JP5018737B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5018737B2
JP5018737B2 JP2008282082A JP2008282082A JP5018737B2 JP 5018737 B2 JP5018737 B2 JP 5018737B2 JP 2008282082 A JP2008282082 A JP 2008282082A JP 2008282082 A JP2008282082 A JP 2008282082A JP 5018737 B2 JP5018737 B2 JP 5018737B2
Authority
JP
Japan
Prior art keywords
film
thin film
semiconductor device
manufacturing
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008282082A
Other languages
English (en)
Other versions
JP2010109278A (ja
Inventor
幸司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008282082A priority Critical patent/JP5018737B2/ja
Publication of JP2010109278A publication Critical patent/JP2010109278A/ja
Application granted granted Critical
Publication of JP5018737B2 publication Critical patent/JP5018737B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体装置の製造方法に関し、特に電力の変換や各種電力制御等に用いられる半導体素子を含む構造体がこれを支持する支持体に一体に接合された半導体装置にあって半導体素子を含む構造体を支持体に接合する方法の改良に関する。
こうした半導体装置としては、例えばハイブリッド車や電気自動車などにあって、車載バッテリから供給される直流電力を3相交流等に変換してモータ駆動用の電力変換を行うインバータ装置が知られている。そして、このような半導体装置では通常、上述のように半導体素子(電力用半導体素子)を含んで構成される構造体が冷却器に一体に接合されていることが多い。すなわち、半導体素子が絶縁基板や放熱板に半田付け等によって実装されている上記構造体を熱交換機能を有する冷却器にシリコングリース等を介してねじ止めするなどにより接合、固定することで、半導体素子動作時の発熱を緩和するようにしている。ただし、冷却器とのこのような接合構造を採用する場合、上記シリコングリース自体の熱伝導率が低いために、熱抵抗の悪化が避けられないとともに、上記ねじ止めするためには、ねじ等の部品の増加はもとより、構造体及び冷却器自体にもそのための締結構造を別途施す必要があり、半導体装置そのものが大型化してしまう不都合がある。
そこで従来は、こうした半導体装置の製造方法、すなわち上記構造体を冷却器に接合する方法として、構造体をロウ付けにより冷却器に接合する方法が採用されることも多い。このようなロウ付けによれば、部品の増加や半導体装置としての大型化が抑えられるとともに、ロウ材自体、その熱抵抗も低いことから、当該半導体装置としての冷却効率も自ずと高められるようになる。
特開2007−88468号公報
上述のように、構造体を冷却器に接合する方法としてロウ付けを採用することにより、完成された半導体装置としては確かに、その大型化が抑制されたり、冷却効率が向上するなどの望ましい効果が得られるようにはなる。ただし、こうしたロウ付けを採用した場合には、その製造過程、すなわち冷却器に対する上記構造体の接合過程における次のような不都合も無視できないものとなっている。
すなわち、上記構造体を構成する絶縁基板や放熱板に用いられる材料と冷却器に用いられる材料とでは一般にその線膨張係数が異なるとともに、上記ロウ付け自体が、ロウ材の溶融のために高温の熱印加を比較的長い時間に亘って行わざるを得ない接合方法である。このため、ロウ付け後の自然冷却期間、すなわち膨張された各部材が冷却によって原形状に戻る際にロウ材が先に冷却されて上下の部材が固定されるまでの期間に、上記線膨張係数の違いに起因する応力が内在するようになり、冷却器に反りが生じたり、絶縁基板にクラックが生じたりするなどの懸念がある。なお、こうした反りやクラック等は、冷却器に対する構造体の接合時、すなわち製造時に限らず、製造(接合)後でもそれら構造体や冷却器に大きな応力が内在している以上、構造体を構成する半導体素子の動作の繰り返しに基づくヒートサイクルによっても生じ得るものであり、こうした傾向は、上記半導体素子自身の発熱量が大きいほど顕著となる。また、上記ロウ材の溶融温度が半田の溶融温度よりも高く、その熱印加にかかる時間も長期化されるようなことがあれば、上記構造体において半田付けされている部分が再溶融されることにもなりかねない。
なお従来、例えば特許文献1に見られるように、接合面(基板)の表面に高抵抗の金属導線を敷設しておき、この金属配線に電流を流すことにより発生するジュール熱を利用して接合対象(高分子材料)を接合面(基板)に瞬時に(瞬間的に)接合する方法なども知られてはいる。しかしこの方法であれ、ジュール熱を利用している以上、瞬時に(瞬間的に)とはいえ、接合が完了するまでにはある程度の時間を要し、しかも、接合領域の全域に亘って均一に熱を発生させることも難しい。すなわち、局所的な発熱には適していても、上述した冷却器に対する半導体素子構造体の接合となるとその適用も難しい。
また、上記冷却器に限らず、上記半導体素子(電力用半導体素子)を含んで構成される構造体がこれを支持する何らかの支持体に一体に接合されて構成される半導体装置、さらには接合材としてロウ材以外に例えば半田等が用いられる場合であっても、その接合方法にかかる上記課題は概ね共通したものとなっている。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、半導体素子を含む構造体をその支持体に一体に接合するに際し、熱抵抗の抑制や大型化の抑制はもとより、接合完了後にそれら構造体及び支持体に内在する応力についても、その好適な抑制を図ることのできる半導体装置の製造方法を提供することにある。
以下、上記課題を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、半導体素子を含む構造体がこれを支持する支持体に一体に接合されて構成される半導体装置の前記半導体素子を含む構造体を熱抵抗の低い接合材を介して前記支持体に接合する半導体装置の製造方法において、
反応温度と熱伝導率との相反する関係の中で前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定された反応性膜を前記接合材によって挟持する態様で前記支持体上にこれら接合材及び反応性膜及び接合材及び前記構造体を順に積層し、この状態で前記反応性膜にその反応を誘起する反応条件を付与することにより前記接合材を溶融せしめて前記支持体に前記構造体を接合するに際し、前記反応性膜として、反応温度が低くかつ熱伝導率の高い金属薄膜からなる第1の金属薄膜と反応温度が高くかつ熱伝導率の低い金属薄膜からなる第2の金属薄膜とが複数層、交互に積層された膜を用い、特定の積層数の中でのこれら第1の金属薄膜の膜厚と第2の金属薄膜の膜厚との膜厚調整を通じて前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定することを要旨とする。
このような製造方法によれば、接合材によって挟持された反応性膜による自己伝播反応に基づきそれら接合材同士が瞬時に、しかも均一に溶融されて構造体が支持体に溶接接合されるようになる。そしてこのとき、反応性膜自身は上述のように、反応温度と熱伝導率との相反する関係の中で、接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性、すなわち接合材を溶融するに必要十分な反応温度に抑えることでそれに見合った高い熱伝導率を維持することのできる特性に設定されていることから、同反応性膜による接合材同士の瞬時の溶融、並びにその固化後に、接合材としての熱抵抗が増大することもない。上記製造方法ではこのように、構造体や支持体に過大な応力が内在する以前にそれらの接合を完了させることができることから、接合後にそれら構造体や支持体に内在する応力を的確に抑制することができるようになる。また接合構造に関しても、接合材としての熱抵抗を低く維持することができるとともに、いわゆる溶接による接合構造が維持されることから、半導体装置としてその大型化を招くこともない。なお、上記反応性膜に付与する反応条件としては、例えば火花の印加等がある。
また、このような製造方法によれば、反応性膜としての上記反応温度と熱伝導率との相反する関係、そしてその中で、接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性の設定も容易となる。
請求項に記載の発明は、請求項に記載の半導体装置の製造方法において、前記反応性膜を構成する前記第1の金属薄膜としてアルミニウム薄膜を用い、前記第2の金属薄膜
としてニッケル薄膜を用いることを要旨とする。
この製造方法によるように、上記特性を有する反応性膜を構成する第1及び第2の金属薄膜としては、それぞれアルミニウム薄膜及びニッケル薄膜が有効であり、またこれらの金属薄膜であれば、上記反応性膜としての実現、実用も容易である。
請求項に記載の発明は、請求項に記載の半導体装置の製造方法において、前記接合材としてアルミニウム系のロウ材を用い、前記反応性膜の反応温度が600℃となるように前記アルミニウム薄膜と前記ニッケル薄膜とが各々膜厚調整されることを要旨とする。
接合材としての上記アルミニウム系のロウ材はその溶融のための最低温度が約600℃であることが知られている。そこで、同製造方法によるように、上記アルミニウム薄膜とニッケル薄膜との各膜厚調整を通じて、反応性膜としての反応温度をこの600℃に設定することとすれば、上記構造体を過剰に加熱することのない、接合材のみの円滑な溶融を促すことができるとともに、アルミニウム薄膜とニッケル薄膜との多重積層膜とする当該反応性膜としての熱伝導率についても、その組合せから選択し得る最大の値とすることができるようになる。
請求項に記載の発明は、請求項1〜のいずれか一項に記載の半導体装置の製造方法において、前記構造体及び前記支持体の各接合面に前記接合材を予め塗布しておくとともに、それら接合材の塗布された構造体及び支持体のいずれか一方の接合材の表面に前記反応性膜を予め成膜しておくことを要旨とする。
このような製造方法によれば、接合材や反応性膜も含めて、接合時における上記構造体及び支持体の扱いを極めて容易なものとすることができるようになる。
請求項に記載の発明は、請求項1〜のいずれか一項に記載の半導体装置の製造方法において、前記構造体として、両面にアルミニウム板の接着された絶縁基板上に前記半導体素子が半田付けによって実装されたものを含むものを用いることを要旨とする。
この製造方法は、請求項にかかる発明によるように、両面にアルミニウム板の接着された絶縁基板上に半導体素子が半田付けによって実装された半導体素子構造体に適用して特に有効であり、同製造方法の適用により、上記支持体との接合後に絶縁基板等に内在する応力を的確に抑制することができるようになる。
請求項に記載の発明は、請求項1〜のいずれか一項に記載の半導体装置の製造方法において、前記構造体として、金属からなる放熱板上に前記半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装されたものを含むものを用い
ることを要旨とする。
この製造方法は、請求項にかかる発明によるように、金属からなる放熱板上に半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装された半導体素子構造体に適用しても有効であり、同製造方法の適用により、上記支持体との接合後に放熱板や絶縁基板等に内在する応力を的確に抑制することができるようになる。
請求項に記載の発明は、請求項1〜のいずれか一項に記載の半導体装置の製造方法において、前記構造体を支持する支持体として、液冷式もしくは空冷式の冷却器を用いることを要旨とする。
この製造方法はまた、請求項にかかる発明によるように、上記支持体として、液冷式もしくは空冷式の冷却器を用いるものに適用して特に有効であり、同製造方法の適用により、上記構造体との接合後に冷却器に内在する応力を的確に抑制することができるようになる。
(第1の実施の形態)
以下、本発明にかかる半導体装置の製造方法の第1の実施の形態について図1〜図7を参照して説明する。図1は、この実施の形態にかかる半導体装置の製造方法について、その適用対象とする半導体装置の接合工程直前の概略断面構造を示したものである。
同図1に示されるように、この半導体装置は、半導体素子10及びこの半導体素子10が実装された絶縁基板12からなる構造体と、該構造体の支持体としてこれを支持する冷却器13とによって構成される。
ここで、半導体素子10は、例えばIGBT(絶縁ゲート・バイポーラ・トランジスタ)などの動作時に比較的高温の熱が発せられる電力用半導体素子であり、また絶縁基板12には、DBA(ダイレクト・ブレイジング・アルミニウム)と称される基板であって、セラミック基板11の両面にアルミニウム板11a及び11bがロウ付けによって接着固定されている。そして、アルミニウム板11aは半田14のぬれ性が得られるように表面処理されており、この上面に上記半導体素子10が半田付けによって実装されている。一方、冷却器13は、半導体素子10の動作に伴って発せられる熱を熱交換することでその冷却を図るためのものであり、本実施の形態では、例えばアルミニウム製からなる水冷式の冷却器が用いられている。
また、同図1に示されるように、これら半導体素子10及び絶縁基板12からなる構造体と冷却器13との間には、これらを互いに接合するための接合材としてアルミニウム系からなるとするロウ材20が介在されている。このようにロウ材20を用いて冷却器13と構造体とを接合する方法によれば、ロウ材20自体の熱抵抗が低いことから、半導体素子10から冷却器13に伝達される熱の伝達効率、すなわち当該半導体装置としての冷却効率を高めることができるようになる。一方、ロウ材を用いた接合方法では前述のように、ロウ材を溶融するために比較的長い期間の熱印加が必要となること、そして冷却器13と絶縁基板12とでは線膨張係数が異なることに起因して応力の内在を招き、それら冷却器13や絶縁基板12に反りやクラックを生じる虞がある。
そこで、本実施の形態では、ロウ付けによる接合工程に先立ち、上記ロウ材20を瞬時かつ均一に溶融することの可能な反応性膜21をロウ材20によって挟持する態様で積層する。そして、この反応性膜21の反応時に発せられる反応熱(生成エンタルピー)をロウ材20を溶融するための溶融熱として用いることで、冷却器13や絶縁基板12に反りやクラックの要因となる熱応力が内在する以前にそれら冷却器13と絶縁基板12との接合が完了されるようにしている。図2に、本実施の形態で採用する反応性膜21についてその拡大断面構造を示す。
一般に、異なる金属原子同士が化学反応して発生した反応熱を引き金(トリガ)として隣り合う原子同士の化学反応を誘発し続けることがこうした反応性膜としての必要条件となる。そして、化学反応による反応熱が放熱による冷却を上回るためには、放熱面積に比べて発熱量を増やしてやればよい。この最も簡便な方法が異種金属を薄く、多層に積層することであり、本実施の形態では、図2に示すように、この反応性膜21として、アルミニウム(Al)薄膜21aとニッケル(Ni)薄膜21bとを交互に多数層積層した膜構造としている。ここで、同反応性膜21を形成するアルミニウム薄膜21a及びニッケル薄膜21bは、それぞれ反応温度と熱伝導率とが相反する特性を有している。すなわち、アルミニウム薄膜21aは、反応温度が低くかつ熱伝導率の高い特性を有しており、逆にニッケル薄膜21bは、反応温度が高くかつ熱伝導率の低い特性を有している。そこで本実施の形態では、アルミニウム薄膜21a及びニッケル薄膜21bのこうした特性に基づきこれらの膜厚を調整することによって、反応性膜21の反応温度が上記アルミニウム系からなるロウ材20を溶融するために最低限必要な温度(「600℃」)に設定するとともに、その中で反応性膜21の反応後(固化後)の熱伝導率が最大の値となるように設定
するようにしている。すなわち、反応性膜21の主に反応温度を確保する機能を有するニッケル薄膜21bの膜厚βを上記反応温度「600℃」を確保し得る必要最小限の厚さとし、これに対して、反応性膜21の主に熱伝導率を確保する機能を有するアルミニウム薄膜21aの膜厚αを、同層数、同組み合わせの中で最大限に厚くする(α>β)。これよって、ロウ材20を溶融するために最低限必要な反応温度(「600℃」)の確保と接合材としての熱伝導率の確保との両立が図られるようになる。
なお、このような反応性膜にあっては通常、極力薄い膜を多層に積層することが自己発熱伝播性の向上につながり、反応時間をより短くして大きな面積でも均一な接合が可能となる。そして、ここで用いる反応性膜21にあっては、10nm〜500nmのアルミニウム薄膜21aあるいはニッケル薄膜21bの層をトータルで5μm〜200μmの膜厚となるように多層に積層することによって上記ロウ材20によるロウ付けが可能となり、アルミニウム薄膜21aの膜厚とニッケル薄膜21bの膜厚の比を
