JP5015382B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP5015382B2
JP5015382B2 JP2001097238A JP2001097238A JP5015382B2 JP 5015382 B2 JP5015382 B2 JP 5015382B2 JP 2001097238 A JP2001097238 A JP 2001097238A JP 2001097238 A JP2001097238 A JP 2001097238A JP 5015382 B2 JP5015382 B2 JP 5015382B2
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
temperature
electrolytic capacitor
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001097238A
Other languages
Japanese (ja)
Other versions
JP2002299175A (en
Inventor
典仁 福井
英彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001097238A priority Critical patent/JP5015382B2/en
Publication of JP2002299175A publication Critical patent/JP2002299175A/en
Application granted granted Critical
Publication of JP5015382B2 publication Critical patent/JP5015382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサの製造方法に係り、特に、コンデンサ素子にモノマー溶液と酸化剤溶液を含浸する際の方法及び条件に改良を施した固体電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。
【0003】
この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。
【0004】
また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)に着目した技術(特開平2−15611号公報)が存在している。
【0005】
このような巻回型のコンデンサ素子にPEDTからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作製される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。
【0006】
このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)と酸化剤溶液をそれぞれ吐出して、コンデンサ素子内でEDTの重合反応を促進し、PEDTからなる固体電解質層を生成する。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような製造方法では、コンデンサ素子にEDTを吐出→乾燥→酸化剤を吐出→重合という工程が必要となり、工程が煩雑なものとなるため、EDT溶液と酸化剤溶液を予め混合して混合液を調製し、この混合液にコンデンサ素子を含浸させる方法が用いられている。ところが、実際の量産工程において、このような混合液に含浸する方法を用いた場合、初期特性がばらつくという問題点があった。
なお、この点は重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に問題となっていた。
【0008】
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、簡便な製造工程で、良好な特性を有する固体電解コンデンサを得ることができる固体電解コンデンサの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく、実際の量産工程において混合液にコンデンサ素子を含浸する方法を用いた場合に、初期特性がばらつく原因について検討を重ねた結果、混合液に含浸する前のコンデンサ素子の温度によって初期特性がばらつくことを見出したものである。
【0010】
(コンデンサ素子の含浸前の温度)
コンデンサ素子の含浸前の温度は、混合液の液温より20℃高い温度を越えない温度、すなわち、[コンデンサ素子の含浸前温度<(混合液の液温+20℃)]が好ましく、より好ましくは、混合液の液温より10℃高い温度を越えない温度にして含浸すると良好な初期特性が得られることが分かった。
通常、混合含浸の場合、混合液の温度が高すぎると重合が進行してしまい、温度が低いと含浸性が低下するので、液温を15〜30℃としている。従って、含浸前のコンデンサ素子の温度は35〜50℃、より好ましくは25〜40℃を越えない温度にして含浸することが好ましい。
【0011】
このように、含浸前のコンデンサ素子の温度が、混合液の液温より20℃以上高い状態で混合液に含浸した場合に初期特性が悪化する理由は、コンデンサ素子の熱によって、コンデンサ素子に接した混合液中の溶媒やモノマーが気化したり重合反応が進行することによって、混合液の粘度が上昇し、含浸性が低下するためであると考えられる。
【0012】
(固体電解コンデンサの製造方法)
陽極箔を陰極箔及びセパレータと共に巻回してコンデンサ素子を形成する。一方、所定の容器に重合性モノマーと酸化剤と所定の溶媒とを入れて混合し、この混合液の液温より20℃高い温度を越えない温度に調製したコンデンサ素子をこの混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに挿入し、固体電解コンデンサを完成する。
【0013】
(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
また、酸化剤としては、ブタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜55wt%が好ましい。
【0014】
(EDTと酸化剤の混合比)
EDTと酸化剤(溶媒を含まず)の混合比は、重量比で1:0.9〜1:2.2の範囲が好適であり、1:1.3〜1:2.0の範囲がより好適である。この範囲外ではESRが上昇する。
その理由は、以下の通りであると考えられる。すなわち、モノマーに対する酸化剤の量が多過ぎると、相対的に含浸されるモノマーの量が低下するので、形成されるPEDTの量が低下してESRが上昇する。一方、酸化剤の量が少なすぎると、モノマーを重合するのに必要な酸化剤が不足して、形成されるPEDTの量が低下してESRが上昇する。
【0015】
(浸漬時間)
コンデンサ素子を混合液に浸漬する時間は、コンデンサ素子の大きさによって決まるが、φ5×2L程度のコンデンサ素子では5秒以上、φ8×4L程度のコンデンサ素子では10秒以上が望ましく、最低でも5秒間は浸漬することが必要である。なお、長時間浸漬しても特性上の弊害はない。
【0016】
(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
【0017】
(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。
