WO2022210513A1 - Method for manufacturing electrolytic capacitor - Google Patents

Method for manufacturing electrolytic capacitor Download PDF

Info

Publication number
WO2022210513A1
WO2022210513A1 PCT/JP2022/014926 JP2022014926W WO2022210513A1 WO 2022210513 A1 WO2022210513 A1 WO 2022210513A1 JP 2022014926 W JP2022014926 W JP 2022014926W WO 2022210513 A1 WO2022210513 A1 WO 2022210513A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
temperature
electrode group
anode foil
electrolytic capacitor
Prior art date
Application number
PCT/JP2022/014926
Other languages
French (fr)
Japanese (ja)
Inventor
義和 平田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023511244A priority Critical patent/JPWO2022210513A1/ja
Publication of WO2022210513A1 publication Critical patent/WO2022210513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture

Definitions

  • the present invention relates to a method for manufacturing an electrolytic capacitor.
  • Capacitors used in electronic devices are required to have a large capacity and a small equivalent series resistance (ESR) value in the high frequency range.
  • Electrolytic capacitors using conductive polymers such as polythiophene are promising as large-capacity, low-ESR capacitors.
  • a capacitor element of an electrolytic capacitor is obtained, for example, by winding an anode foil and a cathode foil through a separator to form an electrode group, and impregnating the electrode group with a treatment liquid containing a conductive polymer.
  • Patent Document 1 a film forming process in which a conductive polymer solution is applied to a dielectric layer of a base material for a capacitor and dried to form a conductive polymer film is repeated twice or more, and at least once after the second time.
  • the conductive polymer solution used in the first film forming process it is proposed to use a high-viscosity solution having a higher viscosity than the conductive polymer solution used in the first film forming process.
  • the conductive polymer solution described above contains a ⁇ -conjugated conductive polymer, a polyanion, and a solvent.
  • One aspect of the present invention includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil.
  • the performance of electrolytic capacitors can be improved.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to an embodiment of the invention
  • FIG. FIG. 2 is a partially developed perspective view of the wound body of FIG. 1 ;
  • an electrolytic capacitor according to the present disclosure will be described below with examples, but the present disclosure is not limited to the examples described below.
  • specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
  • the description "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as “numerical value A or more and numerical value B or less”.
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit. .
  • a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination.
  • the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
  • a method for manufacturing an electrolytic capacitor according to one embodiment of the present invention includes a first step of preparing an electrode group, a second step of preparing a treatment liquid containing a conductive polymer, and and a third step of forming a solid electrolyte layer containing a polymer.
  • the electrode group includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil.
  • the electrode group is impregnated with the treatment liquid to form a solid electrolyte layer containing a conductive polymer on at least part of the electrode group.
  • the impregnability of the treatment liquid in the porous portion and the separator is adjusted, and the amount of the conductive polymer contained in the porous portion and the separator is adjusted. .
  • the capacitance can be increased, and in the case of step (a-2) described later, the ESR can be reduced.
  • the concentration of the treatment liquid in the vicinity of the porous portion of the anode foil increases, increasing the filling amount of the conductive polymer in the porous portion. can be done.
  • the concentration of the treatment liquid in the vicinity of the separator increases, and the filling amount of the conductive polymer in the separator can be increased.
  • the third step includes a step (a) of controlling the anode foil and the treatment liquid to different temperatures, and a step (b) of impregnating the electrode group with the treatment liquid after step (a) to form a solid electrolyte layer. and including.
  • step (b) the electrode assembly may be impregnated with the treatment liquid and then dried.
  • the step (a) may include the step (a-1) of making the temperature of the anode foil higher than the temperature of the treatment liquid.
  • the porous portion of the anode foil can be impregnated with a large amount of the treatment liquid (conductive polymer), and the dielectric layer can be sufficiently coated with the conductive polymer to increase the capacitance. .
  • the temperature of the anode foil may be higher than the temperature of the treatment liquid by a temperature difference in the range of 50°C or more and 100°C or less.
  • the temperature of the anode foil may be 80° C. or higher and 120° C. or lower, and the temperature of the treatment liquid may be 20° C. or higher and 30° C. or lower.
  • Step (a-1) is performed, for example, by heating the anode foil and/or cooling the treatment liquid.
  • Step (a) may include step (a-2) of making the temperature of the treatment liquid higher than the temperature of the anode foil.
  • the separator can be impregnated with a large amount of treatment liquid (conductive polymer), and many conductive paths are formed with the conductive polymer between the anode foil and the cathode foil to reduce the ESR. can be done.
  • the temperature of the treatment liquid may be higher than the temperature of the anode foil by a temperature difference in the range of 50°C or more and 100°C or less.
  • the temperature of the anode foil may be ⁇ 20° C. or higher and 0° C. or lower, and the temperature of the treatment liquid may be 30° C. or higher and 60° C. or lower.
  • Step (a-2) is performed, for example, by cooling the anode foil and/or heating the treatment liquid.
  • the heating or cooling of the anode foil may be performed by heating or cooling the electrode group.
  • the anode foil has high thermal conductivity and is easy to control the heating (cooling) temperature.
  • separators have low thermal conductivity and are less susceptible to heating (cooling). Therefore, even by heating (cooling) the electrode group, the impregnability of the porous portion and the separator with the treatment liquid can be adjusted using the temperature difference between the anode foil and the treatment liquid.
  • steps (a) and (b) may be performed once or multiple times.
  • step (a) is performed multiple times, the temperature of the anode foil and/or the treatment liquid may be changed during the multiple times of step (a).
  • step (b) is performed multiple times, drying may be performed each time the electrode group is impregnated with the treatment liquid.
  • Step (a) may include step (a-1) and step (a-2). That is, the third step includes a 3A step and a 3B step.
  • the 3A step after the temperature of the anode foil is made higher than the temperature of the treatment liquid, the electrode group is impregnated with the treatment liquid.
  • the electrode group In the step, after the temperature of the treatment liquid is made higher than the temperature of the anode foil, the electrode group may be impregnated with the treatment liquid.
  • the order of the 3A step and the 3B step is not limited.
  • the electrode group may be impregnated with the treatment liquid after the temperature of the anode foil is made higher than the temperature of the treatment liquid by a temperature difference in the range of 50°C or more and 100°C or less.
  • the electrode group may be impregnated with the treatment liquid after the temperature of the treatment liquid is raised higher than the temperature of the anode foil by a temperature difference in the range of 50° C. or more and 100° C. or less.
  • the 3rd step it is preferable to perform the 3B step after the 3A step. In this case, it is easy to reduce the ESR while increasing the capacitance.
  • the treatment liquid can diffuse through the separator into the porous portion of the anode foil. It is better to first perform the 3A step of impregnating the porous portion with a large amount of the treatment liquid and then perform the 3B step of impregnating the separator with a large amount of the treatment liquid so that the treatment liquid can be efficiently applied to the porous portion and the separator. can be impregnated.
  • a treatment liquid A and a treatment liquid B containing a component different from the treatment liquid A are prepared, in the 3A step, the electrode group is impregnated with the treatment liquid A, and in the 3B step, the treatment liquid B may be impregnated into the electrode group.
  • the treatment liquid A may contain a component capable of repairing defects in the dielectric layer or a component capable of suppressing an increase in leakage current caused by defects in the dielectric layer.
  • the treatment liquid A may contain a conductive polymer A
  • the treatment liquid B may contain a conductive polymer B having a higher conductivity than the conductive polymer A.
  • the 3B step allows the separator to contain a large amount of the conductive polymer B having a high conductivity, thereby reducing the ESR.
  • Conductive polymer B which has a high conductivity, tends to cause an increase in leakage current. Contact of the polymer B to the porous portion can be restricted, and an increase in leakage current can be suppressed.
  • the conductivity of the conductive polymer A is, for example, 10 S/cm or more and 200 S/cm or less.
  • the conductivity of the conductive polymer B is, for example, 300 S/cm or more and 500 S/cm or less.
  • the conductivity of the conductive polymer in the treatment liquid is measured by applying the treatment liquid on the substrate and drying it to form a conductive polymer film (for example, a thickness of 10 ⁇ m to 30 ⁇ m) and measuring the conductivity of the film. It is required by Loresta GX and PSP probes manufactured by Nitto Seiko Analyticc Co., Ltd. can be used as conductivity measuring devices.
  • an electrode group is prepared.
  • the electrode group includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil.
  • an electrode group may be obtained by disposing a separator between the anode foil and the cathode foil.
  • an electrode group wound body
  • an electrode group wound body
  • an electrode group wound body
  • the anode foil and the cathode foil may be folded in a zigzag manner with a separator interposed between the anode foil and the cathode foil to form an electrode group (laminate).
  • the anode foil has a porous portion and a dielectric layer covering the surface of the porous portion. At least part of the dielectric layer of the anode foil is in contact with the conductive polymer (solid electrolyte layer).
  • the porous portion is formed, for example, by roughening the surface of the metal foil by etching or the like.
  • the dielectric layer is obtained by forming an oxide film on the roughened surface of the metal foil by chemical conversion treatment or the like.
  • the type of metal that constitutes the metal foil is not particularly limited.
  • metals constituting the metal foil include metals with valve action, such as aluminum, tantalum, niobium, and titanium, and alloys of metals with valve action, in view of the ease with which the dielectric layer can be formed.
  • a preferred example is aluminum and aluminum alloys.
  • a metal foil can be used for the cathode foil.
  • the kind of metal that constitutes the metal foil is not particularly limited.
  • As the metal foil those exemplified for the anode foil can be used.
  • a metal (dissimilar metal) different from the metal forming the metal foil or a non-metal coating may be provided on the surface of the metal foil. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon.
  • a metal foil whose surface has been roughened by etching or the like may be used as the cathode foil. That is, the cathode foil may have a porous portion on its surface. A chemical conversion film may be provided on the roughened surface of the metal foil.
  • the electrode group may be impregnated with the treatment liquid after the cathode foil and the treatment liquid are controlled to different temperatures. By heating or cooling the electrode group, the anode foil as well as the cathode foil may be controlled to a temperature different from that of the treatment liquid. Thereby, the impregnation property of the treatment liquid into the porous portion of the cathode portion may be adjusted.
  • separator for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, aliphatic polyamide, aromatic polyamide such as aramid), or the like is used.
  • polyamide for example, aliphatic polyamide, aromatic polyamide such as aramid
  • a treatment liquid containing a conductive polymer is prepared.
  • a dispersion (or solution) of a conductive polymer is used as the treatment liquid.
  • Water is usually used as a dispersion medium (or solvent) for the treatment liquid.
  • the treatment liquid may contain a dopant together with the conductive polymer, and may further contain components other than the conductive polymer and the dopant.
  • the treatment liquid can be obtained, for example, by oxidative polymerization of a conductive polymer precursor in a dispersion medium (or solvent), and the dispersion medium (or solvent) may contain a dopant.
  • conductive polymer precursors include monomers constituting the conductive polymer and/or oligomers in which several monomers are linked.
  • the conductivity of the conductive polymer can be adjusted by, for example, the polymerization conditions of the conductive polymer precursor (for example, the type of the conductive polymer precursor, the oxidizing agent, or the catalyst), the type of the dopant, and the like. can.
  • Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof. Such derivatives include polymers having polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene as basic skeletons.
  • derivatives of polythiophene include poly(3,4-ethylenedioxythiophene) and the like. These conductive polymers may be used alone or in combination.
  • the conductive polymer may be a copolymer of two or more monomers.
  • the weight average molecular weight of the conductive polymer is not particularly limited, and may be in the range of 1,000 to 100,000, for example.
  • a preferred example of a conductive polymer is poly(3,4-ethylenedioxythiophene) (PEDOT).
  • dopants examples include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprenesulfonic acid, polyacrylic including acids. These may be used alone or in combination of two or more. These may be added in the form of salts.
  • the dopant may be present in the electrolyte in the form of an anion in which cations (eg, protons) are dissociated from at least some of the acidic groups.
  • a preferred example of a dopant is polystyrene sulfonic acid (PSS).
  • the weight average molecular weight of the dopant is not particularly limited. From the viewpoint of facilitating formation of a homogeneous solid electrolyte layer, the dopant may have a weight average molecular weight in the range of 1,000 to 100,000.
  • the conductive polymer may be a dopant-doped conductive polymer, such as poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (hereinafter also referred to as PEDOT/PSS). There may be.
  • PEDOT/PSS polystyrene sulfonic acid
  • the concentration of the conductive polymer (eg, PEDOT/PSS) in the treatment liquid is, for example, 1% by mass or more and 3% by mass or less.
  • the viscosity of the treatment liquid at 20° C. is, for example, 10 mPa ⁇ s or more and 60 mPa ⁇ s or less.
  • the electrode group is impregnated with the treatment liquid to form a solid electrolyte layer containing a conductive polymer on at least part of the electrode group.
  • a capacitor element is thus obtained.
  • the impregnation with the treatment liquid may be performed by immersing the electrode group in the treatment liquid, or by dripping the treatment liquid onto the electrode group.
  • the impregnation with the treatment liquid may be performed under an atmospheric pressure atmosphere or under a reduced pressure atmosphere.
  • the electrode group containing the treatment liquid may be dried. Drying may be performed by heating (eg, 120° C. to 200° C.).
  • the electrode group is impregnated with the treatment liquid a plurality of times, at least one of which impregnates the electrode group with the treatment liquid after controlling the anode foil and the treatment liquid to different temperatures. It may be a step of causing
  • the method for manufacturing an electrolytic capacitor may include a step of impregnating the capacitor element with a liquid component.
  • the method for manufacturing an electrolytic capacitor may include a step of sealing a bottomed case in which the capacitor element is accommodated.
  • the liquid component may be an electrolytic solution or a non-aqueous solvent.
  • the liquid component has a role of protecting the conductive polymer. Moreover, the inclusion of the liquid component can improve the contact between the conductive polymer and the dielectric layer, and can also improve the repairability of defects in the dielectric layer.
  • the electrolytic solution can function as an electrolyte together with the conductive polymer.
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as ⁇ -butyrolactone (GBL), N-methylacetamide, N,N- Amides such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methyl ethyl ketone, and formaldehyde. .
  • the non-aqueous solvent may be used singly or in combination of two or more.
  • the liquid component may contain an acid component and a base component.
  • acid components include maleic acid, phthalic acid, benzoic acid, pyromellitic acid, resorcinic acid, and the like.
  • base components include 1,2,4-trimethylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, and the like.
  • the electrolyte contains a non-aqueous solvent and a solute (eg, organic salt) dissolved therein.
  • a non-aqueous solvent that constitutes the electrolytic solution include the examples of the non-aqueous solvent described above.
  • solutes include inorganic salts and organic salts.
  • An organic salt is a salt in which at least one of the anion and cation contains an organic substance. Examples of organic salts include trimethylamine maleate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, mono-1,3-dimethyl-2-ethylimidazolinium phthalate, and the like. is included.
  • the pH of the liquid component may be less than 7 or 5 or less.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to an embodiment of the invention.
  • FIG. 2 is a partially unfolded perspective view of the wound body of FIG.
  • the electrolytic capacitor 200 includes a wound body 100 (electrode group).
  • the wound body 100 is constructed by winding the anode foil 10 and the cathode foil 20 with the separator 30 interposed therebetween.
  • the wound body 100 contains a conductive polymer (not shown).
  • Lead tabs 50A and 50B are connected to the anode foil 10 and the cathode foil 20, respectively, and the wound body 100 is formed by winding the lead tabs 50A and 50B.
  • Lead wires 60A and 60B are connected to the other ends of lead tabs 50A and 50B, respectively.
  • a winding stop tape 40 is arranged on the outer surface of the cathode foil 20 located in the outermost layer of the wound body 100 , and the ends of the cathode foil 20 are fixed by the winding stop tape 40 .
  • the anode foil 10 is prepared by cutting from a large-sized foil, the rolled body 100 may be further subjected to a chemical conversion treatment in order to provide a dielectric layer on the cut surface.
  • the wound body 100 is housed in the bottomed case 211 so that the lead wires 60A and 60B are located on the opening side of the bottomed case 211.
  • metals such as aluminum, stainless steel, copper, iron, and brass, or alloys thereof can be used.
  • a sealing member 212 is placed in the opening of the bottomed case 211 in which the wound body 100 is accommodated, and the opening end of the bottomed case 211 is crimped to the sealing member 212 for curling, and the seat plate 213 is attached to the curled portion. By arranging them, the wound body 100 is sealed in the bottomed case 211 .
  • the sealing member 212 is formed so that the lead wires 60A and 60B pass therethrough.
  • the sealing member 212 may be an insulating material, preferably an elastic material. Among them, highly heat-resistant silicone rubber, fluororubber, butyl rubber, isoprene rubber and the like are preferable.
  • An Al foil (thickness: 100 ⁇ m) whose surface was roughened by etching was subjected to a chemical conversion treatment. Specifically, the Al foil was anodized at 150 V in an ammonium adipate aqueous solution (2% concentration). Thus, a dielectric layer was formed on the surface of the Al foil to obtain an anode foil.
  • An anode lead tab and a cathode lead tab to which lead wires were connected were connected to the prepared anode foil and cathode foil, respectively. Then, the anode foil and the cathode foil were wound with a separator sandwiched therebetween, and the outer surfaces were fixed with a winding stop tape. Thus, a wound body (diameter 8.5 mm, height 7.0 mm) was produced as an electrode group. A non-woven fabric of aramid fibers (thickness: 40 ⁇ m) was used as the separator.
  • treatment liquid A (Preparation of treatment liquid containing conductive polymer) The following treatment liquid A was prepared as a treatment liquid containing a conductive polymer.
  • PEDOT/PSS means PEDOT doped with PSS.
  • Treatment liquid A aqueous dispersion of PEDOT/PSS (conductivity 100 S/cm) (concentration 2% by mass)
  • the step of impregnating the treatment liquid containing the conductive polymer was performed once. Specifically, the temperatures of the wound body and the treatment liquid A were adjusted to the temperatures shown in Table 1, respectively. The temperature of the anode foil was set to 120°C by heating the wound body to 120°C. Next, about 200 mg of treatment liquid A was dropped onto the wound body using a dispenser, and then the wound body impregnated with treatment liquid A was left for 5 minutes under a reduced pressure atmosphere (-90 kPa). Next, the wound body impregnated with the treatment liquid A was dried at 150° C. for 30 minutes under atmospheric pressure. In this manner, a solid electrolyte layer containing a conductive polymer was formed in the wound body to obtain a capacitor element.
  • capacitor sealing A sealing member and a seat plate were placed in the opening of the bottomed case to seal the capacitor element. Thus, the electrolytic capacitor X1 was completed. After that, an aging treatment was performed at 140° C. for 1 hour while applying a rated voltage.
  • the separator contained a large amount of conductive polymer, and an ESR lower than that of the electrolytic capacitor Y1 was obtained.
  • Treatment liquid A aqueous dispersion of PEDOT/PSS (conductivity 100 S/cm) (concentration 2% by mass)
  • Treatment liquid B aqueous dispersion of PEDOT/PSS (conductivity 400 S/cm) (concentration 2% by mass)
  • the impregnation process of the treatment liquid containing the conductive polymer was performed twice. Specifically, the following 3A process and 3B process were performed in this order.
  • An electrolytic capacitor X3 was produced in the same manner as in Example 1 except for the above.
  • the electrolytic capacitor obtained by the electrolytic capacitor manufacturing method according to the present invention can be used for applications requiring high performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

This method for manufacturing an electrolytic capacitor comprises: a first step for preparing an electrode group comprising an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil; a second step for preparing a processing fluid including a conductive polymer; and a third step for, after controlling the anode foil and the processing fluid to mutually different temperatures, impregnating the electrode group with the processing fluid to form a solid electrolyte layer including the electrically conductive polymer in at least a part of the electrode group.

Description

電解コンデンサの製造方法Manufacturing method of electrolytic capacitor
 本発明は、電解コンデンサの製造方法に関する。 The present invention relates to a method for manufacturing an electrolytic capacitor.
 電子機器に使用されるコンデンサには、大容量で、且つ、高周波領域における等価直列抵抗(ESR)の値が小さいことが求められている。大容量で低ESRのコンデンサとしては、ポリチオフェンなどの導電性高分子を用いる電解コンデンサが有望である。電解コンデンサのコンデンサ素子は、例えば、陽極箔と陰極箔とをセパレータを介して巻回して電極群を構成し、導電性高分子を含む処理液を電極群に含浸させて得られる。 Capacitors used in electronic devices are required to have a large capacity and a small equivalent series resistance (ESR) value in the high frequency range. Electrolytic capacitors using conductive polymers such as polythiophene are promising as large-capacity, low-ESR capacitors. A capacitor element of an electrolytic capacitor is obtained, for example, by winding an anode foil and a cathode foil through a separator to form an electrode group, and impregnating the electrode group with a treatment liquid containing a conductive polymer.
 特許文献1は、コンデンサ用基材の誘電体層に導電性高分子溶液を塗布し、乾燥して導電性高分子膜を形成する成膜処理を2回以上繰り返し、2回目以降の少なくとも1回の成膜処理に用いる導電性高分子溶液として、1回目の成膜処理に用いる導電性高分子溶液より粘度が高い高粘度溶液を用いることを提案している。上記の導電性高分子溶液は、π共役系導電性高分子と、ポリアニオンと、溶媒とを含む。 In Patent Document 1, a film forming process in which a conductive polymer solution is applied to a dielectric layer of a base material for a capacitor and dried to form a conductive polymer film is repeated twice or more, and at least once after the second time. As the conductive polymer solution used in the first film forming process, it is proposed to use a high-viscosity solution having a higher viscosity than the conductive polymer solution used in the first film forming process. The conductive polymer solution described above contains a π-conjugated conductive polymer, a polyanion, and a solvent.
特開2010-087401号公報Japanese Patent Application Laid-Open No. 2010-087401
 近年、電解コンデンサの性能の向上が求められている。 In recent years, there has been a demand for improved performance of electrolytic capacitors.
 本発明の一側面は、多孔質部および前記多孔質部の表面を覆う誘電体層を有する陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配されるセパレータと、を備える電極群を準備する第1工程と、導電性高分子を含む処理液を準備する第2工程と、前記陽極箔および前記処理液を互いに異なる温度に制御した後、前記処理液を前記電極群に含浸させて、前記電極群の少なくとも一部に前記導電性高分子を含む固体電解質層を形成する第3工程と、を含む、電解コンデンサの製造方法に関する。 One aspect of the present invention includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil. a first step of preparing an electrode group; a second step of preparing a treatment liquid containing a conductive polymer; controlling the anode foil and the treatment liquid to different temperatures; and a third step of forming a solid electrolyte layer containing the conductive polymer on at least part of the electrode group by impregnating the electrode group with the solid electrolyte layer.
 本発明によれば、電解コンデンサの性能を高めることができる。 According to the present invention, the performance of electrolytic capacitors can be improved.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the present invention are set forth in the appended claims, the present invention, both as to construction and content, together with other objects and features of the present invention, will be further developed by the following detailed description in conjunction with the drawings. will be well understood.
本発明の一実施形態に係る電解コンデンサの一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to an embodiment of the invention; FIG. 図1の巻回体の一部を展開した斜視図である。FIG. 2 is a partially developed perspective view of the wound body of FIG. 1 ;
 以下では、本開示に係る電解コンデンサの実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。 An embodiment of an electrolytic capacitor according to the present disclosure will be described below with examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained. In this specification, the description "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "numerical value A or more and numerical value B or less". In the following description, when lower and upper limits of numerical values relating to specific physical properties, conditions, etc. are exemplified, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit. . When a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination.
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。 In addition, the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
 本発明の一実施形態に係る電解コンデンサの製造方法は、電極群を準備する第1工程と、導電性高分子を含む処理液を準備する第2工程と、電極群の少なくとも一部に導電性高分子を含む固体電解質層を形成する第3工程と、を含む。電極群は、多孔質部および多孔質部の表面を覆う誘電体層を有する陽極箔と、陰極箔と、陽極箔と陰極箔との間に配されるセパレータと、を備える。 A method for manufacturing an electrolytic capacitor according to one embodiment of the present invention includes a first step of preparing an electrode group, a second step of preparing a treatment liquid containing a conductive polymer, and and a third step of forming a solid electrolyte layer containing a polymer. The electrode group includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil.
 第3工程では、陽極箔および処理液を互いに異なる温度に制御した後、処理液を電極群に含浸させて、電極群の少なくとも一部に導電性高分子を含む固体電解質層を形成する。第3工程では、陽極箔および処理液の温度差を利用して、多孔質部およびセパレータにおける処理液の含浸性を調節し、多孔質部およびセパレータに含ませる導電性高分子の量を調節する。これにより、電解コンデンサの性能向上を図ることができる。例えば、後述の工程(a-1)の場合では静電容量を高めることができ、後述の工程(a-2)の場合ではESRを低減できる。 In the third step, after controlling the anode foil and the treatment liquid to different temperatures, the electrode group is impregnated with the treatment liquid to form a solid electrolyte layer containing a conductive polymer on at least part of the electrode group. In the third step, using the temperature difference between the anode foil and the treatment liquid, the impregnability of the treatment liquid in the porous portion and the separator is adjusted, and the amount of the conductive polymer contained in the porous portion and the separator is adjusted. . As a result, it is possible to improve the performance of the electrolytic capacitor. For example, in the case of step (a-1) described later, the capacitance can be increased, and in the case of step (a-2) described later, the ESR can be reduced.
 陽極箔と処理液に温度差を設けることにより、電極群に含浸された処理液に局所的な濃度差を生じさせ、電極群内部における導電性高分子の付着量を偏らせることができる。具体的には、陽極箔の温度を処理液の温度よりも高くした場合、陽極箔の多孔質部近傍の処理液の濃度が高まり、多孔質部への導電性高分子の充填量を高めることができる。また、処理液の温度を陽極箔の温度よりも高くした場合、セパレータ近傍の処理液の濃度が高まり、セパレータへの導電性高分子の充填量を高めることができる。 By providing a temperature difference between the anode foil and the treatment liquid, it is possible to cause a local concentration difference in the treatment liquid impregnated in the electrode group, and to bias the amount of conductive polymer adhered inside the electrode group. Specifically, when the temperature of the anode foil is higher than the temperature of the treatment liquid, the concentration of the treatment liquid in the vicinity of the porous portion of the anode foil increases, increasing the filling amount of the conductive polymer in the porous portion. can be done. Further, when the temperature of the treatment liquid is higher than the temperature of the anode foil, the concentration of the treatment liquid in the vicinity of the separator increases, and the filling amount of the conductive polymer in the separator can be increased.
 第3工程は、陽極箔および処理液を互いに異なる温度に制御する工程(a)と、工程(a)の後、処理液を電極群に含浸させて、固体電解質層を形成する工程(b)と、を含む。工程(b)では、処理液を電極群に含浸させた後、乾燥させてもよい。 The third step includes a step (a) of controlling the anode foil and the treatment liquid to different temperatures, and a step (b) of impregnating the electrode group with the treatment liquid after step (a) to form a solid electrolyte layer. and including. In step (b), the electrode assembly may be impregnated with the treatment liquid and then dried.
 工程(a)は、陽極箔の温度を処理液の温度よりも高くする工程(a-1)を含んでもよい。この場合、陽極箔の多孔質部に多くの処理液(導電性高分子)を含浸させることができ、誘電体層を導電性高分子で十分に被覆して、静電容量を高めることができる。 The step (a) may include the step (a-1) of making the temperature of the anode foil higher than the temperature of the treatment liquid. In this case, the porous portion of the anode foil can be impregnated with a large amount of the treatment liquid (conductive polymer), and the dielectric layer can be sufficiently coated with the conductive polymer to increase the capacitance. .
 工程(a-1)では、例えば、陽極箔の温度を処理液の温度よりも50℃以上、100℃以下の範囲の温度差で高くしてもよい。例えば、陽極箔の温度を80℃以上、120℃以下とし、かつ、処理液の温度を20℃以上、30℃以下としてもよい。工程(a-1)は、例えば、陽極箔の加熱および/または処理液の冷却により行われる。 In step (a-1), for example, the temperature of the anode foil may be higher than the temperature of the treatment liquid by a temperature difference in the range of 50°C or more and 100°C or less. For example, the temperature of the anode foil may be 80° C. or higher and 120° C. or lower, and the temperature of the treatment liquid may be 20° C. or higher and 30° C. or lower. Step (a-1) is performed, for example, by heating the anode foil and/or cooling the treatment liquid.
 工程(a)は、処理液の温度を陽極箔の温度よりも高くする工程(a-2)を含んでもよい。この場合、セパレータに多くの処理液(導電性高分子)を含浸させることができ、陽極箔と陰極箔との間に導電性高分子で導電パスを多く形成して、低ESR化を図ることができる。 Step (a) may include step (a-2) of making the temperature of the treatment liquid higher than the temperature of the anode foil. In this case, the separator can be impregnated with a large amount of treatment liquid (conductive polymer), and many conductive paths are formed with the conductive polymer between the anode foil and the cathode foil to reduce the ESR. can be done.
 工程(a-2)では、例えば、処理液の温度を陽極箔の温度よりも50℃以上、100℃以下の範囲の温度差で高くしてもよい。例えば、陽極箔の温度を-20℃以上、0℃以下とし、かつ、処理液の温度を30℃以上、60℃以下としてもよい。工程(a-2)は、例えば、陽極箔の冷却および/または処理液の加熱により行われる。 In step (a-2), for example, the temperature of the treatment liquid may be higher than the temperature of the anode foil by a temperature difference in the range of 50°C or more and 100°C or less. For example, the temperature of the anode foil may be −20° C. or higher and 0° C. or lower, and the temperature of the treatment liquid may be 30° C. or higher and 60° C. or lower. Step (a-2) is performed, for example, by cooling the anode foil and/or heating the treatment liquid.
 陽極箔の加熱または冷却は、電極群の加熱または冷却により行ってもよい。陽極箔は熱伝導性が高く、加熱(冷却)温度に制御し易い。一方、セパレータは熱伝導性が低く、加熱(冷却)の影響を受けにくい。よって、電極群の加熱(冷却)によっても、陽極箔および処理液の温度差を利用して、多孔質部およびセパレータにおける処理液の含浸性を調節できる。 The heating or cooling of the anode foil may be performed by heating or cooling the electrode group. The anode foil has high thermal conductivity and is easy to control the heating (cooling) temperature. On the other hand, separators have low thermal conductivity and are less susceptible to heating (cooling). Therefore, even by heating (cooling) the electrode group, the impregnability of the porous portion and the separator with the treatment liquid can be adjusted using the temperature difference between the anode foil and the treatment liquid.
 上記の工程(a)および工程(b)は、1回行ってもよく、複数回行ってもよい。工程(a)を複数回行う場合、複数回の工程(a)の中で、陽極箔および/または処理液の温度を変えてもよい。工程(b)を複数回行う場合、処理液の電極群への含浸を1回行う毎に、乾燥を行ってもよい。 The above steps (a) and (b) may be performed once or multiple times. When step (a) is performed multiple times, the temperature of the anode foil and/or the treatment liquid may be changed during the multiple times of step (a). When step (b) is performed multiple times, drying may be performed each time the electrode group is impregnated with the treatment liquid.
 工程(a)では、工程(a-1)および工程(a-2)を含んでもよい。すなわち、第3工程は、第3A工程と、第3B工程とを含み、第3A工程では、陽極箔の温度を処理液の温度よりも高くした後、処理液を電極群に含浸させ、第3B工程では、処理液の温度を陽極箔の温度よりも高くした後、処理液を電極群に含浸させてもよい。第3A工程と第3B工程の順序は限定されない。 Step (a) may include step (a-1) and step (a-2). That is, the third step includes a 3A step and a 3B step. In the 3A step, after the temperature of the anode foil is made higher than the temperature of the treatment liquid, the electrode group is impregnated with the treatment liquid. In the step, after the temperature of the treatment liquid is made higher than the temperature of the anode foil, the electrode group may be impregnated with the treatment liquid. The order of the 3A step and the 3B step is not limited.
 第3A工程では、陽極箔の温度を処理液の温度よりも50℃以上、100℃以下の範囲の温度差で高くした後、処理液を電極群に含浸させてもよい。第3B工程では、処理液の温度を陽極箔の温度よりも50℃以上、100℃以下の範囲の温度差で高くした後、処理液を電極群に含浸させてもよい。 In the 3A step, the electrode group may be impregnated with the treatment liquid after the temperature of the anode foil is made higher than the temperature of the treatment liquid by a temperature difference in the range of 50°C or more and 100°C or less. In the 3B step, the electrode group may be impregnated with the treatment liquid after the temperature of the treatment liquid is raised higher than the temperature of the anode foil by a temperature difference in the range of 50° C. or more and 100° C. or less.
 第3工程では、第3A工程の後、第3B工程を行うことが好ましい。この場合、静電容量を高めつつ、ESRを低減し易い。処理液はセパレータを介して陽極箔の多孔質部に拡散し得る。処理液を多孔質部に多く含浸させる第3A工程を先に行い、次に処理液をセパレータに多く含浸させる第3B工程を行う方が、多孔質部およびセパレータのそれぞれに処理液を効率的に含浸させることができる。 In the 3rd step, it is preferable to perform the 3B step after the 3A step. In this case, it is easy to reduce the ESR while increasing the capacitance. The treatment liquid can diffuse through the separator into the porous portion of the anode foil. It is better to first perform the 3A step of impregnating the porous portion with a large amount of the treatment liquid and then perform the 3B step of impregnating the separator with a large amount of the treatment liquid so that the treatment liquid can be efficiently applied to the porous portion and the separator. can be impregnated.
 第2工程では、処理液として、処理液Aと、処理液Aと異なる成分を含む処理液Bと、を準備し、第3A工程では、処理液Aを電極群に含浸させ、第3B工程では、処理液Bを電極群に含浸させてもよい。処理液Aには、誘電体層の欠陥を修復し得る成分または誘電体層の欠陥に起因する漏れ電流の増大を抑制し得る成分を含ませてもよい。 In the second step, as treatment liquids, a treatment liquid A and a treatment liquid B containing a component different from the treatment liquid A are prepared, in the 3A step, the electrode group is impregnated with the treatment liquid A, and in the 3B step, , the treatment liquid B may be impregnated into the electrode group. The treatment liquid A may contain a component capable of repairing defects in the dielectric layer or a component capable of suppressing an increase in leakage current caused by defects in the dielectric layer.
 処理液Aは導電性高分子Aを含み、処理液Bは導電性高分子Aよりも導電率が高い導電性高分子Bを含んでもよい。第3B工程により導電率が高い導電性高分子Bをセパレータに多く含ませることができ、ESRを低減できる。導電率が高い導電性高分子Bでは漏れ電流が増大する傾向があるが、第3A工程により導電率が低い導電性高分子Aを多孔質部に多く含ませることにより、導電率が高い導電性高分子Bの多孔質部への接触を制限することができ、漏れ電流の増大を抑制できる。 The treatment liquid A may contain a conductive polymer A, and the treatment liquid B may contain a conductive polymer B having a higher conductivity than the conductive polymer A. The 3B step allows the separator to contain a large amount of the conductive polymer B having a high conductivity, thereby reducing the ESR. Conductive polymer B, which has a high conductivity, tends to cause an increase in leakage current. Contact of the polymer B to the porous portion can be restricted, and an increase in leakage current can be suppressed.
 導電性高分子Aの導電率は、例えば、10S/cm以上、200S/cm以下である。導電性高分子Bの導電率は、例えば、300S/cm以上、500S/cm以下である。 The conductivity of the conductive polymer A is, for example, 10 S/cm or more and 200 S/cm or less. The conductivity of the conductive polymer B is, for example, 300 S/cm or more and 500 S/cm or less.
 処理液中の導電性高分子の導電率は、基板上に処理液を塗布し、乾燥させて導電性高分子膜(例えば、厚み10μm~30μm)を形成し、当該膜の導電率を測定することにより求められる。導電率の測定装置には、日東精工アナリテック社製のロレスタ-GXおよびPSPプローブを用いることができる。 The conductivity of the conductive polymer in the treatment liquid is measured by applying the treatment liquid on the substrate and drying it to form a conductive polymer film (for example, a thickness of 10 μm to 30 μm) and measuring the conductivity of the film. It is required by Loresta GX and PSP probes manufactured by Nitto Seiko Analyticc Co., Ltd. can be used as conductivity measuring devices.
(第1工程)
 第1工程では、電極群を準備する。電極群は、多孔質部および多孔質部の表面を覆う誘電体層を有する陽極箔と、陰極箔と、陽極箔と陰極箔との間に配されるセパレータと、を備える。
(First step)
In the first step, an electrode group is prepared. The electrode group includes an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion, a cathode foil, and a separator disposed between the anode foil and the cathode foil.
 第1工程では、陽極箔と陰極箔との間にセパレータを配置して電極群を得てもよい。巻回型のコンデンサの場合、陽極箔と陰極箔とを、陽極箔と陰極箔との間にセパレータを介在させて巻回して電極群(巻回体)を構成してもよい。積層型のコンデンサの場合、陽極箔と陰極箔とを、陽極箔と陰極箔との間にセパレータを介在させてジグザグに折り曲げて電極群(積層体)を構成してもよい。 In the first step, an electrode group may be obtained by disposing a separator between the anode foil and the cathode foil. In the case of a wound-type capacitor, an electrode group (wound body) may be formed by winding an anode foil and a cathode foil with a separator interposed between the anode foil and the cathode foil. In the case of a laminated capacitor, the anode foil and the cathode foil may be folded in a zigzag manner with a separator interposed between the anode foil and the cathode foil to form an electrode group (laminate).
(陽極箔)
 陽極箔は、多孔質部および多孔質部の表面を覆う誘電体層を有する。陽極箔の誘電体層の少なくとも一部は、導電性高分子(固体電解質層)と接触している。多孔質部は、例えば、エッチング処理などにより金属箔の表面を粗面化することにより形成される。誘電体層は、化成処理などにより、粗面化された金属箔の表面に酸化皮膜を形成することにより得られる。
(anode foil)
The anode foil has a porous portion and a dielectric layer covering the surface of the porous portion. At least part of the dielectric layer of the anode foil is in contact with the conductive polymer (solid electrolyte layer). The porous portion is formed, for example, by roughening the surface of the metal foil by etching or the like. The dielectric layer is obtained by forming an oxide film on the roughened surface of the metal foil by chemical conversion treatment or the like.
 金属箔を構成する金属の種類は特に限定されない。誘電体層の形成が容易である点から、金属箔を構成する金属の例には、アルミニウム、タンタル、ニオブ、チタンなどの、弁作用を有する金属、および弁作用を有する金属の合金が含まれる。好ましい一例は、アルミニウムおよびアルミニウム合金である。 The type of metal that constitutes the metal foil is not particularly limited. Examples of metals constituting the metal foil include metals with valve action, such as aluminum, tantalum, niobium, and titanium, and alloys of metals with valve action, in view of the ease with which the dielectric layer can be formed. . A preferred example is aluminum and aluminum alloys.
(陰極箔)
 陰極箔には、金属箔を用いることができる。金属箔を構成する金属の種類は特に限定されない。金属箔は陽極箔で例示するものを用いることができる。金属箔の表面に、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボンのような非金属などを挙げることができる。
(cathode foil)
A metal foil can be used for the cathode foil. The kind of metal that constitutes the metal foil is not particularly limited. As the metal foil, those exemplified for the anode foil can be used. A metal (dissimilar metal) different from the metal forming the metal foil or a non-metal coating may be provided on the surface of the metal foil. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon.
 陰極箔は、エッチング処理などにより表面が粗面化された金属箔を用いてもよい。すなわち、陰極箔は表面に多孔質部を有してもよい。粗面化された金属箔の表面に化成皮膜が設けられていてもよい。この場合、第3工程において、陰極箔および処理液を互いに異なる温度に制御した後、処理液を電極群に含浸させてもよい。電極群の加熱または冷却により、陽極箔とともに陰極箔を処理液と異なる温度に制御してもよい。これにより、陰極部の多孔質部への処理液の含浸性を調節してもよい。 A metal foil whose surface has been roughened by etching or the like may be used as the cathode foil. That is, the cathode foil may have a porous portion on its surface. A chemical conversion film may be provided on the roughened surface of the metal foil. In this case, in the third step, the electrode group may be impregnated with the treatment liquid after the cathode foil and the treatment liquid are controlled to different temperatures. By heating or cooling the electrode group, the anode foil as well as the cathode foil may be controlled to a temperature different from that of the treatment liquid. Thereby, the impregnation property of the treatment liquid into the porous portion of the cathode portion may be adjusted.
(セパレータ)
 セパレータには、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などが用いられる。
(separator)
For the separator, for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (for example, aliphatic polyamide, aromatic polyamide such as aramid), or the like is used.
(第2工程)
 第2工程では、導電性高分子を含む処理液を準備する。処理液には、導電性高分子の分散液(または溶液)が用いられる。処理液の分散媒(または溶媒)には、通常、水が用いられる。処理液は、導電性高分子とともにドーパントを含んでいてもよく、導電性高分子およびドーパント以外の成分をさらに含んでもよい。
(Second step)
In the second step, a treatment liquid containing a conductive polymer is prepared. A dispersion (or solution) of a conductive polymer is used as the treatment liquid. Water is usually used as a dispersion medium (or solvent) for the treatment liquid. The treatment liquid may contain a dopant together with the conductive polymer, and may further contain components other than the conductive polymer and the dopant.
 処理液は、例えば、分散媒(または溶媒)中、導電性高分子の前駆体を酸化重合させることにより得ることができ、分散媒(または溶媒)はドーパントを含んでもよい。導電性高分子の前駆体としては、導電性高分子を構成するモノマー、および/またはモノマーがいくつか連なったオリゴマーなどが例示できる。導電性高分子の導電率は、例えば、導電性高分子の前駆体の重合条件(例えば、導電性高分子の前駆体、酸化剤、または触媒の種類)、ドーパントの種類などにより調整することができる。 The treatment liquid can be obtained, for example, by oxidative polymerization of a conductive polymer precursor in a dispersion medium (or solvent), and the dispersion medium (or solvent) may contain a dopant. Examples of conductive polymer precursors include monomers constituting the conductive polymer and/or oligomers in which several monomers are linked. The conductivity of the conductive polymer can be adjusted by, for example, the polymerization conditions of the conductive polymer precursor (for example, the type of the conductive polymer precursor, the oxidizing agent, or the catalyst), the type of the dopant, and the like. can.
 導電性高分子の例には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、およびそれらの誘導体などが含まれる。当該誘導体には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、およびポリアセチレンを基本骨格とするポリマーが含まれる。例えば、ポリチオフェンの誘導体には、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。これらの導電性高分子は、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。導電性高分子の重量平均分子量は特に限定されず、例えば1000~100000の範囲にあってもよい。導電性高分子の好ましい一例は、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)である。 Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof. Such derivatives include polymers having polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene as basic skeletons. For example, derivatives of polythiophene include poly(3,4-ethylenedioxythiophene) and the like. These conductive polymers may be used alone or in combination. Also, the conductive polymer may be a copolymer of two or more monomers. The weight average molecular weight of the conductive polymer is not particularly limited, and may be in the range of 1,000 to 100,000, for example. A preferred example of a conductive polymer is poly(3,4-ethylenedioxythiophene) (PEDOT).
 ドーパントの例には、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などが含まれる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらは、塩の形態で添加されてもよい。ドーパントは、電解質中において、酸性基の少なくとも一部からカチオン(たとえばプロトン)が解離したアニオンの形態で存在してもよい。ドーパントの好ましい一例は、ポリスチレンスルホン酸(PSS)である。 Examples of dopants include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprenesulfonic acid, polyacrylic including acids. These may be used alone or in combination of two or more. These may be added in the form of salts. The dopant may be present in the electrolyte in the form of an anion in which cations (eg, protons) are dissociated from at least some of the acidic groups. A preferred example of a dopant is polystyrene sulfonic acid (PSS).
 ドーパントの重量平均分子量は特に限定されない。均質な固体電解質層の形成を容易にする観点から、ドーパントの重量平均分子量を1000~100000の範囲としてもよい。 The weight average molecular weight of the dopant is not particularly limited. From the viewpoint of facilitating formation of a homogeneous solid electrolyte layer, the dopant may have a weight average molecular weight in the range of 1,000 to 100,000.
 導電性高分子は、ドーパントがドープされた導電性高分子であってもよく、ポリスチレンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)(以下、PEDOT/PSSとも称する。)であってもよい。 The conductive polymer may be a dopant-doped conductive polymer, such as poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (hereinafter also referred to as PEDOT/PSS). There may be.
 処理液中の導電性高分子(例えば、PEDOT/PSS)の濃度は、例えば、1質量%以上、3質量%以下である。処理液中の導電性高分子の濃度が上記範囲の場合、処理液の20℃での粘度は、例えば、10mPa・s以上、60mPa・s以下である。 The concentration of the conductive polymer (eg, PEDOT/PSS) in the treatment liquid is, for example, 1% by mass or more and 3% by mass or less. When the concentration of the conductive polymer in the treatment liquid is within the above range, the viscosity of the treatment liquid at 20° C. is, for example, 10 mPa·s or more and 60 mPa·s or less.
(第3工程)
 第3工程では、陽極箔および処理液を互いに異なる温度に制御した後、処理液を電極群に含浸させて、電極群の少なくとも一部に導電性高分子を含む固体電解質層を形成する。これにより、コンデンサ素子が得られる。処理液の含浸は、電極群を処理液に浸漬することにより行ってもよく、処理液を電極群に滴下することにより行ってもよい。処理液の含浸は、大気圧雰囲気下で行ってもよく、減圧雰囲気下で行ってもよい。処理液の含浸後、処理液を含む電極群を乾燥させてもよい。乾燥は加熱(例えば、120℃~200℃)により行ってもよい。
(Third step)
In the third step, after the anode foil and the treatment liquid are controlled to different temperatures, the electrode group is impregnated with the treatment liquid to form a solid electrolyte layer containing a conductive polymer on at least part of the electrode group. A capacitor element is thus obtained. The impregnation with the treatment liquid may be performed by immersing the electrode group in the treatment liquid, or by dripping the treatment liquid onto the electrode group. The impregnation with the treatment liquid may be performed under an atmospheric pressure atmosphere or under a reduced pressure atmosphere. After being impregnated with the treatment liquid, the electrode group containing the treatment liquid may be dried. Drying may be performed by heating (eg, 120° C. to 200° C.).
 第3工程では、処理液の電極群への含浸工程を複数回行い、そのうちの少なくとも1回の含浸工程が、陽極箔および処理液を互いに異なる温度に制御した後、処理液を電極群に含浸させる工程であってもよい。 In the third step, the electrode group is impregnated with the treatment liquid a plurality of times, at least one of which impregnates the electrode group with the treatment liquid after controlling the anode foil and the treatment liquid to different temperatures. It may be a step of causing
(その他の工程)
 電解コンデンサの製造方法は、コンデンサ素子に液状成分を含浸させる工程を含んでもよい。電解コンデンサの製造方法は、コンデンサ素子が収容された有底ケースを封止する工程を含んでもよい。
(Other processes)
The method for manufacturing an electrolytic capacitor may include a step of impregnating the capacitor element with a liquid component. The method for manufacturing an electrolytic capacitor may include a step of sealing a bottomed case in which the capacitor element is accommodated.
(液状成分)
 液状成分は、電解液であってもよく、非水溶媒であってもよい。液状成分は導電性高分子を保護する役割を有する。また、液状成分の含有により、導電性高分子と誘電体層とのコンタクト性を高めることができ、誘電体層の欠陥の修復性を高めることもできる。電解液は、導電性高分子とともに電解質として機能し得る。
(liquid component)
The liquid component may be an electrolytic solution or a non-aqueous solvent. The liquid component has a role of protecting the conductive polymer. Moreover, the inclusion of the liquid component can improve the contact between the conductive polymer and the dielectric layer, and can also improve the repairability of defects in the dielectric layer. The electrolytic solution can function as an electrolyte together with the conductive polymer.
 非水溶媒は、有機溶媒であってもよく、イオン性液体であってもよい。非水溶媒の例には、エチレングリコール、プロピレングリコールなどの多価アルコール類、スルホラン(SL)などの環状スルホン類、γ-ブチロラクトン(GBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、炭酸プロピレンなどのカーボネート化合物、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが含まれる。非水溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 The non-aqueous solvent may be an organic solvent or an ionic liquid. Examples of non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as γ-butyrolactone (GBL), N-methylacetamide, N,N- Amides such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methyl ethyl ketone, and formaldehyde. . The non-aqueous solvent may be used singly or in combination of two or more.
 液状成分は、酸成分および塩基成分を含有していてもよい。酸成分の例には、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸などが含まれる。塩基成分の例には、1,2,4-トリメチルイミダゾリン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-メチルイミダゾールなどが含まれる。 The liquid component may contain an acid component and a base component. Examples of acid components include maleic acid, phthalic acid, benzoic acid, pyromellitic acid, resorcinic acid, and the like. Examples of base components include 1,2,4-trimethylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, and the like.
 電解液は、非水溶媒とこれに溶解された溶質(例えば有機塩)とを含む。電解液を構成する非水溶媒の例には、上述した非水溶媒の例が含まれる。溶質の例には、無機塩および有機塩が含まれる。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩の例には、マレイン酸トリメチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが含まれる。 The electrolyte contains a non-aqueous solvent and a solute (eg, organic salt) dissolved therein. Examples of the non-aqueous solvent that constitutes the electrolytic solution include the examples of the non-aqueous solvent described above. Examples of solutes include inorganic salts and organic salts. An organic salt is a salt in which at least one of the anion and cation contains an organic substance. Examples of organic salts include trimethylamine maleate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, mono-1,3-dimethyl-2-ethylimidazolinium phthalate, and the like. is included.
 ドーパントの脱ドープを抑制するために、液状成分のpHを7未満としてもよく、5以下としてもよい。 In order to suppress dedoping of the dopant, the pH of the liquid component may be less than 7 or 5 or less.
 ここで、図1は、本発明の実施形態に係る電解コンデンサの一例を模式的に示す断面図である。図2は、図1の巻回体の一部を展開した斜視図である。 Here, FIG. 1 is a cross-sectional view schematically showing an example of an electrolytic capacitor according to an embodiment of the invention. FIG. 2 is a partially unfolded perspective view of the wound body of FIG.
 電解コンデンサ200は、巻回体100(電極群)を備える。巻回体100は、陽極箔10と陰極箔20とを、セパレータ30を介して巻回することで構成されている。巻回体100は、導電性高分子(図示せず)を含む。 The electrolytic capacitor 200 includes a wound body 100 (electrode group). The wound body 100 is constructed by winding the anode foil 10 and the cathode foil 20 with the separator 30 interposed therebetween. The wound body 100 contains a conductive polymer (not shown).
 陽極箔10および陰極箔20には、それぞれリードタブ50Aおよび50Bの一方の端部が接続されており、リードタブ50Aおよび50Bを巻き込みながら巻回体100が構成される。リードタブ50Aおよび50Bの他方の端部には、リード線60Aおよび60Bがそれぞれ接続されている。 One ends of the lead tabs 50A and 50B are connected to the anode foil 10 and the cathode foil 20, respectively, and the wound body 100 is formed by winding the lead tabs 50A and 50B. Lead wires 60A and 60B are connected to the other ends of lead tabs 50A and 50B, respectively.
 巻回体100の最外層に位置する陰極箔20の外側表面に巻止めテープ40が配置され、陰極箔20の端部は巻止めテープ40により固定されている。なお、陽極箔10を大判の箔から裁断して準備する場合、裁断面に誘電体層を設けるために、巻回体100に対して更に化成処理を行ってもよい。 A winding stop tape 40 is arranged on the outer surface of the cathode foil 20 located in the outermost layer of the wound body 100 , and the ends of the cathode foil 20 are fixed by the winding stop tape 40 . When the anode foil 10 is prepared by cutting from a large-sized foil, the rolled body 100 may be further subjected to a chemical conversion treatment in order to provide a dielectric layer on the cut surface.
 リード線60A、60Bが有底ケース211の開口側に位置するように、巻回体100が有底ケース211に収納されている。有底ケース211の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金を用いることができる。 The wound body 100 is housed in the bottomed case 211 so that the lead wires 60A and 60B are located on the opening side of the bottomed case 211. As the material of the bottomed case 211, metals such as aluminum, stainless steel, copper, iron, and brass, or alloys thereof can be used.
 巻回体100が収納された有底ケース211の開口部に封止部材212を配置し、有底ケース211の開口端を封止部材212にかしめてカール加工し、カール部分に座板213を配置することにより、巻回体100が有底ケース211内に封止されている。 A sealing member 212 is placed in the opening of the bottomed case 211 in which the wound body 100 is accommodated, and the opening end of the bottomed case 211 is crimped to the sealing member 212 for curling, and the seat plate 213 is attached to the curled portion. By arranging them, the wound body 100 is sealed in the bottomed case 211 .
 封止部材212は、リード線60A、60Bが貫通するように形成されている。封止部材212は、絶縁性物質であればよく、弾性体が好ましい。中でも耐熱性の高いシリコーンゴム、フッ素ゴム、ブチルゴム、イソプレンゴムなどが好ましい。 The sealing member 212 is formed so that the lead wires 60A and 60B pass therethrough. The sealing member 212 may be an insulating material, preferably an elastic material. Among them, highly heat-resistant silicone rubber, fluororubber, butyl rubber, isoprene rubber and the like are preferable.
[実施例]
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
[Example]
EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to the examples.
《実施例1》
 巻回型の電解コンデンサ(直径Φ:10mm×長さL:12mm)を、以下の手順で作製した。
<<Example 1>>
A wound electrolytic capacitor (diameter Φ: 10 mm×length L: 12 mm) was produced by the following procedure.
(陽極箔の作製)
 エッチング処理により表面が粗面化されたAl箔(厚み100μm)に化成処理を施した。具体的には、Al箔についてアジピン酸アンモニウム水溶液(濃度2%)中で、150Vで陽極酸化を行った。このようにして、Al箔の表面に誘電体層を形成し、陽極箔を得た。
(Preparation of anode foil)
An Al foil (thickness: 100 μm) whose surface was roughened by etching was subjected to a chemical conversion treatment. Specifically, the Al foil was anodized at 150 V in an ammonium adipate aqueous solution (2% concentration). Thus, a dielectric layer was formed on the surface of the Al foil to obtain an anode foil.
(陰極箔の作製)
 エッチング処理により表面が粗面化されたAl箔(厚み50μm)に化成処理を施した。具体的には、Al箔についてアジピン酸アンモニウム水溶液(濃度2%)中で3Vで陽極酸化を行った。このようにして、Al箔の表面に誘電体層を形成し、陰極箔を得た。
(Preparation of cathode foil)
An Al foil (thickness: 50 μm) whose surface was roughened by etching was subjected to a chemical conversion treatment. Specifically, the Al foil was anodized at 3V in an ammonium adipate aqueous solution (2% concentration). Thus, a dielectric layer was formed on the surface of the Al foil to obtain a cathode foil.
(巻回体の作製)
 準備した陽極箔および陰極箔に、リード線が接続された陽極リードタブおよび陰極リードタブをそれぞれ接続した。そして、陽極箔と陰極箔とを、セパレータを間に挟んで巻回し、外側表面を巻止めテープで固定した。このようにして電極群として巻回体(直径8.5mm、高さ7.0mm)を作製した。セパレータには、アラミド繊維の不織布(厚み40μm)を用いた。
(Production of wound body)
An anode lead tab and a cathode lead tab to which lead wires were connected were connected to the prepared anode foil and cathode foil, respectively. Then, the anode foil and the cathode foil were wound with a separator sandwiched therebetween, and the outer surfaces were fixed with a winding stop tape. Thus, a wound body (diameter 8.5 mm, height 7.0 mm) was produced as an electrode group. A non-woven fabric of aramid fibers (thickness: 40 μm) was used as the separator.
(導電性高分子を含む処理液の準備)
 導電性高分子を含む処理液として、以下の処理液Aを準備した。なお、PEDOT/PSSは、PSSがドープされたPEDOTを意味する。
(Preparation of treatment liquid containing conductive polymer)
The following treatment liquid A was prepared as a treatment liquid containing a conductive polymer. PEDOT/PSS means PEDOT doped with PSS.
 処理液A:PEDOT/PSS(導電率100S/cm)の水分散液(濃度2質量%) Treatment liquid A: aqueous dispersion of PEDOT/PSS (conductivity 100 S/cm) (concentration 2% by mass)
(固体電解質層の形成)
 導電性高分子を含む処理液の含浸工程を1回行った。具体的には、巻回体および処理液Aの温度を、それぞれ表1に示す温度に調節した。巻回体を120℃に加熱することで、陽極箔の温度を120℃とした。次に、ディスペンサーを用いて処理液Aを巻回体に約200mg滴下し、その後、処理液Aを含ませた巻回体を、減圧雰囲気下(-90kPa)で5分間放置した。次に、大気圧雰囲気下で、処理液Aを含ませた巻回体を150℃で30分間乾燥させた。このようにして、巻回体内に導電性高分子を含む固体電解質層を形成し、コンデンサ素子を得た。
(Formation of solid electrolyte layer)
The step of impregnating the treatment liquid containing the conductive polymer was performed once. Specifically, the temperatures of the wound body and the treatment liquid A were adjusted to the temperatures shown in Table 1, respectively. The temperature of the anode foil was set to 120°C by heating the wound body to 120°C. Next, about 200 mg of treatment liquid A was dropped onto the wound body using a dispenser, and then the wound body impregnated with treatment liquid A was left for 5 minutes under a reduced pressure atmosphere (-90 kPa). Next, the wound body impregnated with the treatment liquid A was dried at 150° C. for 30 minutes under atmospheric pressure. In this manner, a solid electrolyte layer containing a conductive polymer was formed in the wound body to obtain a capacitor element.
(コンデンサの封止)
 有底ケースの開口に封止部材および座板を配置してコンデンサ素子を封止した。このようにして、電解コンデンサX1を完成させた。その後、定格電圧を印加しながら、140℃で1時間エージング処理を行った。
(capacitor sealing)
A sealing member and a seat plate were placed in the opening of the bottomed case to seal the capacitor element. Thus, the electrolytic capacitor X1 was completed. After that, an aging treatment was performed at 140° C. for 1 hour while applying a rated voltage.
《比較例1》
 固体電解質層の形成工程において、巻回体への処理液の含浸を室温環境下で行った。すなわち、巻回体への処理液の含浸時において、巻回体および処理液の温度をそれぞれ25℃とした。上記以外、実施例1と同様にして、電解コンデンサY1を作製した。
<<Comparative example 1>>
In the step of forming the solid electrolyte layer, impregnation of the wound body with the treatment liquid was carried out at room temperature. That is, when impregnating the wound body with the treatment liquid, the temperatures of the wound body and the treatment liquid were each set to 25°C. An electrolytic capacitor Y1 was fabricated in the same manner as in Example 1 except for the above.
 実施例1の電解コンデンサX1および比較例1の電解コンデンサY1について、以下の評価1を行った。 The following evaluation 1 was performed for the electrolytic capacitor X1 of Example 1 and the electrolytic capacitor Y1 of Comparative Example 1.
[評価1]
 20℃の環境下で、4端子測定用のLCRメータを用いて、周波数120Hzにおける初期の静電容量(μF)を測定した。評価結果を表1に示す。
[Evaluation 1]
Under the environment of 20° C., the initial capacitance (μF) at a frequency of 120 Hz was measured using an LCR meter for four-terminal measurement. Table 1 shows the evaluation results.
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 電解コンデンサX1では、陽極箔の多孔質部に導電性高分子が多く含まれ、電解コンデンサY1よりも高い静電容量が得られた。 In the electrolytic capacitor X1, a large amount of conductive polymer was contained in the porous portion of the anode foil, and a higher capacitance than the electrolytic capacitor Y1 was obtained.
《実施例2》
 固体電解質層の形成工程において、巻回体および処理液Aを、それぞれ表2に示す温度に調節した。巻回体を-10℃に冷却することで、陽極箔の温度を-10℃とした。上記以外、実施例1と同様にして、電解コンデンサX2を作製した。
<<Example 2>>
In the step of forming the solid electrolyte layer, the wound body and the treatment liquid A were adjusted to temperatures shown in Table 2, respectively. By cooling the wound body to -10°C, the temperature of the anode foil was set to -10°C. An electrolytic capacitor X2 was produced in the same manner as in Example 1 except for the above.
 実施例2の電解コンデンサX2および比較例1の電解コンデンサY1について、以下の評価2を行った。 The following evaluation 2 was performed for the electrolytic capacitor X2 of Example 2 and the electrolytic capacitor Y1 of Comparative Example 1.
[評価2]
 20℃の環境下で、4端子測定用のLCRメータを用いて、周波数100kHzにおける初期のESR(mΩ)を測定した。評価結果を表2に示す。
[Evaluation 2]
Initial ESR (mΩ) was measured at a frequency of 100 kHz in an environment of 20° C. using a 4-terminal LCR meter. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 電解コンデンサX2では、セパレータに導電性高分子が多く含まれ、電解コンデンサY1よりも低いESRが得られた。 In the electrolytic capacitor X2, the separator contained a large amount of conductive polymer, and an ESR lower than that of the electrolytic capacitor Y1 was obtained.
《実施例3》
 導電性高分子を含む処理液の準備工程において、以下の処理液Aおよび処理液Bを準備した。
<<Example 3>>
In the step of preparing the treatment liquid containing the conductive polymer, the following treatment liquid A and treatment liquid B were prepared.
 処理液A:PEDOT/PSS(導電率100S/cm)の水分散液(濃度2質量%) Treatment liquid A: aqueous dispersion of PEDOT/PSS (conductivity 100 S/cm) (concentration 2% by mass)
 処理液B:PEDOT/PSS(導電率400S/cm)の水分散液(濃度2質量%) Treatment liquid B: aqueous dispersion of PEDOT/PSS (conductivity 400 S/cm) (concentration 2% by mass)
 固体電解質層の形成工程において、導電性高分子を含む処理液の含浸工程を2回行った。具体的には、以下の第3A工程および第3B工程を、この順に行った。 In the process of forming the solid electrolyte layer, the impregnation process of the treatment liquid containing the conductive polymer was performed twice. Specifically, the following 3A process and 3B process were performed in this order.
(第3A工程)
 巻回体および処理液Aの温度を、それぞれ表3に示す温度に調節した。次に、ディスペンサーを用いて処理液Aを巻回体に約200mg滴下し、その後、処理液Aを含ませた巻回体を、減圧雰囲気下(-90kPa)で5分間放置した。次に、大気圧雰囲気下で、処理液Aを含ませた巻回体を150℃で30分間乾燥させた。
(3rd A step)
The temperatures of the wound body and the treatment liquid A were adjusted to the temperatures shown in Table 3, respectively. Next, about 200 mg of treatment liquid A was dropped onto the wound body using a dispenser, and then the wound body impregnated with treatment liquid A was left for 5 minutes under a reduced pressure atmosphere (-90 kPa). Next, the wound body impregnated with the treatment liquid A was dried at 150° C. for 30 minutes under atmospheric pressure.
(第3B工程)
 次に、巻回体および処理液Bを、それぞれ表3に示す温度に調節した。次に、ディスペンサーを用いて処理液Bを巻回体に約200mg滴下し、その後、処理液Bを含ませた巻回体を、減圧雰囲気下(-90kPa)で5分間放置した。次に、大気圧雰囲気下で、処理液Bを含ませた巻回体を150℃で30分間乾燥させた。
(3B step)
Next, the wound body and the treatment liquid B were adjusted to the temperatures shown in Table 3, respectively. Next, using a dispenser, about 200 mg of the treatment liquid B was dropped onto the wound body, and then the wound body impregnated with the treatment liquid B was left for 5 minutes under a reduced pressure atmosphere (-90 kPa). Next, the wound body impregnated with the treatment liquid B was dried at 150° C. for 30 minutes under an atmospheric pressure atmosphere.
 上記以外、実施例1と同様にして、電解コンデンサX3を作製した。 An electrolytic capacitor X3 was produced in the same manner as in Example 1 except for the above.
《比較例2》
 固体電解質層の形成工程(第3A工程および第3B工程)において、巻回体への処理液の含浸を室温環境下で行った。すなわち、第3A工程および第3B工程において、巻回体および処理液の温度をそれぞれ25℃とした。上記以外、実施例3と同様にして、電解コンデンサY2を作製した。
<<Comparative Example 2>>
In the process of forming the solid electrolyte layer (process 3A and process 3B), the wound body was impregnated with the treatment liquid under a room temperature environment. That is, in the 3A process and the 3B process, the temperatures of the wound body and the treatment liquid were each set to 25°C. Except for the above, an electrolytic capacitor Y2 was produced in the same manner as in Example 3.
 実施例3の電解コンデンサX3および比較例2の電解コンデンサY2について、以下の評価3を行った。 The following evaluation 3 was performed for the electrolytic capacitor X3 of Example 3 and the electrolytic capacitor Y2 of Comparative Example 2.
[評価3]
 上記の評価1および評価2と同様に、初期の静電容量(μF)および初期のESR(mΩ)を求めた。漏れ電流(LC)は、20℃の環境下で、定格電圧の1分間印加時の電流値(μA)を測定することにより求めた。評価結果を表3に示す。
[Evaluation 3]
The initial capacitance (μF) and initial ESR (mΩ) were obtained in the same manner as in Evaluation 1 and Evaluation 2 above. The leakage current (LC) was obtained by measuring the current value (μA) when the rated voltage was applied for 1 minute under the environment of 20°C. Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 電解コンデンサX3では、電解コンデンサY2よりも、高い静電容量、かつ、低いESRが得られた。第3A工程および第3B工程を、この順に行うことにより作製された電解コンデンサX3では、電解コンデンサY2と比べて、ESRを低減しつつ、LCを低減することができた。 With the electrolytic capacitor X3, a higher capacitance and a lower ESR were obtained than with the electrolytic capacitor Y2. In the electrolytic capacitor X3 manufactured by performing the 3A step and the 3B step in this order, it was possible to reduce the LC while reducing the ESR as compared with the electrolytic capacitor Y2.
 本発明に係る電解コンデンサの製造方法により得られる電解コンデンサは、高性能が求められる用途に利用できる。 The electrolytic capacitor obtained by the electrolytic capacitor manufacturing method according to the present invention can be used for applications requiring high performance.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of its presently preferred embodiments, such disclosure should not be construed as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Therefore, the appended claims are to be interpreted as covering all variations and modifications without departing from the true spirit and scope of the invention.
 10:陽極箔、20:陰極箔、30:セパレータ、40:巻止めテープ、50A、50B:リードタブ、60A、60B:リード線、100:巻回体、200:電解コンデンサ、211:有底ケース、212:封止部材、213:座板
 
10: anode foil, 20: cathode foil, 30: separator, 40: winding stop tape, 50A, 50B: lead tab, 60A, 60B: lead wire, 100: wound body, 200: electrolytic capacitor, 211: bottomed case, 212: sealing member, 213: seat plate

Claims (10)

  1.  多孔質部および前記多孔質部の表面を覆う誘電体層を有する陽極箔と、陰極箔と、前記陽極箔と前記陰極箔との間に配されるセパレータと、を備える電極群を準備する第1工程と、
     導電性高分子を含む処理液を準備する第2工程と、
     前記陽極箔および前記処理液を互いに異なる温度に制御した後、前記処理液を前記電極群に含浸させて、前記電極群の少なくとも一部に前記導電性高分子を含む固体電解質層を形成する第3工程と、
    を含む、電解コンデンサの製造方法。
    Preparing an electrode group comprising: an anode foil having a porous portion and a dielectric layer covering the surface of the porous portion; a cathode foil; and a separator disposed between the anode foil and the cathode foil. 1 step;
    a second step of preparing a treatment liquid containing a conductive polymer;
    After controlling the anode foil and the treatment liquid to different temperatures, the electrode group is impregnated with the treatment liquid to form a solid electrolyte layer containing the conductive polymer on at least a part of the electrode group. 3 steps;
    A method of manufacturing an electrolytic capacitor, comprising:
  2.  前記第3工程において、前記陽極箔の温度を前記処理液の温度よりも高くした後、前記処理液を前記電極群に含浸させる、請求項1に記載の電解コンデンサの製造方法。 The method of manufacturing an electrolytic capacitor according to claim 1, wherein in the third step, the temperature of the anode foil is made higher than the temperature of the treatment liquid, and then the electrode group is impregnated with the treatment liquid.
  3.  前記第3工程において、前記陽極箔の温度を前記処理液の温度よりも50℃以上、100℃以下の範囲で高くした後、前記処理液を前記電極群に含浸させる、請求項2に記載の電解コンデンサの製造方法。 3. The method according to claim 2, wherein in the third step, the electrode assembly is impregnated with the treatment liquid after raising the temperature of the anode foil to a temperature higher than the temperature of the treatment liquid by 50° C. or more and 100° C. or less. A method for manufacturing an electrolytic capacitor.
  4.  前記第3工程において、前記処理液の温度を前記陽極箔の温度よりも高くした後、前記処理液を前記電極群に含浸させる、請求項1に記載の電解コンデンサの製造方法。 The method of manufacturing an electrolytic capacitor according to claim 1, wherein in the third step, the electrode group is impregnated with the treatment liquid after the temperature of the treatment liquid is made higher than the temperature of the anode foil.
  5.  前記第3工程において、前記処理液の温度を前記陽極箔の温度よりも50℃以上、100℃以下の範囲で高くした後、前記処理液を前記電極群に含浸させる、請求項4に記載の電解コンデンサの製造方法。 5. The method according to claim 4, wherein in the third step, the electrode group is impregnated with the treatment liquid after the temperature of the treatment liquid is raised to be higher than the temperature of the anode foil by 50° C. or more and 100° C. or less. A method for manufacturing an electrolytic capacitor.
  6.  前記第3工程は、第3A工程と、第3B工程とを含み、
     前記第3A工程では、前記陽極箔の温度を前記処理液の温度よりも高くした後、前記処理液を前記電極群に含浸させ、
     前記第3B工程では、前記処理液の温度を前記陽極箔の温度よりも高くした後、前記処理液を前記電極群に含浸させる、請求項1に記載の電解コンデンサの製造方法。
    The third step includes a 3A step and a 3B step,
    In the 3A step, after the temperature of the anode foil is made higher than the temperature of the treatment liquid, the electrode group is impregnated with the treatment liquid,
    2. The method of manufacturing an electrolytic capacitor according to claim 1, wherein, in said 3B step, said electrode group is impregnated with said treatment liquid after making the temperature of said treatment liquid higher than the temperature of said anode foil.
  7.  前記第3A工程において、前記陽極箔の温度を前記処理液の温度よりも50℃以上、100℃以下の範囲で高くした後、前記処理液を前記電極群に含浸させる、請求項6に記載の電解コンデンサの製造方法。 7. The method according to claim 6, wherein in the 3A step, the electrode group is impregnated with the treatment liquid after the temperature of the anode foil is raised higher than the temperature of the treatment liquid by 50° C. or more and 100° C. or less. A method for manufacturing an electrolytic capacitor.
  8.  前記第3B工程において、前記処理液の温度を前記陽極箔の温度よりも50℃以上、100℃以下の範囲で高くした後、前記処理液を前記電極群に含浸させる、請求項6または7に記載の電解コンデンサの製造方法。 8. The method according to claim 6 or 7, wherein, in the 3B step, the electrode group is impregnated with the treatment liquid after making the temperature of the treatment liquid higher than the temperature of the anode foil in a range of 50° C. or more and 100° C. or less. A method for manufacturing the electrolytic capacitor described.
  9.  前記第3工程では、前記第3A工程の後、前記第3B工程を行う、請求項6~8のいずれか1項に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to any one of claims 6 to 8, wherein in the third step, the 3B step is performed after the 3A step.
  10.  前記第2工程では、前記処理液として、処理液Aと、前記処理液Aと異なる成分を含む処理液Bと、を準備し、
     前記第3A工程では、前記処理液Aを前記電極群に含浸させ、
     前記第3B工程では、前記処理液Bを前記電極群に含浸させる、請求項6~9のいずれか1項に記載の電解コンデンサの製造方法。
     
    In the second step, as the treatment liquid, a treatment liquid A and a treatment liquid B containing a component different from the treatment liquid A are prepared;
    In the 3A step, the electrode group is impregnated with the treatment liquid A,
    10. The method for manufacturing an electrolytic capacitor according to claim 6, wherein in the 3B step, the electrode group is impregnated with the treatment liquid B.
PCT/JP2022/014926 2021-03-31 2022-03-28 Method for manufacturing electrolytic capacitor WO2022210513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511244A JPWO2022210513A1 (en) 2021-03-31 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060911 2021-03-31
JP2021060911 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210513A1 true WO2022210513A1 (en) 2022-10-06

Family

ID=83456310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014926 WO2022210513A1 (en) 2021-03-31 2022-03-28 Method for manufacturing electrolytic capacitor

Country Status (2)

Country Link
JP (1) JPWO2022210513A1 (en)
WO (1) WO2022210513A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174155A (en) * 1997-08-27 1999-03-16 Sanyo Electric Co Ltd Manufacture of solid electrolytic capacitor
JP2001110684A (en) * 1999-08-05 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor
JP2002299175A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP2007048936A (en) * 2005-08-10 2007-02-22 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2009252913A (en) * 2008-04-04 2009-10-29 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2017017182A (en) * 2015-07-01 2017-01-19 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174155A (en) * 1997-08-27 1999-03-16 Sanyo Electric Co Ltd Manufacture of solid electrolytic capacitor
JP2001110684A (en) * 1999-08-05 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor
JP2002299175A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP2007048936A (en) * 2005-08-10 2007-02-22 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2009252913A (en) * 2008-04-04 2009-10-29 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2017017182A (en) * 2015-07-01 2017-01-19 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method for the same

Also Published As

Publication number Publication date
JPWO2022210513A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6145720B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
WO2016174807A1 (en) Electrolytic capacitor
US10121599B2 (en) Method for producing electrolytic capacitor
JP6384896B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US10325731B2 (en) Electrolytic capacitor
US20170053745A1 (en) Electrolytic capacitor manufacturing method
JP6803519B2 (en) Manufacturing method of electrolytic capacitors
JP2011109023A (en) Solid electrolytic capacitor, and method of manufacturing the same
WO2017163725A1 (en) Electrolytic capacitor and manufacturing method therefor
US10121598B2 (en) Method for producing electrolytic capacitor
JP6868848B2 (en) Electrolytic capacitor
JP2016082053A (en) Electrolytic capacitor
US9892858B2 (en) Method for manufacturing electrolytic capacitor
WO2020022471A1 (en) Electrolytic capacitor
JP7072487B2 (en) How to manufacture electrolytic capacitors
WO2022210513A1 (en) Method for manufacturing electrolytic capacitor
JP6735510B2 (en) Electrolytic capacitor
JP7407371B2 (en) Electrolytic capacitor
WO2021153750A1 (en) Electrolytic capacitor and method for manufacturing same
WO2023162916A1 (en) Electrolytic capacitor and manufacturing method therefor
JP2023029570A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511244

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780724

Country of ref document: EP

Kind code of ref document: A1