アルミニウム薄膜21aの膜厚α:ニッケル薄膜21bの膜厚β=3:2
とするときに原子数の比が「1:1」となって、最も反応熱が高くなる。そして本実施の形態では、アルミニウム薄膜21aとニッケル薄膜21bとのこのような関係に鑑みて、その反応温度が「600℃」となるように、その積層数nをはじめ、上記各膜厚α、βを決めている。
次に、ロウ材20の溶融に必要とされる上述の反応性膜21の反応温度の推移と、従来の高周波誘導加熱法による熱源の温度の推移とについて、図3を参照して比較する。なお、これらの温度推移例は実験等を通じて得られたものである。
まず、図3において、二点鎖線による曲線L0は、上記従来の高周波誘導加熱法による熱源の温度の推移を示したものである。また、実線による曲線L1〜L4は、反応性膜21の積層数をnとし、反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの総量をQとしたときのニッケル薄膜21bの割合Pn1〜Pn4に相関する反応性膜21の反応温度の推移をそれぞれ示したものであ。このとき、これらニッケル薄膜21bの割合Pn1〜Pn4はそれぞれ以下の関係式(イ)のようになっている。
Pn1>Pn2>Pn3>Pn4 …(イ)
すなわち、同図3に曲線L1〜L4として示されるように、反応性膜21を構成するニッケル薄膜21bの割合が多くなるほど反応性膜21の反応温度が高くかつその反応時間が短くなり、逆に反応性膜21を構成するニッケル薄膜21bの割合が少なくなるほど反応性膜21の反応温度が低くかつその反応時間が長くなっている。そして、この反応性膜21の自己伝搬反応によって反応熱が発せられる時間は、実際には数μ秒から数十μ秒であることが発明者によって確認されている。
一方、従来の高周波誘導加熱法では、同図3に曲線L0として示されるように、またよ
く知られているように、同方法によって熱源から熱が発せられる時間は数秒となっている。このため、ロウ材20を溶融すべく同方法を採用した場合には、ロウ材20のみならず、接合対象となる上記絶縁基板12や冷却器13にも過剰な熱が印加されることとなり、ロウ材20の固化後にはそれら接合対象に上記線膨張係数の違いに起因する過大な応力が内在してしまう。
そこで上述のように、本実施の形態では、こうしたいわば瞬間的な反応熱の発生を可能とする反応性膜21をロウ材20の溶融に採用することによって、接合対象に過大な応力が内在する以前に接合対象の接合を完了するようにしている。
なお、本実施の形態に用いられるアルミニウム系のロウ材20の融解温度は、これも上述のように「600℃」となっている。このためここでは、上記反応性膜21の反応温度が「600℃」となるように、同反応性膜21を形成するニッケル薄膜21bの割合を、図3において曲線L2にて示す反応温度推移をとる割合である上記割合Pn2に設定する。これにより、ロウ材20の融解温度を超えた過剰な反応熱の発生を抑えてロウ材20のみの円滑な、しかも瞬間的な溶融を促すことが可能となる。
次に、このような反応性膜21の反応温度と熱伝導率との相反する関係、及び反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの割合(膜厚)の設定方法について図4及び図5を参照して説明する。なお、これら図4及び図5の関係も、先に示した図3と同様、反応性膜21の積層数をnとし、反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの総量をQとしたときのアルミニウム薄膜21a及びニッケル薄膜21bの割合調整に基づき実験等を通じて得られたものである。
まず、図4に示すように、反応性膜21の反応温度は、反応性膜21に対するニッケル薄膜21bの割合が増加するほど、すなわち主に反応温度を確保するニッケル(Ni)の量が多くなるほどこれに比例して高くなる。
一方、図5に示すように、反応性膜21の熱伝導率は、反応性膜21に対するニッケル薄膜21bの割合が増加するほど、すなわち主に熱伝導率を確保するアルミニウム(Al)の量が減少して熱伝導率の低いニッケル(Ni)の量が増加するほど、これに反比例して低くなる。
このように、アルミニウム薄膜21a及びニッケル薄膜21bからなる反応性膜21は、その反応温度と熱伝導率とが相反する関係にあることから、こうした関係を積極的に利用することで反応性膜21にそれら反応温度と熱伝導率とが両立する特性を持たせることができるようになる。そこで本実施の形態では、これら図4及び図5に示す関係に基づいて反応性膜21の目標反応温度をロウ材20の溶融のための最低温度である「600℃」に設定するとともに、このときの反応性膜21に対するニッケル薄膜21bの割合Pn2、及びアルミニウム薄膜21aの割合Pa2(=(Q−Q・Pn2)/Q)を算出する。そしてこれらの割合と、アルミニウム薄膜21aの膜厚αとニッケル薄膜21bの膜厚βとが以下の関係式(ロ)を満たす態様でそれら各膜厚α、βを調整する。
Pa2:Pn2=α:β(=n・α:n・β) …(ロ)
Pa2:反応性膜21に対するアルミニウム薄膜21aの割合
Pn2:反応性膜21に対するニッケル薄膜21bの割合
α:アルミニウム薄膜21aの膜厚
β:ニッケル薄膜21bの膜厚
n:積層数
すなわち、このような関係式(ロ)を満たす態様で反応性膜21が構成されることによ
って、ロウ材20の溶融に最低限必要な反応温度「600℃」の確保と、この反応温度「600℃」を確保する上で最大の熱伝導率λxの確保との両立が図られるようになる。
次に、このような反応性膜21を用いて絶縁基板12及び冷却器13の接合を行う本実施の形態にかかる半導体装置の製造方法について、その製造工程の一例を図6及び図7を参照しつつ説明する。
この製造に際してはまず、図6(a)に示すように、例えば窒化アルミニウム(AlN)等のセラミック基板11の両面にアルミニウム(Al)板11a及び11bが接着された絶縁基板(DBA)12上に、例えばIGBTからなる半導体素子10を半田付けによって実装する。これによって、半田14を接合媒体とした半導体素子10及び絶縁基板12からなる構造体が形成される。なお、上記セラミック基板11の材料としては、絶縁性を確保できるものであればよく、上記窒化アルミニウム(AlN)の他、窒素ケイ素(Si4)、酸化アルミニウム(Al)等を挙げることができるが、熱伝導率及び熱膨張係数等の観点からは上記窒化アルミニウム(AlN)が好適である。
このようにして半導体素子10及び絶縁基板12からなる構造体の形成を終えると、次に図6(b)に示すように、絶縁基板12を構成する下側のアルミニウム板11bの下面に例えばアルミニウム系からなるロウ材20を塗布する。そして、図6(c)に示すように、ロウ材20の表面(下面)に多層膜スパッタ法等を用いた成膜処理を施して、先の図2に拡大断面構造を例示したようなアルミニウム薄膜21aとニッケル薄膜21bとが交互に積層された反応性膜21を成膜する。ここで、この成膜されるアルミニウム薄膜21aとニッケル薄膜21bとの割合(膜厚)により、反応性膜21としての特性がロウ材20を溶融するために必要最低限の反応温度「600℃」の確保とロウ材固化後の熱伝導率の確保とを両立し得る特性に設定されることは上述の通りである。続いて、図6(d)に示すように、半導体素子10の動作時の冷却を行う上記冷却器13上に、構造体側の上記反応性膜21により覆われたロウ材20と対向する態様でもう一方のロウ材20を塗布する。
このようにしてロウ材20及び反応性膜21の塗布、成膜を終えると、次いで、図7(a)に示すように、冷却器13上に形成されたロウ材20と、絶縁基板12の下側のアルミニウム板11bに形成されたロウ材20及び反応性膜21とが対向、当接する態様で、冷却器13上に半導体素子10及び絶縁基板12からなる構造体を積層する。すなわちこれにより、冷却器13と半導体素子10及び絶縁基板12からなる構造体との間には、反応性膜21を挟持する態様でロウ材20が積層されることとなる。そしてこの状態で、冷却器13に上記構造体を接合すべく、上記反応性膜21に反応条件を付与する。この反応条件の付与としては、火花の印加や過電流の通電等が挙げられる。反応性膜21にこうして反応条件が付与されると、先の図3に示したように、反応性膜21の自己伝播反応に伴う約「600℃」の反応熱が数μ〜数十μ秒程度の間発生する。そしてこれにより、反応性膜21を挟持する態様で積層されていたロウ材20にその融解温度である約「600℃」の熱が印加され、ロウ材20は瞬時に溶融される。このように、反応性膜21の反応に伴ってロウ材20に反応熱が印加される時間は数μ〜数十μ程度といった極めて短時間である。このため、接合対象である冷却器13や半導体素子10及び絶縁基板12からなる構造体に過大な応力が内在する以前にこれらの接合がなされるようになる。
そして、こうして反応性膜21の反応が終了すると、図7(b)に示すように、ロウ材20及び反応性膜21が溶融混合された接合層23によって冷却器13に半導体素子10及び絶縁基板12からなる構造体が接合され、これらが一体になった半導体装置としてその製造が完了される。
以上説明したように、本実施の形態にかかる半導体装置の製造方法によれば、以下のような効果が得られるようになる。
(1)ロウ材20により挟持された反応性膜21の自己伝播反応に基づく反応熱により、ロウ材20を瞬時かつ均一に溶融することで、冷却器13に半導体素子10及び絶縁基板12からなる構造体を溶接接合することとした。これにより、冷却器13や半導体素子10及び絶縁基板12からなる構造体に過大な応力が内在する以前にこれらの接合を完了することができ、接合後にこれら構造体や冷却器13に内在する応力を的確に抑制することができるようになる。
(2)上記反応性膜21を、アルミニウム薄膜21aとニッケル薄膜21bとを交互に積層することによって形成し、アルミニウム薄膜21a及びニッケル薄膜21bの割合をロウ材20の溶融に必要十分な温度(「600℃」)が得られるように設定した。これにより、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合に際して、これらの接合対象に過剰な熱が印加されることなく、ロウ材20のみの溶融を促すことができるようになる。
(3)反応性膜21の反応温度がロウ材20の溶融に必要十分な温度(「600℃」)となるようにアルミニウム薄膜21aとニッケル薄膜21bとの割合が設定されることから、反応性膜21としての反応温度と相反する関係にある熱伝導率を最大の値とすることができるようにもなる。このため、接合材としての熱抵抗を低く維持することができるようにもなる。
(4)冷却器13と半導体素子10及び絶縁基板12からなる構造体に対する熱応力の影響が極めて小さい段階でこれらの接合を完了することができることから、それら接合対象の線膨張係数が異なる場合であれ、その影響をほとんど無視することができるようにもなる。すなわちこれにより、接合対象とする材料の選択にかかる自由度を拡大することができるようになる。
(5)また上述のように、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合時における熱の印加時間が極めて短時間であり、特に上記構造体が過剰に加熱されることが抑制されることで、冷却器13に対する上記構造体の接合の前工程で同構造体の形成、すなわち絶縁基板12に対する半導体素子10の半田付けによる実装を済ませておくことができるようになる。これにより、こうした半田付け自体を容易なものとすることができ、より理想的な手順にて半導体装置の生産を行うことができるようになる。すなわち、半導体素子10の半田付け工程を、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合の前工程で行うことができることで、これらの接合に先立ち事前に半導体素子10の電気特性の検査等を行うことが可能となり、不具合等があれば、その旨を冷却器13との接合前に検知することができるようになる。
(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態を図8を参照して説明する。なお、この第2の実施の形態は、構造体として半導体素子10の発熱を処理するための放熱板30をさらに含むものを接合(製造)の対象としており、その基本的な製造方法は先の第1の実施の形態と共通になっている。
図8は、先の図1に対応する図として、この第2の実施の形態において製造の対象とする半導体装置の接合工程直前の概略断面構造を示したものである。なお、この図8において、先の図1に示した各要素と同一の要素についてはそれぞれ同一の符号を付して示しており、それら要素についての重複する説明は割愛する。
すなわち図8に示すように、本実施の形態では、半導体素子10が半田付けによって実
装された絶縁基板(DBA)12にさらに放熱板30を半田付けによって接着固定し、この放熱板30の設けられた構造体を冷却器13に対する接合の対象としている。なお、放熱板30としては、モリブデン(Mo)、銅−モリブデン(Cu−Mo)合金、アルミニウム−炭化ケイ素(Al−SiC)合金、銅(Cu)、アルミニウム(Al)などで形成されたものが望ましく、中でも特に、高い熱伝導率とパワー半導体素子に近い熱膨張係数を有するモリブデン(Mo)が好適である。またここでは、同図8に示されるように、例えば先のIGBT等からなるとする半導体素子10の表面に設けられているエミッタ端子及びゲート端子にワイヤボンディングによる配線が施されており、それらワイヤ31a及び31bを介して配線された半導体素子10の電気的特性が予め検査される。そして、正常な電気的特性を示す半導体素子10が搭載された構造体のみを冷却器13との接合対象とする。
このような半導体装置にあっても、冷却器13に対する構造体の接合は先の第1の実施の形態に準じて行うことができる。すなわち、先の図6(a)として示した工程に引き続き上記放熱板30を半田付けして構造体を形成し、上述した配線の後、半導体素子10の電気的特性の検査を終えてからは、先の図6(a)〜(d)、及び図7(a)、(b)に準じた手順をもってその製造(接合)を完了することができる。
以上説明したように、この第2の実施の形態にかかる半導体装置の製造方法によっても、第1の実施の形態による前記(1)〜(5)の効果に準じた効果が得られるとともに、更に以下のような効果が得られるようになる。
(6)構造体の形成後、これを冷却器13に接合する前に、ワイヤボンディングによる配線を行って半導体素子10の電気的特性を検査することとした。これにより、冷却器13と上記構造体との接合前に半導体素子10の良否の選別が可能となり、当該半導体装置としての歩留まり、並びに生産性を高めることができるようになる。
(他の実施の形態)
なお、上記各実施の形態は、以下のような態様をもって実施することもできる。
・第1の実施の形態では、説明の便宜上、半導体素子10の電気的特性の検査についてはその言及を割愛したが、この第1の実施の形態においても第2の実施の形態と同様、予めの配線、並びに電気的特性の検査を行うようにしてもよい。
・上記構造体としては、先の各例以外にも、同じく図1に対応する図として例えば図9に示すように、冷却器13上に、ロウ材20によって挟持される反応性膜21を介して、金属板40、絶縁樹脂41、放熱板42、半導体素子10が順に積層された構造体を採用することもできる。このような構造体にあっても、冷却器13との接合に際して反応性膜21に反応条件を付与することにより、上記各実施の形態に準ずる態様にて、構造体や冷却器13に応力の内在しにくい半導体装置を製造することができる。
・また同様に、図1に対応する図として例えば図10に示すように、上記構造体の周囲にハウジング50a及び50bが形成され、さらにその中に上記ワイヤ31a及び31bと電気的に接続されるバスバー51a及び51bが形成された半導体装置などにも、本発明の製造方法は適用可能である。また、同じく図1に対応する図として例えば図11に示すように、図8に例示した第2の実施の形態にて製造対象とした半導体装置にこれらハウジング50a及び50b、ワイヤ31a及び31bを設けたものや、同様に図1に対応する図として例えば図12に示すように、図9に例示したような構造体をモールドパッケージ52にて封止したものなどにも、本発明の製造方法は同様に適用可能である。
・上記各実施の形態では、反応性膜21を多層膜スパッタ法によって成膜する例につい
て示したが、他に例えば、PVD法やCVD法等でこれを成膜するようにしてもよい。
・上記各実施の形態では、構造体の下面に塗布されたロウ材20に反応性膜21を成膜するようにしたが、これに限らず、冷却器13上に塗布されたロウ材20の上に反応性膜21を成膜するようにしてもよい。また、別工程で反応性膜21を成膜し、これをロウ材20に挟持する態様で積層するようにしてもよい。
・上記各実施の形態では、接合材としてアルミニウム系のロウ材20を用いることとしたが、これに限らず、銀ロウ、リン銅ロウ、銅ロウ、銅合金ロウ、ペーストロウ、粉末ロウ、アルミニウム合金ロウ、ニッケルロウ等のロウ材を用い、これらの融解温度に応じてアルミニウム薄膜21aとニッケル薄膜21bとを各々膜厚調整するようにしてもよい。また、接合材としては熱抵抗が低いものであればよく、ロウ材20に代えて例えば半田等を用いるようにしてもよい。
・上記各実施の形態では、反応性膜21を構成する金属薄膜としてアルミニウム薄膜21a及びニッケル薄膜21bを用いたが、反応温度と熱伝導率との相反する関係の中で接合材の溶融を可能とする反応温度と熱伝導率とを両立し得る特性に設定されるものであればよく、アルミニウム薄膜21aを第1の金属薄膜とするとき、これと交互に積層される第2の金属薄膜としては、上記ニッケル薄膜以外にも、例えばチタン(Ti)薄膜やタンタル(Ta)薄膜等を採用することもできる。
・上記各実施の形態では、第1の金属薄膜と第2の金属薄膜との2種類の金属薄膜を交互に積層することによって反応性膜21を形成することとしたが、これに限らず、3種類以上の金属薄膜を積層することによって反応性膜21を形成するようにしてもよい。
・上記実施の形態では、絶縁基板12上に半導体素子10の半田付けを行った後に、構造体と冷却器13との接合を行うこととした。これに限らず、構造体と冷却器13との接合後に絶縁基板12上に半導体素子10の半田付けを行うようにしてもよい。
・上記実施の形態では、上記構造体を支持する支持体として、水冷式の冷却器13を用いたが、これに代えて空冷式の冷却器を用いてもよい。また、冷却器に限らず、同支持体としては放熱板(ブロック)や金属板(ブロック)等を用いるようにしてもよい。
本発明にかかる半導体装置の製造方法の第1の実施の形態について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。 同実施の形態に採用される反応性膜の拡大断面構造を示す断面図。 同実施の形態における反応性膜の反応温度の推移例とロウ材の溶融に従来用いられていた高周波誘導加熱法による熱源の温度の推移例とを対比して示すグラフ。 同実施の形態における反応性膜を構成するニッケル薄膜(アルミニウム薄膜)の割合と反応性膜の反応温度との関係を示すグラフ。 同実施の形態における反応性膜を構成するニッケル薄膜(アルミニウム薄膜)の割合と反応性膜の熱伝導率との関係を示すグラフ。 (a)〜(d)は、同実施の形態における半導体装置の製造方法について、主にその積層工程を示す概略断面図。 (a)、(b)は、同実施の形態における半導体装置の製造方法について、主にその接合工程を示す概略断面図。 本発明にかかる半導体装置の製造方法の第2の実施の形態について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。
符号の説明
10…半導体素子、11…セラミック基板、11a、11b…アルミニウム板、12…絶縁基板(DBA)、13…冷却器、14…半田、20…ロウ材、21…反応性膜、21a…アルミニウム薄膜、21b…ニッケル薄膜、23…接合層、30…放熱板、31a、31b…ワイヤ、40…金属板、41…絶縁樹脂、42…放熱板、50a、50b…ハウジング、51a、51b…バスバー、52…モールドパッケージ。

Claims (7)

  1. 半導体素子を含む構造体がこれを支持する支持体に一体に接合されて構成される半導体装置の前記半導体素子を含む構造体を熱抵抗の低い接合材を介して前記支持体に接合する半導体装置の製造方法において、
    反応温度と熱伝導率との相反する関係の中で前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定された反応性膜を前記接合材によって挟持する態様で前記支持体上にこれら接合材及び反応性膜及び接合材及び前記構造体を順に積層し、この状態で前記反応性膜にその反応を誘起する反応条件を付与することにより前記接合材を溶融せしめて前記支持体に前記構造体を接合するに際し、前記反応性膜として、反応温度が低くかつ熱伝導率の高い金属薄膜からなる第1の金属薄膜と反応温度が高くかつ熱伝導率の低い金属薄膜からなる第2の金属薄膜とが複数層、交互に積層された膜を用い、特定の積層数の中でのこれら第1の金属薄膜の膜厚と第2の金属薄膜の膜厚との膜厚調整を通じて前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定する
    ことを特徴とする半導体装置の製造方法。
  2. 前記反応性膜を構成する前記第1の金属薄膜としてアルミニウム薄膜を用い、前記第2の金属薄膜としてニッケル薄膜を用いる
    請求項に記載の半導体装置の製造方法。
  3. 前記接合材としてアルミニウム系のロウ材を用い、前記反応性膜の反応温度が600℃となるように前記アルミニウム薄膜と前記ニッケル薄膜とが各々膜厚調整される
    請求項に記載の半導体装置の製造方法。
  4. 前記構造体及び前記支持体の各接合面に前記接合材を予め塗布しておくとともに、それら接合材の塗布された構造体及び支持体のいずれか一方の接合材の表面に前記反応性膜を予め成膜しておく
    請求項1〜のいずれか一項に記載の半導体装置の製造方法。
  5. 前記構造体として、両面にアルミニウム板の接着された絶縁基板上に前記半導体素子が
    半田付けによって実装されたものを含むものを用いる
    請求項1〜のいずれか一項に記載の半導体装置の製造方法。
  6. 前記構造体として、金属からなる放熱板上に前記半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装されたものを含むものを用いる
    請求項1〜のいずれか一項に記載の半導体装置の製造方法。
  7. 前記構造体を支持する支持体として、液冷式もしくは空冷式の冷却器を用いる
    請求項1〜のいずれか一項に記載の半導体装置の製造方法。
JP2008282082A 2008-10-31 2008-10-31 半導体装置の製造方法 Expired - Fee Related JP5018737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282082A JP5018737B2 (ja) 2008-10-31 2008-10-31 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282082A JP5018737B2 (ja) 2008-10-31 2008-10-31 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2010109278A JP2010109278A (ja) 2010-05-13
JP5018737B2 true JP5018737B2 (ja) 2012-09-05

Family

ID=42298397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282082A Expired - Fee Related JP5018737B2 (ja) 2008-10-31 2008-10-31 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5018737B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006822B4 (de) * 2009-01-29 2011-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrostruktur, Verfahren zu deren Herstellung, Vorrichtung zum Bonden einer Mikrostruktur und Mikrosystem
TW201214909A (en) * 2010-09-30 2012-04-01 Arima Lasers Corp Conduction cooled package laser and packaging method thereof
JP6111143B2 (ja) * 2013-05-30 2017-04-05 新光電気工業株式会社 半導体装置の製造方法
JP2015116574A (ja) * 2013-12-16 2015-06-25 公立大学法人兵庫県立大学 反応性多層膜およびそれを用いたデバイス用接合方法
DE102014213490C5 (de) * 2014-07-10 2020-06-18 Continental Automotive Gmbh Kühlvorrichtung, Verfahren zur Herstellung einer Kühlvorrichtung und Leistungsschaltung
KR102709152B1 (ko) * 2016-11-10 2024-09-25 주식회사 아모센스 세라믹 기판 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171234B2 (ja) * 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP4965242B2 (ja) * 2006-12-27 2012-07-04 株式会社ティラド アルミニューム製ヒートシンクの製造方法
JP2008238233A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 非鉛系の合金接合材、接合方法および接合体

Also Published As

Publication number Publication date
JP2010109278A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
CN107534033B (zh) 接合体、自带散热器的功率模块用基板、散热器及接合体的制造方法、自带散热器的功率模块用基板的制造方法、散热器的制造方法
JP6272512B2 (ja) 半導体装置および半導体装置の製造方法
JP6199397B2 (ja) 半導体装置およびその製造方法
JP5018737B2 (ja) 半導体装置の製造方法
JP4371151B2 (ja) 半導体パワーモジュール
JP5829403B2 (ja) 放熱用絶縁基板及びその製造方法
WO2011040313A1 (ja) 半導体モジュールおよびその製造方法
JP2014112732A (ja) ヒートシンク付パワーモジュール用基板及びパワーモジュール
CN112823073B (zh) 接合体、带散热器的绝缘电路基板及散热器
JP6777148B2 (ja) 半導体装置
JP5808295B2 (ja) モジュール
JP2004327711A (ja) 半導体モジュール
JP2009158715A (ja) 放熱装置及びパワーモジュール
JP2005328087A (ja) パワーモジュール用基板
JP6413230B2 (ja) 抵抗器及び抵抗器の製造方法
US10804236B2 (en) Power electronic assemblies with high purity aluminum plated substrates
JP6118583B2 (ja) 絶縁基板
JP6201297B2 (ja) 銅板付きパワーモジュール用基板及び銅板付きパワーモジュール用基板の製造方法
JP2001203299A (ja) アルミニウム板とそれを用いたセラミックス回路基板
JP5315635B2 (ja) パワーモジュールの放熱板・セラミック層接合基板の製造方法
JP5979478B2 (ja) 3層構造積層ダイヤモンド系基板、パワー半導体モジュール用放熱実装基板およびそれらの製造方法
JP6673635B2 (ja) 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法、及び、接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク
JP2019096643A (ja) 半導体チップおよびパワーモジュールならびにその製造方法
JP2013211288A (ja) ヒートシンク付パワーモジュール用基板の製造方法
JP2004327732A (ja) セラミック回路基板及び電気回路モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees