバ22内の圧力をAPCバルブ等によって1.3×10Pa(100mTorr)に設定する。そして、ウエハWの温度を例えば80℃に設定した後、シャワーヘッドのガス供給部30からOガスを流量374sccmでチャンバ内へ供給する。そして、載置台23に0〜30Wの高周波電力を供給すると共に、シャワーヘッド24に600Wの高周波電力を供給する。このとき、Oガスが処理空間Sに印加された高周波電力によってプラズマになり、イオンやラジカルが発生する(図5(B))。発生したイオン及びラジカルによってSiN膜51上に積層されている反射防止膜52及びフォトレジスト膜53並びに該フォトレジスト膜53及び反射防止膜52の開口部54の側壁面に堆積したデポ55をアッシングするアッシング処理を施す。これにより、SiN膜51に積層されている反射防止膜52、フォトレジスト膜53、並びに開口部54の側壁面及びフォトレジスト膜53の上面に堆積したデポ55が除去される(図5(C))。
アッシング処理開始20〜90秒後のウエハWにおけるSiN膜51の開口部54の上部開口幅は29nm、下部開口幅は18nmであった。その後、ウエハWをプロセスモジュール14のチャンバから搬出し、本処理を終了した。
本実施の形態によれば、シュリンクエッチングステップにおいて、デポ性ガスであるCHFガスとSFガスとの混合ガスを用いてプラズマ処理を施すことにより、CHFガスによるデポ堆積によるシュリンク効果と、SFガスによる反射防止膜52のエッチング効果との相乗効果によって、開口部54をシュリンクすると共に、シュリンクされた開口部の開口幅と同様の開口幅の開口部を反射防止膜52に形成することができる。
本実施の形態において、反応ガスとしてデポ性ガスであるCHFガスにSFを混合した混合ガスを用いたので、CHFガスのみでは、難しい開口幅を縮小させる際のデポ堆積量の制御が容易となり、良好なシュリンクが可能となる。また、HBr等の腐蝕性ガスを用いる必要がないので、取り扱いが容易で、基板処理システムにおける各パーツの腐蝕、損傷を回避することができる。
本実施の形態において、デポ性ガスとしてのCHFガスの供給量は、100〜300sccmであることが好ましく、SFガスの供給量は、700〜900sccmであることが好ましい。すなわち、CHFガスとSFガスとの流量比は、1:2〜1:9であることが好ましく、特に1:4であることが好ましい。
SFガスの流量比が、小さすぎると反射防止膜52のエッチング効果が十分に得られず、大きすぎると反射防止膜のエッチング効果が大きくなりすぎてデポ堆積によるシュリンク効果が十分に得られない。一方、CHFガスの流量比が、小さすぎるとデポの堆積が不十分で、十分なシュリンク効果が得られず、大きすぎるとデポの堆積量が多くなって開口部の入り口を塞ぐことになり、十分なシュリンク効果及びエッチング効果が得られない。CHFガスとSFガスとの流量比が上記範囲内であれば、SFのエッチング効果によって反射防止膜52の下方までイオン又はラジカルが到達してエッチングによる開口部が形成できると共に、開口部のボトム側壁面にもデポ55が堆積しやすくなり、良好なシュリンク及びエッチング効果が得られる。
SFガスは、フッ素含有率が大きいことから、エッチング効果発現用のガスと考えられるが、イオウ(S)を含有していることから、S系反応生成物によるデポ付着作用があり、これによって、シュリンクされた開口部の側壁面及びフォトレジスト膜53上面の荒れ及び摩耗を防止して滑らかにするスムージング効果が発揮される。従って、次工程であるSiNエッチングステップにおいて、開口部断面形状の例えば真円度が向上し、開口部の断面形状を忠実に転写できるようになる。なお、フォトレジスト膜53又は反射防止膜52の表面若しくは開口部側壁面が荒れると、次のステップであるSiNエッチングステップで正確な断面形状の開口部を形成できなくなる。
一方、CHFガスは、デポ付着によるシュリンク効果によって、SFガスによる反射防止膜52のエッチング量を制御する様に作用する。
なお、シュリンクエッチングステップにおいて、反応ガス種を変更することなく載置台23に載置されたウエハWに印加されるバイアス電力を調整することによって、反射防止膜52におけるエッチング量を制御することもできる。
本実施の形態において、シュリンクエッチングステップにおけるバイアス電力は、50W〜150Wであることが好ましい。バイアス電力が50W未満であると、開口部側壁面へのデポ付着が不十分となる。一方、バイアス電力が150Wを超えると、スパッタリングによってフォトレジスト膜54が荒れ易くなる。基板処理温度は、特に限定されないが、室温、例えば20℃〜100℃が実用上好ましい。
本実施の形態において、シュリンクエッチングステップの処理時間は、例えば1分〜2分である。デポ付着速度及び反射防止膜52のエッチング速度は、処理開始時が最も速く、その後、次第に遅くなり、2分後には、ほとんど収束するからである。
本実施の形態において、シュリンクエッチングステップにおけるチャンバ内圧力は、1.3Pa(10mTorr)乃至6.6Pa(50mTorr)であることが好ましい。処理圧力が、低すぎると基板表面が荒れ易くなる。一方、処理圧力が高すぎると、基板表面が摩耗され易くなる。
本実施の形態によれば、SiNエッチングステップにおいて、Ar、N、CHF及びSFの混合ガスを用いたので、フォトレジスト膜53に対する高い選択比を有し、フォトレジスト膜53及び反射防止膜52の開口部の開口幅を縮小しつつSiN膜をエッチングすることができる。従って、シュリンクステップを多段に設ける必要はない。すなわち、シュリンクエッチングステップと、その後のSiNエッチングステップによって、開口部54の開口幅を十分にシュリンクして半導体デバイスの小型化要求を満たす寸法の開口幅の開口部を形成することができる。
SiNエッチングステップにおけるArガスの流量は300〜900sccm、Nガスの流量は100〜300sccm、CHFガスの流量は、50〜150sccm、SFガスの流量は、100〜300sccmであることが好ましい。すなわち、SiNエッチングステップにおけるArガス:Nガス:CHFガス:SFガスの流量比は、例えば6:2:1:2である。
ここで、SiN膜51のエッチングは、主としてArガスによって行われる。CHFガスは、デポを堆積させることによってArガスによるエッチング速度を制御する効果(選択性)を発揮する。SFは、エッチング後の開口部壁面の荒れ及び摩耗を防止する機能を発揮し、且つCHFガスによるデポ付着量を相殺、又は制御している。従って、CHFガスによるデポ付着量を相殺させる必要がなければ、SFガスの導入を省略することもできる。Nガスは、CHFガスによるデポ付着量の制御をしている。
本実施の形態によれば、シュリンクエッチングステップにおいて、フォトレジスト膜53の開口部の開口幅を縮小すると共に、縮小した開口部に対応する開口幅の開口部を反射防止膜52に形成することができる。また、その後、SiNエッチングステップを実行することにより、当初80nmの開口幅であった開口部54をシュリンクしつつSiN膜51に転写して、開口部54の上部開口幅29nm、下部開口幅18nmの開口部をSiN膜51に転写、形成することができる。
本実施の形態において、処理対象膜がSiN膜51である場合について説明したが、処理対象膜は、これに限定されるものではなく、TiN膜、その他の膜であってもよい。また、中間層として反射防止膜52を適用した場合について説明したが、中間膜は、反射防止膜に限定されるものではない。
上述した各実施の形態において、プラズマ処理が施される基板は半導体デバイス用のウエハに限られず、LCD(Liquid Crystal Display)やFPD(Flat Panel Display)等に用いる各種基板や、フォトマスク、CD基板、プリント基板等であってもよい。
また、本発明の目的は、上述した各実施の形態の機能を実現するソフトウェアのプログラムコードを記憶した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成される。
この場合、記憶媒体から読み出されたプログラムコード自体が上述した各実施の形態の機能を実現することになり、そのプログラムコード及び該プログラムコードを記憶した記憶媒体は本発明を構成することになる。
また、プログラムコードを供給するための記憶媒体としては、例えば、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−RAM、DVD−RW、DVD+RW等の光ディスク、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。または、プログラムコードをネットワークを介してダウンロードしてもよい。
また、コンピュータが読み出したプログラムコードを実行することにより、上述した各実施の形態の機能が実現されるだけではなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その拡張機能を拡張ボードや拡張ユニットに備わるCPU等が実際の処理の一部または全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。
本実施の形態に係る基板処理方法を実行する基板処理システムの構成を概略的に示す平面図である。 図1における線II−IIに沿う断面図である。 図1の基板処理システムにおいてプラズマ処理が施される半導体ウエハの構成を概略的に示す断面図である。 本発明の実施の形態における基板処理方法を示す工程図である。 本発明の実施の形態における基板処理方法を示す工程図である。
符号の説明
10 基板処理システム
12,13,14 プロセスモジュール
50 シリコン基材
51 SiN膜
52 反射防止膜(BARC膜)
53 フォトレジスト膜
54 開口部
55 デポ

Claims (10)

  1. 処理対象層、中間層及びマスク層が順に積層され、前記マスク層は前記中間層の一部を露出させる開口部を有する基板を処理する基板処理方法であって、
    一般式CxHyFz(x、y、zは、正の整数)で表わされるデポ性ガス及びSFガスを、混合比が1:4〜1:9となるように混合した混合ガスから生成されたプラズマによって前記マスク層の前記開口部の側壁面にデポを堆積させて前記開口部の開口幅を縮小させると共に、前記中間層をエッチングして前記縮小したマスク層の開口部に対応する開口部を形成するシュリンクエッチングステップを有することを特徴とする基板処理方法。
  2. 前記デポ性ガスは、CHFガスであることを特徴とする請求項1記載の基板処理方法。
  3. 前記シュリンクエッチングステップにおいて、前記基板に50W乃至150Wのバイアス電力を印加させることを特徴とする請求項1又は2記載の基板処理方法。
  4. 前記シュリンクエッチングステップにおける処理時間は、1分乃至2分であることを特徴とする請求項1乃至のいずれか1項に記載の基板処理方法。
  5. 前記シュリンクエッチングステップにおいて、前記基板を収容するチャンバ内圧力を1.3Pa(10mTorr)乃至6.5Pa(50mTorr)に調整することを特徴とする請求項1乃至のいずれか1項に記載の基板処理方法。
  6. 前記シュリンクエッチングステップにおいて、エッチングされる前記中間層は、前記マスク層の下方に積層された反射防止膜であることを特徴とする請求項1乃至のいずれか1項に記載の基板処理方法。
  7. 前記シュリンクエッチングステップの後に、前記デポ性ガス、SF ガス、Arガス及びN ガスの混合ガスから生成されたプラズマ又は前記デポ性ガス、Arガス及びN ガスの混合ガスから生成されたプラズマによって、前記マスク層及び前記中間層の開口幅を縮小させつつ、前記処理対象層をエッチングする処理対象層エッチングステップを有することを特徴とする請求項1乃至6の何れか1項に記載の基板処理方法。
  8. 前記デポ性ガス、SF ガス、Arガス及びN ガスの混合ガスの流量比は、1:2:6:2であることを特徴とする請求項7記載の基板処理方法。
  9. 前記デポ性ガス、Arガス及びN ガスの混合ガスの流量比は、1:6:2であることを特徴とする請求項7記載の基板処理方法。
  10. 前記処理対象層は、SiN膜であることを特徴とする請求項1乃至9の何れか1項に記載の基板処理方法。
JP2008215180A 2008-08-25 2008-08-25 基板処理方法 Expired - Fee Related JP5102720B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008215180A JP5102720B2 (ja) 2008-08-25 2008-08-25 基板処理方法
KR1020090077488A KR101534350B1 (ko) 2008-08-25 2009-08-21 기판 처리 방법
US12/545,144 US8329050B2 (en) 2008-08-25 2009-08-21 Substrate processing method
TW098128381A TWI482217B (zh) 2008-08-25 2009-08-24 Substrate handling method
CN200910168595.0A CN101661228B (zh) 2008-08-25 2009-08-25 基板处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215180A JP5102720B2 (ja) 2008-08-25 2008-08-25 基板処理方法

Publications (2)

Publication Number Publication Date
JP2010050376A JP2010050376A (ja) 2010-03-04
JP5102720B2 true JP5102720B2 (ja) 2012-12-19

Family

ID=41696786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215180A Expired - Fee Related JP5102720B2 (ja) 2008-08-25 2008-08-25 基板処理方法

Country Status (5)

Country Link
US (1) US8329050B2 (ja)
JP (1) JP5102720B2 (ja)
KR (1) KR101534350B1 (ja)
CN (1) CN101661228B (ja)
TW (1) TWI482217B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107842B2 (ja) * 2008-09-12 2012-12-26 東京エレクトロン株式会社 基板処理方法
JP5180121B2 (ja) * 2009-02-20 2013-04-10 東京エレクトロン株式会社 基板処理方法
CN103400799B (zh) * 2013-08-14 2016-03-30 上海华力微电子有限公司 接触孔的刻蚀方法
KR101623654B1 (ko) * 2014-11-25 2016-05-23 아주대학교산학협력단 플라즈마 가스를 사용한 실리콘 기판 식각방법
US9508719B2 (en) * 2014-11-26 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistor (FinFET) device with controlled end-to-end critical dimension and method for forming the same
JP6919975B2 (ja) 2017-04-14 2021-08-18 キャタピラー エス エー アール エル 作業機械のキャブ抜止構造
JP6925202B2 (ja) * 2017-08-30 2021-08-25 東京エレクトロン株式会社 エッチング方法およびエッチング装置
US10727045B2 (en) * 2017-09-29 2020-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing a semiconductor device
CN110119072B (zh) * 2018-02-06 2021-05-14 志圣科技(广州)有限公司 曝光组件及曝光装置
US10741452B2 (en) * 2018-10-29 2020-08-11 International Business Machines Corporation Controlling fin hardmask cut profile using a sacrificial epitaxial structure
US20210125875A1 (en) * 2019-10-29 2021-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method
US11264287B2 (en) * 2020-02-11 2022-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with cut metal gate and method of manufacture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707218A (en) * 1986-10-28 1987-11-17 International Business Machines Corporation Lithographic image size reduction
JPH0212915A (ja) * 1988-06-30 1990-01-17 Sharp Corp 窒化珪素絶縁膜の加工方法
DE4317623C2 (de) * 1993-05-27 2003-08-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum anisotropen Plasmaätzen von Substraten und dessen Verwendung
JP3672900B2 (ja) 2002-09-11 2005-07-20 松下電器産業株式会社 パターン形成方法
JP4455936B2 (ja) * 2003-07-09 2010-04-21 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法とエッチングシステム
KR100632658B1 (ko) 2004-12-29 2006-10-12 주식회사 하이닉스반도체 반도체 소자의 금속배선 형성방법
JP2006203035A (ja) * 2005-01-21 2006-08-03 Tokyo Electron Ltd プラズマエッチング方法
JP2005210134A (ja) * 2005-02-14 2005-08-04 Matsushita Electric Ind Co Ltd パターン形成方法
JP4640006B2 (ja) * 2005-07-13 2011-03-02 パナソニック株式会社 プラズマディスプレイパネルの製造方法
US7323410B2 (en) * 2005-08-08 2008-01-29 International Business Machines Corporation Dry etchback of interconnect contacts
US7531461B2 (en) * 2005-09-14 2009-05-12 Tokyo Electron Limited Process and system for etching doped silicon using SF6-based chemistry
JP2007194284A (ja) * 2006-01-17 2007-08-02 Tokyo Electron Ltd プラズマ処理方法、プラズマ処理装置、及び記憶媒体

Also Published As

Publication number Publication date
US8329050B2 (en) 2012-12-11
CN101661228B (zh) 2014-05-14
TW201025440A (en) 2010-07-01
TWI482217B (zh) 2015-04-21
US20100048026A1 (en) 2010-02-25
KR20100024356A (ko) 2010-03-05
JP2010050376A (ja) 2010-03-04
CN101661228A (zh) 2010-03-03
KR101534350B1 (ko) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5102720B2 (ja) 基板処理方法
KR101549264B1 (ko) 기판 처리 방법
JP5180121B2 (ja) 基板処理方法
JP5248902B2 (ja) 基板処理方法
JP2010283213A (ja) 基板処理方法
JP5524362B2 (ja) 基板処理方法
JP5604063B2 (ja) 基板処理方法及び記憶媒体
JP5107842B2 (ja) 基板処理方法
KR101699547B1 (ko) 기판 처리 방법 및 기억 매체
JP5484363B2 (ja) 基板処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees