JP5023895B2 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
JP5023895B2
JP5023895B2 JP2007227128A JP2007227128A JP5023895B2 JP 5023895 B2 JP5023895 B2 JP 5023895B2 JP 2007227128 A JP2007227128 A JP 2007227128A JP 2007227128 A JP2007227128 A JP 2007227128A JP 5023895 B2 JP5023895 B2 JP 5023895B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
range
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007227128A
Other languages
English (en)
Other versions
JP2009056560A (ja
Inventor
惠滋 中村
晃 長田
満康 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007227128A priority Critical patent/JP5023895B2/ja
Publication of JP2009056560A publication Critical patent/JP2009056560A/ja
Application granted granted Critical
Publication of JP5023895B2 publication Critical patent/JP5023895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、特に鋼や鋳鉄などの、高い発熱を伴うとともに、繰り返し大きな衝撃的負荷が加わる高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性およびすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)化学蒸着で形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ4〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム(Al23)層からなる上部層、
以上(a)、(b)で構成された硬質被覆層を備える被覆工具において、
上記(a)のTi化合物層のうちの1層を、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す縦長成長結晶組織を有するTiCN(以下、改質TiCNという)層、
で構成した被覆工具が知られており、そしてこの被覆工具が、鋼や鋳鉄の高速断続切削加工ですぐれた耐チッピング性を示すことが知られている。
また、WC基超硬合金、TiCN基サーメットで構成された工具基体の表面に、
(a)第1層として、化学蒸着形成されたTiN層、TiCN層からなり、0.1〜1μmの平均層厚を有する第1密着接合層、
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.25)、
を満足するTiとZrの複合炭窒化物層からなり、かつ2.5〜15μmの平均層厚を有するTi系炭窒化物(以下、従来(Ti,Zr)CNという)層、
(c)第3層として、TiCO層、TiCNO層からなり、0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成されたAl23層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開2006−15426号公報 特開2001−11632号公報
近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを、高い発熱を伴うとともに、繰り返し大きな機械的衝撃が加わる高速断続切削加工条件で用いた場合、これを構成する硬質被覆層は、下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さを具備するものの、前記改質TiCN層は耐チッピング性にすぐれるものの耐摩耗性が十分でなく、また、従来(Ti,Zr)CN層も耐熱性が不十分であるために切削加工時の発熱によって熱塑性変形、偏摩耗を生じやすく、そのため、耐摩耗性が低下し比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、上記の従来被覆工具の耐摩耗性向上をはかるべく、特に、硬質被覆層を構成するTi系炭窒化物層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成するTi系炭窒化物層(従来(Ti,Zr)CN)層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:1〜5%、ZrCl:0.1〜1%、CHCN:0.6〜5%、N2:25〜45%、H2:残り、
反応雰囲気温度:750〜980℃、
反応雰囲気圧力:2.7〜13.5kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:10〜15%、ZrCl:0.5〜3.5%、CHCN:3〜8%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分のTiClおよびCHCNの含有割合を多くし、さらに、HClを加えた条件で蒸着形成して、
組成式:(Ti1−XZr)CN(ただし、原子比で、X:0.02〜0.25)を満足するTi系炭窒化物層(以下、改質Ti系炭窒化物層、あるいは、改質(Ti,Zr)CN層という)を形成すると、この結果の改質(Ti,Zr)CN層は、上記の従来(Ti,Zr)CN層と同様の結晶構造、すなわち格子点にTi、Zr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来(Ti,Zr)CN層に比して一段とすぐれた耐熱性を有すること。
(b)上記の従来(Ti,Zr)CN層と上記(a)の改質(Ti,Zr)CN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Zr)CN層は、図4に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質(Ti,Zr)CN層は、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質(Ti,Zr)CN層にはクーリングクラックが均一に分散し、これによって、Zr含有量を増加したことによる改質(Ti,Zr)CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質(Ti,Zr)CN層におけるZrの含有割合を調整することにより変化すること。
(c)上記の通り、上記改質(Ti,Zr)CN層の形成に際して、層中のZr含有割合を、Tiとの合量に占める割合(原子比)で0.02〜0.25とすることによって、前記改質(Ti,Zr)CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質(Ti,Zr)CN層中のZr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Zr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質(Ti,Zr)CN層のZr成分は、Tiとの合量に占める割合(原子比)で0.02(2原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.25(25原子%)を越えると、高熱発生と衝撃的負荷がかかる高速断続切削加工では、改質(Ti,Zr)CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.02〜0.25とする必要がある。
(d)硬質被覆層の上部層をAl23層、下部層をTi化合物層と(Ti,Zr)CN層とで構成した被覆工具において、上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、{112}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める傾斜角度数分布グラフを示すTiの炭窒化物層(改質TiCN層)で構成し、
さらに、上記(Ti,Zr)CN層を、2〜15μmの平均層厚を有し、{111}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める改質(Ti,Zr)CN層とで構成した被覆工具は、改質(Ti,Zr)CN層が従来(Ti,Zr)CN層に比して一段と高い耐熱性を有し、また、改質TiCN層がすぐれた耐チッピング性を有し、さらに、硬質被覆層の上部層であるAl23層がすぐれた高温硬さを具備することと相俟って、特に高熱発生を伴う高速切削加工でも、前記硬質被覆層がすぐれた耐熱性を発揮し、熱塑性変形、偏摩耗を生じることがなく、さらに、耐チッピング性にもすぐれるため、長期に亘ってすぐれた工具特性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、4〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成されたTi化合物層と改質Ti系炭窒化物層とからなり、
(c)上記Ti化合物層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層(改質TiCN層)であり、
(e)上記改質Ti系炭窒化物層(改質(Ti,Zr)CN層)は、2〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XZr)CN
で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層(改質(Ti,Zr)CN層)は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層のTi化合物層
TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなるTi化合物層(なお、このうちの改質TiCN層については、後記(b)参照)は、それ自体が所定の高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と改質TiCN層あるいは改質(Ti,Zr)CN層のいずれとも強固に密着し、硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、下部層の合計平均層厚が4μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、高速断続切削加工で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、下部層の合計平均層厚を4〜20μmと定めた。
(b)下部層の改質TiCN層
下部層のTi化合物層のうちの少なくとも1つの層を改質TiCN層で構成するが、改質TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成(容量%):TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜920℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着を行うとともに、上記の反応ガスを構成するCHCNの成膜開始時点と成膜終了時点の含有割合を上記の含有範囲内で、層厚に応じて調整し、さらに、相対的に含有割合を低くした前記成膜開始時点から相対的に含有割合を高くした前記成膜終了時点に向けて、CHCNの含有割合を連続的または断続的に漸増させた条件でTiCN層を蒸着することによって蒸着形成することができるが、その平均層厚が2μm未満では所望のすぐれた高温強度向上効果を発揮することができず、一方その平均層厚が10μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜10μmと定めた。
(c)そして、改質TiCN層は、図2(a),(b)に概略説明図で示されるように、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す。
(d)さらに、上記改質TiCN層の形成に際して、上記反応ガスにおけるCHCNの含有量を0.5〜3%とし、かつ、前記含有範囲内で、層厚に対応させて成膜開始時点と成膜終了時点のCHCNの含有量を調整すると共に、前記成膜開始時点から成膜終了時点に向けてCHCNの含有量を漸次増加する(即ち、層厚の薄いほど成膜開始時点と成膜終了時点のCHCNの含有量を前記0.5〜3%の範囲内で低い側に定め、層厚が中間では成膜開始時点と成膜終了時点のCHCNの含有量を前記範囲内の中間の含有量とし、さらに層厚が厚くなるほど、前記CHCNの含有範囲の高い側に定める)と共に、その含有幅(即ち、(成膜終了時点のCHCN含有量)−(成膜開始時点のCHCN含有量)の値)を1±0.15%とするのが望ましい。しかし、この含有幅が0.85%未満では、前記0〜10度の範囲内に存在する最高ピークの度数の合計が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、TiCN層に所望のすぐれた高温強度を確保することができず、また、前記含有幅が1.15%を越えた場合には、最高ピークが現れる傾斜角区分が0〜10度の範囲から外れてしまい、TiCN層に所望のすぐれた高温強度を確保することができない。
(e)下部層の改質(Ti,Zr)CN層
上記の改質(Ti,Zr)CN層、即ち、改質(Ti,Zr)CN層の傾斜角度数分布グラフの傾斜角区分における最高ピーク位置および前記最高ピークが存在する所定の傾斜角区分内に存在する度数割合は、上記の通り、層中のZr含有割合(X値)をTiとの合量に占める原子比で、0.02〜0.25とすることによって、0〜10度の範囲内の傾斜角区分に最高ピークを存在させ、かつ前記0〜10度の範囲内に存在する度数割合を、傾斜角度数分布グラフにおける度数全体の45%以上とすることができるものであり、したがって、その含有割合が0.02未満でも、0.25を越えても、前記最高ピーク位置の現れる傾斜角区分が0〜10度の範囲内から外れ、さらに前記0〜10度の範囲内に存在する度数割合は45%未満となってしまい、そのため、高温強度の低下をクーリングクラックの均一分散により抑制することができなくなるばかりか、高速切削加工におけるすぐれた耐熱性向上効果を確保することができなくなり、熱塑性変形の発生あるいは偏摩耗の発生によって耐摩耗性の劣ったものとなる。
また、改質(Ti,Zr)CN層におけるC成分には層の硬さを向上させ、一方N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合が、C成分との合量に占める原子比で0.35未満では所望の強度を確保することができず、一方その含有割合が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、C成分との合量に占めるN成分の含有割合は、原子比で0.35〜0.55とすることが望ましい。
このように前記改質(Ti,Zr)CN層は、上記の通り従来(Ti,Zr)CN層に比して、一段とすぐれた耐熱性を有するようになるが、その平均層厚が2μm未満では所望のすぐれた耐熱性向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜15μmと定めた。
(f)上部層のAl23
Al23層は、すぐれた高温硬さを有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
この発明の被覆工具は、高熱発生を伴い、かつ、繰り返し大きな衝撃的負荷がかかる鋼や鋳鉄などの高速断続切削加工でも、硬質被覆層の下部層のうちの改質TiCN層がすぐれた高温強度を有し、チッピングの発生が抑えられるとともに、改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が抑制されることによって、すぐれた耐摩耗性が維持されることから、長期に亘ってすぐれた工具特性を示すものとなる。
つぎに、この発明の被覆工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜3.5μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で32時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで32時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、Ti化合物層(少なくとも一層の改質TiCN層を含む)および改質(Ti,Zr)CN層を表3、表4に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
また、比較の目的で、硬質被覆層の下部層として、Ti化合物層(少なくとも一層の改質TiCN層を含む)および従来(Ti,Zr)CN層を表3、表4に示される条件で、表6に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表6に示される目標層厚で蒸着形成することにより比較被覆工具1〜13をそれぞれ製造した。
ついで、上記の本発明被覆工具と比較被覆工具の硬質被覆層を構成する改質(Ti,Zr)CN層、従来(Ti,Zr)CN層および改質TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層については、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成した。
また、改質TiCN層についても上記と同様に、{112}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成した。
この結果得られた改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の傾斜角度数分布グラフにおいて、{111}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,6にそれぞれ示した。
また、改質TiCN層についても同様に、{112}面が最高ピークを示す傾斜角区分、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,6にそれぞれ示した。
上記の各種の傾斜角度数分布グラフにおいて、表5に示される通り、本発明被覆工具1〜10の改質(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、表6に示される通り、比較被覆工具1〜10の従来(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
図3は、本発明被覆工具2の改質(Ti,Zr)CN層の傾斜角度数分布グラフ、図4は、比較被覆工具2の従来(Ti,Zr)CN層の傾斜角度数分布グラフをそれぞれ示すものである。
なお、改質TiCN層については、本発明被覆工具1〜13および比較被覆工具1〜13のいずれもが、{112}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示した。
さらに、上記の本発明被覆工具1〜13および比較被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層(改質TiCN層を含む)、改質(Ti,Zr)CN層および従来(Ti,Zr)CN層、さらにAl23層からなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および比較被覆工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.24 mm/rev、
切削時間: 8 分、
の条件(切削条件Aという)での合金鋼の湿式断続高速切削試験(通常の切削速度は、250m/min)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.35 mm/rev、
切削時間: 10 分、
の条件(切削条件Bという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は、300m/min)、
被削材:JIS・FCD350の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.25 mm/rev、
切削時間: 8 分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式断続高速切削試験(通常の切削速度は、250m/min)を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Figure 0005023895
Figure 0005023895
Figure 0005023895
Figure 0005023895
Figure 0005023895
Figure 0005023895
Figure 0005023895
表5〜7に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの改質(Ti,Zr)CN層が、{111}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示し、高い熱発生を伴い、かつ、繰り返しの大きな衝撃的負荷がかかる鋼や鋳鉄の高速断続切削でも、前記改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が防がれることから、硬質被覆層がすぐれた耐チッピング性とともにすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの(Ti,Zr)CN層が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来(Ti,Zr)CN層で構成された比較被覆工具1〜13においては、いずれも高速断続切削では硬質被覆層の熱塑性変形あるいは偏摩耗の発生により、硬質被覆層の耐摩耗性は非常に劣ったものであり、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い熱発生を伴い、かつ、繰り返しの大きな衝撃的負荷がかかる高速断続切削加工でも、硬質被覆層がすぐれた耐チッピング性とすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
硬質被覆層の下部層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。 硬質被覆層の下部層を構成する改質TiCN層における結晶粒の{112}面の傾斜角の測定範囲を示す概略説明図である。 本発明被覆工具2の硬質被覆層の下部層を構成する改質(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。 比較被覆工具2の硬質被覆層の下部層を構成する従来(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
    (a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
    (b)上記下部層は、4〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成されたTi化合物層と改質Ti系炭窒化物層とからなり、
    (c)上記Ti化合物層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
    (d)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層であり、
    (e)上記改質Ti系炭窒化物層は、2〜15μmの平均層厚を有し、かつ、
    組成式:(Ti1−XZr)CN
    で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
    を特徴とする表面被覆切削工具。
JP2007227128A 2007-08-31 2007-08-31 表面被覆切削工具 Active JP5023895B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227128A JP5023895B2 (ja) 2007-08-31 2007-08-31 表面被覆切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227128A JP5023895B2 (ja) 2007-08-31 2007-08-31 表面被覆切削工具

Publications (2)

Publication Number Publication Date
JP2009056560A JP2009056560A (ja) 2009-03-19
JP5023895B2 true JP5023895B2 (ja) 2012-09-12

Family

ID=40552781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227128A Active JP5023895B2 (ja) 2007-08-31 2007-08-31 表面被覆切削工具

Country Status (1)

Country Link
JP (1) JP5023895B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170828B2 (ja) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5170830B2 (ja) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5170829B2 (ja) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761335B2 (ja) * 1999-06-29 2011-08-31 日立ツール株式会社 TiZr炭窒化物皮膜被覆工具の製造方法
JP4466841B2 (ja) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4518259B2 (ja) * 2004-11-09 2010-08-04 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4534790B2 (ja) * 2005-02-23 2010-09-01 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4720283B2 (ja) * 2005-05-16 2011-07-13 三菱マテリアル株式会社 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4730522B2 (ja) * 2005-05-25 2011-07-20 三菱マテリアル株式会社 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4811781B2 (ja) * 2005-06-02 2011-11-09 三菱マテリアル株式会社 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4863053B2 (ja) * 2005-12-20 2012-01-25 三菱マテリアル株式会社 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具の製造方法
JP5023839B2 (ja) * 2007-06-27 2012-09-12 三菱マテリアル株式会社 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Also Published As

Publication number Publication date
JP2009056560A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4466841B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4811781B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4474646B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006231433A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5023839B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4518259B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4716250B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5023896B2 (ja) 表面被覆切削工具
JP5003308B2 (ja) 表面被覆切削工具
JP5023895B2 (ja) 表面被覆切削工具
JP5170828B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5023897B2 (ja) 表面被覆切削工具
JP2006334710A (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2008080476A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4466848B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4936211B2 (ja) 硬質被覆層が高速切削ですぐれた耐摩耗性を発揮する表面被覆切削工具
JP4474647B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5019258B2 (ja) 表面被覆切削工具
JP4747338B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5170830B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5170829B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4857950B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5187573B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP4569861B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5019257B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150