【化1】

Figure 0005015382
【0018】
(作用・効果)
上記のように、重合性モノマーと酸化剤の混合液をコンデンサ素子に含浸する場合に、コンデンサ素子の含浸前の温度を、混合液の液温より20℃高い温度を越えない温度、すなわち、[コンデンサ素子の含浸前温度<(混合液の液温+20℃)]、より好ましくは、混合液の液温より10℃高い温度を越えない温度にして含浸することにより、含浸時の混合液の液温とコンデンサ素子の温度との差を小さくすることができる。
【0019】
その結果、コンデンサ素子の熱によって、コンデンサ素子に接した混合液中の溶媒やモノマーが気化したり、重合反応が進行することを防止することができるので、混合液の粘度の上昇を抑制でき、含浸性が低下することを防止できる。そのため、上記のような本発明の製造方法によれば、コンデンサ素子を含浸に最も適した状態で重合性モノマーと酸化剤と溶媒を混合した混合液に含浸することができるので、良好な特性を有する固体電解コンデンサを得ることができる。
【0020】
【実施例】
続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。
(実施例)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回して、素子形状が6.3φ×5.4Lのコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して修復化成を行った。修復化成後、含浸工程前に100℃で10分間乾燥し、その後、コンデンサ素子の温度が25℃になるまで冷却した。
一方、カップ状の容器に、EDTと45%のパラトルエンスルホン酸第二鉄のブタノール溶液を、その重量比が1:0.8となるように注入し、混合液を調製した。なお、この混合液の液温は25℃に調製した。
そして、コンデンサ素子を上記混合液に10秒間浸漬し、100℃、1時間加熱して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。そして、このコンデンサ素子を有底筒状のアルミニウムケースに挿入し、開口部を絞り加工によってゴム封口してエージングを行い、固体電解コンデンサを作成した。なお、この固体電解コンデンサの定格電圧は6.3WV、定格容量は100μFである。
【0021】
(比較例)
含浸前のコンデンサ素子の温度を50℃になるまで冷却した。なお、比較例におけるコンデンサ素子の温度は、本発明の範囲外である混合液の液温より25℃高く設定したものである。その他の条件及び工程は、実施例と同様とした。
【0022】
[比較結果]
上記の方法により得られた実施例及び比較例の各固体電解コンデンサについて、電気的特性を調べたところ、表1に示したような結果が得られた。
【表1】
Figure 0005015382
【0023】
表1から明らかなように、含浸前のコンデンサ素子の温度を、混合液の液温と同じ25℃にまで冷却した実施例は、本発明の範囲外である比較例に比べて、静電容量、tanδ、ESR共に良好な結果が得られた。
【0024】
【発明の効果】
以上述べたように、本発明によれば、簡便な製造工程で、良好な特性を有する固体電解コンデンサを得ることができる固体電解コンデンサの製造方法及び固体電解コンデンサを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor in which the method and conditions for impregnating a capacitor element with a monomer solution and an oxidant solution are improved.
[0002]
[Prior art]
An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.
[0003]
In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.
[0004]
As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (Japanese Patent Laid-Open No. 2-15611) that focuses on polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.
[0005]
A solid electrolytic capacitor of a type in which a solid electrolyte layer made of PEDT is formed on such a wound capacitor element is manufactured as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.
[0006]
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidant solution are respectively discharged onto the capacitor element that has undergone restoration conversion to promote the EDT polymerization reaction in the capacitor element, and PEDT. A solid electrolyte layer is produced.
[0007]
[Problems to be solved by the invention]
However, the manufacturing method as described above requires the steps of discharging EDT to the capacitor element → drying → discharging the oxidizing agent → polymerization, and the process becomes complicated. Therefore, the EDT solution and the oxidizing agent solution are mixed in advance. A method of preparing a mixed solution and impregnating the mixed solution with a capacitor element is used. However, in the actual mass production process, when such a method of impregnating the mixed solution is used, there is a problem that initial characteristics vary.
This point is not limited to the case where EDT is used as the polymerizable monomer, but the same problem occurs when other thiophene derivatives, pyrrole, aniline, and the like are used.
[0008]
The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to provide a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having good characteristics with a simple manufacturing process. It is to provide a method for manufacturing a capacitor.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have repeatedly studied the cause of variation in initial characteristics when using a method of impregnating a capacitor element into a mixed solution in an actual mass production process. It has been found that the initial characteristics vary depending on the temperature of the previous capacitor element.
[0010]
(Temperature before impregnation of capacitor element)
The temperature before impregnation of the capacitor element is preferably a temperature not exceeding 20 ° C. higher than the liquid temperature of the mixed solution, that is, [temperature before impregnation of the capacitor element <(liquid temperature of the mixed solution + 20 ° C.)], more preferably. It was found that good initial characteristics can be obtained by impregnation at a temperature not exceeding 10 ° C. higher than the liquid temperature of the mixed solution.
Usually, in the case of mixed impregnation, if the temperature of the mixed solution is too high, polymerization proceeds, and if the temperature is low, the impregnation property decreases, so the liquid temperature is set to 15 to 30 ° C. Therefore, it is preferable to impregnate the capacitor element before impregnation at a temperature not exceeding 35 to 50 ° C., more preferably not exceeding 25 to 40 ° C.
[0011]
Thus, when the temperature of the capacitor element before impregnation is 20 ° C. or more higher than the liquid temperature of the mixed solution, the initial characteristics deteriorate when the capacitor element is in contact with the capacitor element due to the heat of the capacitor element. This is probably because the solvent or monomer in the mixed solution is vaporized or the polymerization reaction proceeds, whereby the viscosity of the mixed solution increases and the impregnation property decreases.
[0012]
(Method for manufacturing solid electrolytic capacitor)
The anode foil is wound together with the cathode foil and the separator to form a capacitor element. On the other hand, a polymerizable monomer, an oxidizing agent, and a predetermined solvent are mixed in a predetermined container and mixed, and a capacitor element prepared at a temperature not exceeding 20 ° C. higher than the liquid temperature of the mixed liquid is immersed in the mixed liquid. Then, a polymerization reaction of the conductive polymer is generated in the capacitor element to form a solid electrolyte layer. And this capacitor | condenser element is inserted in an exterior case, and a solid electrolytic capacitor is completed.
[0013]
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.
As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in butanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 55 wt%.
[0014]
(Mixing ratio of EDT and oxidizing agent)
The mixing ratio of EDT and oxidizing agent (without solvent) is preferably in the range of 1: 0.9 to 1: 2.2 by weight, and in the range of 1: 1.3 to 1: 2.0. More preferred. Outside this range, ESR increases.
The reason is considered as follows. That is, when the amount of the oxidizing agent relative to the monomer is too large, the amount of the monomer to be impregnated relatively decreases, so that the amount of PEDT formed decreases and the ESR increases. On the other hand, when the amount of the oxidizing agent is too small, the oxidizing agent necessary for polymerizing the monomer is insufficient, the amount of PEDT formed is lowered, and the ESR is increased.
[0015]
(Immersion time)
The time for immersing the capacitor element in the mixed solution is determined depending on the size of the capacitor element, but it is preferably 5 seconds or more for a capacitor element of about φ5 × 2L, 10 seconds or more for a capacitor element of about φ8 × 4L, and at least 5 seconds. Must be immersed. In addition, even if it is immersed for a long time, there is no harmful effect on characteristics.
[0016]
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.
[0017]
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
[Chemical 1]
Figure 0005015382
[0018]
(Action / Effect)
As described above, when the capacitor element is impregnated with the mixed solution of the polymerizable monomer and the oxidizing agent, the temperature before impregnation of the capacitor element is a temperature not exceeding 20 ° C. higher than the liquid temperature of the mixed solution, that is, [ The temperature before impregnation of the capacitor element <(liquid temperature of the mixed liquid + 20 ° C.)], more preferably, the liquid of the mixed liquid at the time of impregnation is obtained by impregnation at a temperature not exceeding 10 ° C. higher than the liquid temperature of the mixed liquid. The difference between the temperature and the temperature of the capacitor element can be reduced.
[0019]
As a result, it is possible to prevent the solvent or monomer in the mixed solution in contact with the capacitor element from being vaporized or the polymerization reaction from proceeding due to the heat of the capacitor element, thereby suppressing an increase in the viscosity of the mixed solution, It is possible to prevent the impregnation property from being lowered. Therefore, according to the manufacturing method of the present invention as described above, the capacitor element can be impregnated in a mixed solution of a polymerizable monomer, an oxidant and a solvent in a state most suitable for impregnation, so that good characteristics can be obtained. A solid electrolytic capacitor can be obtained.
[0020]
【Example】
Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.
(Example)
An electrode lead means was connected to the anode foil and cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element having an element shape of 6.3φ × 5.4 L. . And this capacitor | condenser element was immersed in ammonium dihydrogenphosphate aqueous solution for 40 minutes, and restoration | repair chemical conversion was performed. After the repair conversion, the substrate was dried at 100 ° C. for 10 minutes before the impregnation step, and then cooled until the temperature of the capacitor element reached 25 ° C.
On the other hand, a butanol solution of EDT and 45% ferric paratoluenesulfonic acid was poured into a cup-shaped container so that the weight ratio would be 1: 0.8 to prepare a mixed solution. In addition, the liquid temperature of this liquid mixture was adjusted to 25 degreeC.
Then, the capacitor element was immersed in the above mixed solution for 10 seconds and heated at 100 ° C. for 1 hour to cause PEDT polymerization reaction in the capacitor element, thereby forming a solid electrolyte layer. Then, this capacitor element was inserted into a bottomed cylindrical aluminum case, and the opening was rubber-sealed by drawing to perform aging, thereby producing a solid electrolytic capacitor. This solid electrolytic capacitor has a rated voltage of 6.3 WV and a rated capacity of 100 μF.
[0021]
(Comparative example)
The capacitor element before impregnation was cooled to 50 ° C. In addition, the temperature of the capacitor | condenser element in a comparative example is set 25 degreeC higher than the liquid temperature of the liquid mixture which is outside the range of this invention. Other conditions and steps were the same as in the examples.
[0022]
[Comparison result]
The electrical characteristics of the solid electrolytic capacitors of Examples and Comparative Examples obtained by the above methods were examined, and the results shown in Table 1 were obtained.
[Table 1]
Figure 0005015382
[0023]
As can be seen from Table 1, the capacitance of the capacitor element before impregnation was cooled to 25 ° C., the same as the liquid temperature of the mixed solution, compared with the comparative example which is outside the scope of the present invention. , Tan δ and ESR were good.
[0024]
【Effect of the invention】
As described above, according to the present invention, it is possible to provide a solid electrolytic capacitor manufacturing method and a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having good characteristics by a simple manufacturing process.

Claims (3)

陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、重合性モノマーと酸化剤とを含浸して導電性ポリマーからなる固体電解質層を形成する固体電解コンデンサの製造方法において、重合性モノマーと酸化剤の混合液を調製し、当該混合液の液温を15℃〜30℃とすると共に、乾燥工程を施したコンデンサ素子の温度を、高温領域における混合液の粘度上昇を抑制する温度である(混合液の液温+20℃)未満まで冷却した後、前記混合液を含浸させることを特徴とする固体電解コンデンサの製造方法。In a method for producing a solid electrolytic capacitor in which a capacitor element obtained by winding an anode electrode foil and a cathode electrode foil through a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer, Prepare a mixed solution of a polymerizable monomer and an oxidizing agent, set the liquid temperature of the mixed solution to 15 ° C to 30 ° C, and control the temperature of the capacitor element that has been subjected to the drying process to suppress the viscosity increase of the mixed solution in a high temperature region A solid electrolytic capacitor manufacturing method, wherein the mixed liquid is impregnated after cooling to a temperature lower than (temperature of the mixed liquid + 20 ° C.). 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。  The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項2に記載の固体電解コンデンサの製造方法。  The method for producing a solid electrolytic capacitor according to claim 2, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2001097238A 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP5015382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097238A JP5015382B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097238A JP5015382B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2002299175A JP2002299175A (en) 2002-10-11
JP5015382B2 true JP5015382B2 (en) 2012-08-29

Family

ID=18951043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097238A Expired - Fee Related JP5015382B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5015382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210513A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Method for manufacturing electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312625A (en) * 1987-06-16 1988-12-21 Sanyo Electric Co Ltd Manufacture of solid-state electrolytic capacitor
JPH038312A (en) * 1989-06-05 1991-01-16 Marcon Electron Co Ltd Solid electrolytic capacitor and manufacture thereof
JP3319501B2 (en) * 1997-06-06 2002-09-03 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP3490868B2 (en) * 1997-08-27 2004-01-26 三洋電機株式会社 Method for manufacturing solid electrolytic capacitor
JP2001110684A (en) * 1999-08-05 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2002299175A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP2003289016A (en) Manufacturing method for solid electrolytic capacitor
JP5134173B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5126865B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110422

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees