JP2017017182A - Solid electrolytic capacitor and manufacturing method for the same - Google Patents

Solid electrolytic capacitor and manufacturing method for the same Download PDF

Info

Publication number
JP2017017182A
JP2017017182A JP2015132507A JP2015132507A JP2017017182A JP 2017017182 A JP2017017182 A JP 2017017182A JP 2015132507 A JP2015132507 A JP 2015132507A JP 2015132507 A JP2015132507 A JP 2015132507A JP 2017017182 A JP2017017182 A JP 2017017182A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
dispersion solution
phosphorous acid
polymer dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015132507A
Other languages
Japanese (ja)
Other versions
JP6433024B2 (en
Inventor
輝喜 大月
Teruki Otsuki
輝喜 大月
松田 晃啓
Akihiro Matsuda
晃啓 松田
英利 峯村
Hidetoshi Minemura
英利 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2015132507A priority Critical patent/JP6433024B2/en
Publication of JP2017017182A publication Critical patent/JP2017017182A/en
Application granted granted Critical
Publication of JP6433024B2 publication Critical patent/JP6433024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor that maintains low equivalent series resistance and an excellent leakage current reducing effect, and a manufacturing method for the same.SOLUTION: A solid electrolytic capacitor is provided. A conductive polymer layer is formed by impregnating and drying polymer dispersion solution as an electrolyte containing polyethylene dioxythiophene/polystyrene sulfonate as a basic composition at least once in a capacitor element having a dielectric oxide film, and phosphorous acid or salt thereof is contained in the conductive polymer layer to form the solid electrolytic capacitor. A method for manufacturing the solid electrolytic capacitor is provided.SELECTED DRAWING: Figure 1

Description

本発明は、固体電解コンデンサ、特に導電性高分子層が形成された固体電解コンデンサおよびその製造方法に関する。   The present invention relates to a solid electrolytic capacitor, in particular, a solid electrolytic capacitor in which a conductive polymer layer is formed, and a method for manufacturing the same.

固体電解コンデンサとして、表面に誘電体酸化皮膜が形成された陽極電極箔と、陰極電極箔とをセパレータを介して巻回したコンデンサ素子の陽極電極箔と陰極電極箔との間に、導電性高分子層を形成したものが知られている。このような固体電解コンデンサは、電解液を用いた電解コンデンサに比べ、等価直列抵抗が低いという特徴を有する。   As a solid electrolytic capacitor, there is a high conductivity between the anode electrode foil and the cathode electrode foil of the capacitor element in which the anode electrode foil having a dielectric oxide film formed on the surface and the cathode electrode foil are wound through a separator. Those having a molecular layer are known. Such a solid electrolytic capacitor has a feature that its equivalent series resistance is lower than that of an electrolytic capacitor using an electrolytic solution.

固体電解コンデンサの陽極電極は一般的に、エッチングで表面積を増大させたアルミニウム、タンタル、ニオブ等の弁作用を有する金属箔上に誘電体酸化皮膜を形成し、陰極電極箔との間に導電性高分子層を形成させて、電極を引き出して構成される。この導電性高分子層は、電解コンデンサにおける真の陰極としての役割を担っており、電解コンデンサの電気特性に大きな影響を及ぼす。
導電性高分子層とは、電子導電性を有する固体の電解質を含む層であって、ポリチオフェンの誘導体であるポリエチレンジオキシチオフェン(PEDOT)、ポリチオフェン、ポリアニリン、ポリピロールなどの導電性高分子が固体電解質として用いられる。
しかし、導電性高分子は化成性が乏しく、陽極電極箔の酸化皮膜の修復性が弱いために、耐電圧特性の向上が望めず、漏れ電流の十分な低減効果が得られないという問題点があった。
The anode electrode of a solid electrolytic capacitor generally has a dielectric oxide film formed on a metal foil having a valve action such as aluminum, tantalum, or niobium whose surface area is increased by etching, and is electrically conductive between the cathode electrode foil. A polymer layer is formed and an electrode is drawn out. This conductive polymer layer plays a role as a true cathode in the electrolytic capacitor, and greatly affects the electrical characteristics of the electrolytic capacitor.
The conductive polymer layer is a layer containing a solid electrolyte having electronic conductivity, and a conductive polymer such as polyethylenedioxythiophene (PEDOT), polythiophene, polyaniline, or polypyrrole, which is a derivative of polythiophene, is a solid electrolyte. Used as
However, the conductive polymer has poor chemical conversion and the repairability of the oxide film on the anode electrode foil is weak, so that it is not possible to improve the withstand voltage characteristics, and the effect of sufficiently reducing the leakage current cannot be obtained. there were.

これまでに、皮膜修復能力を有し、漏れ電流を低減させるために、一般的に電解液を用いた電解コンデンサでリン酸化合物を用いることが知られているが、このようなリン酸化合物は、鉄と反応し不溶性の鉄塩を生じるため、固体電解コンデンサにおいて、酸化剤に鉄を用いる化学重合タイプでは、漏れ電流低減の効果が得られない。
また、予めリン酸(正リン酸)による化成を行って箔表面に特定量の正リン酸を付着させ漏れ電流を低減させる方法(例えば、特許文献1参照)もあるが、リン酸を箔表面に十分に付着させることが困難なため、その効果は十分ではなく、改善の余地が残されていた。
Until now, in order to have a film repair capability and reduce leakage current, it is generally known to use a phosphate compound in an electrolytic capacitor using an electrolytic solution. Since it reacts with iron to produce an insoluble iron salt, the chemical polymerization type using iron as an oxidant in a solid electrolytic capacitor cannot provide the effect of reducing leakage current.
In addition, there is a method in which a specific amount of normal phosphoric acid is attached to the foil surface in advance by chemical conversion with phosphoric acid (normal phosphoric acid) to reduce leakage current (for example, see Patent Document 1). Therefore, the effect is not sufficient and there remains room for improvement.

特開2008−91358号公報JP 2008-91358 A

本発明は、このような従来技術における問題点を解決し、低い等価直列抵抗が維持され、優れた漏れ電流低減効果を有した固体電解コンデンサを提供することを課題とする。また、本発明の課題は、このような固体電解コンデンサを製造するための方法を提供することでもある。   An object of the present invention is to solve such problems in the prior art, and to provide a solid electrolytic capacitor that maintains a low equivalent series resistance and has an excellent effect of reducing leakage current. Another object of the present invention is to provide a method for producing such a solid electrolytic capacitor.

上記の課題を解決可能な本発明の固体電解コンデンサは、誘電体酸化皮膜が形成されたコンデンサ素子に、電解質として少なくとも1回、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)を基本組成とするポリマー分散体溶液を含浸および乾燥させることによって導電性高分子層が形成された固体電解コンデンサにおいて、前記導電性高分子層中に亜リン酸(HPO)またはその塩が含有されていることを特徴とする。 The solid electrolytic capacitor of the present invention capable of solving the above-mentioned problems is based on the basic composition of polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) as an electrolyte in a capacitor element on which a dielectric oxide film is formed. In the solid electrolytic capacitor in which the conductive polymer layer is formed by impregnating and drying the polymer dispersion solution, phosphorous acid (H 3 PO 3 ) or a salt thereof is contained in the conductive polymer layer. It is characterized by.

また、本発明は、上記の特徴を有した固体電解コンデンサを製造するための方法でもあり、当該製造方法が、
誘電体酸化皮膜が形成されたコンデンサ素子を作製する工程と、
ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)と、亜リン酸またはその塩を含むポリマー分散体溶液に前記コンデンサ素子を少なくとも1回含浸及び乾燥させて、誘電体酸化皮膜の表面に導電性高分子層を形成させる工程
を含むことを特徴とする。
Further, the present invention is also a method for manufacturing a solid electrolytic capacitor having the above characteristics, and the manufacturing method includes:
Producing a capacitor element having a dielectric oxide film formed thereon;
The capacitor element is impregnated and dried at least once in a polymer dispersion solution containing polyethylene dioxythiophene (PEDOT), polystyrene sulfonic acid (PSS), and phosphorous acid or a salt thereof, and conductive on the surface of the dielectric oxide film. A step of forming a conductive polymer layer.

さらに、本発明は、上記の特徴を有した固体電解コンデンサを製造するための方法であり、前記ポリマー分散体溶液中に亜リン酸またはその塩が0.05〜10重量%含有されていることを特徴とする。   Furthermore, the present invention is a method for producing a solid electrolytic capacitor having the above characteristics, wherein the polymer dispersion solution contains 0.05 to 10% by weight of phosphorous acid or a salt thereof. It is characterized by.

本発明の固体電解コンデンサおよびその製造方法によれば、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)を基本組成とするポリマー分散体溶液を含浸および乾燥させることによって導電性高分子層を形成しているので、酸化剤に鉄を用いて化学重合により導電性高分子層を形成する場合のように、リン酸化合物が鉄と反応し不溶性の鉄塩を生じることがなく、漏れ電流の低減を図ることができる。しかも、ポリマー分散体溶液に正リン酸ではなく、亜リン酸またはその塩を含ませている(導電性高分子層に亜リン酸またはその塩が含有されている)ので、次のような作用効果を奏する。
すなわち、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)を基本組成とするポリマー分散体溶液に正リン酸を含ませた場合には、正リン酸が3価の酸であるためにポリスチレンスルホン酸(PSS)との反応性が高く脱ドープが起こりやすくなり、等価直列抵抗が増加するという問題が生じてしまう。
これに対し、本発明によれば、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)を基本組成とするポリマー分散体溶液に亜リン酸またはその塩を含ませているので、上記問題を回避して低い等価直列抵抗を維持したまま、漏れ電流の十分な低減を図ることができる。
According to the solid electrolytic capacitor and the manufacturing method thereof of the present invention, the conductive polymer layer is formed by impregnating and drying a polymer dispersion solution having a basic composition of polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS). Therefore, the phosphoric acid compound does not react with iron to form an insoluble iron salt as in the case where a conductive polymer layer is formed by chemical polymerization using iron as an oxidizing agent, and leakage current is reduced. Reduction can be achieved. Moreover, since the polymer dispersion solution contains phosphorous acid or a salt thereof instead of orthophosphoric acid (the conductive polymer layer contains phosphorous acid or a salt thereof), the following action There is an effect.
That is, when normal phosphoric acid is included in a polymer dispersion solution having a basic composition of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS), the normal phosphoric acid is a trivalent acid, and thus polystyrene. The reactivity with sulfonic acid (PSS) is high, and de-doping is likely to occur, resulting in an increase in equivalent series resistance.
On the other hand, according to the present invention, phosphorous acid or a salt thereof is contained in the polymer dispersion solution having a basic composition of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS). The leakage current can be sufficiently reduced while avoiding the low equivalent series resistance.

本発明によれば、ポリマー分散体溶液では、溶液内に鉄を含まないため、亜リン酸の皮膜修復能が落ちることは無く、皮膜修復され、漏れ電流を低減させることができる。また、本発明によれば、ポリマー分散体溶液に正リン酸ではなく、亜リン酸またはその塩を含ませているため、ポリスチレンスルホン酸(PSS)との反応によって、脱ドープが起こり易いという問題を回避することができ、等価直列抵抗(ESR)が低く、漏れ電流低減の効果を有した固体電解コンデンサが得られる。   According to the present invention, since the polymer dispersion solution does not contain iron in the solution, the film repairing ability of phosphorous acid does not deteriorate, the film is repaired, and the leakage current can be reduced. Further, according to the present invention, since the polymer dispersion solution contains phosphorous acid or a salt thereof instead of orthophosphoric acid, there is a problem that dedoping easily occurs due to reaction with polystyrene sulfonic acid (PSS). Thus, a solid electrolytic capacitor having a low equivalent series resistance (ESR) and an effect of reducing leakage current can be obtained.

コンデンサ素子の概要を示す分解斜視図である。It is an exploded perspective view showing an outline of a capacitor element.

本発明の固体電解コンデンサの製造方法では、ポリマー分散体溶液中に亜リン酸またはその塩が0.05〜10重量%含有されていることが好ましく、等価直列抵抗(ESR)と漏れ電流(LC)とを両立させる観点から、ポリマー分散体溶液中に1.0〜10重量%含有されていることが好ましい。
上記導電性高分子層中に含有される亜リン酸の塩としては、アンモニウム塩、ナトリウム塩等が挙げられる。
In the method for producing a solid electrolytic capacitor of the present invention, the polymer dispersion solution preferably contains 0.05 to 10% by weight of phosphorous acid or a salt thereof, and the equivalent series resistance (ESR) and leakage current (LC ) Is preferably contained in the polymer dispersion solution in an amount of 1.0 to 10% by weight.
Examples of the salt of phosphorous acid contained in the conductive polymer layer include ammonium salt and sodium salt.

本発明に係る固体電解コンデンサは、図1に示すように、陽極電極箔1と陰極電極箔3がセパレータ2を介して巻回されたコンデンサ素子4を有し、該コンデンサ素子4が有底円筒形状の外装ケース(図示せず)に収納された構造を有することが好ましい。陽極電極箔1としては、所定の幅の箔状の弁作用金属の表面をエッチング処理で粗面化した後に化成酸化処理を行って、表面上に誘電体酸化皮膜が形成されたものを用いる。この弁金属作用としては、アルミニウム、タンタル、ニオブ、チタンから選択させる少なくとも一つを含む金属が好ましく、中でもアルミニウムが好ましい。
また、陰極電極箔3も陽極電極箔1と同様にアルミニウム等の弁作用金属で形成されており、エッチング処理により表面が粗面化されたもの(粗面化箔)が使用される。この陰極電極箔3としては、他にエッチング処理を施さないプレーン箔も使用でき、また、前記粗面化箔もしくはプレーン箔の表面に、チタンやニッケルやその炭化物、窒化物、炭窒化物又はこれらの混合物からなる金属薄膜や、カーボン薄膜を形成したコーティング箔も使用することができる。
As shown in FIG. 1, the solid electrolytic capacitor according to the present invention has a capacitor element 4 in which an anode electrode foil 1 and a cathode electrode foil 3 are wound through a separator 2, and the capacitor element 4 is a bottomed cylinder. It is preferable to have a structure housed in a shape outer case (not shown). As the anode electrode foil 1, a foil-shaped valve metal having a predetermined width is roughened by etching and then subjected to chemical oxidation to form a dielectric oxide film on the surface. As the valve metal action, a metal containing at least one selected from aluminum, tantalum, niobium, and titanium is preferable, and aluminum is particularly preferable.
Similarly to the anode electrode foil 1, the cathode electrode foil 3 is formed of a valve action metal such as aluminum, and a surface roughened by etching (roughened foil) is used. As the cathode electrode foil 3, a plain foil that is not subjected to any other etching treatment can be used, and titanium, nickel, its carbide, nitride, carbonitride, or the like can be used on the surface of the roughened foil or plain foil. A metal thin film made of a mixture of the above and a coating foil on which a carbon thin film is formed can also be used.

上記のエッチング処理および化成酸化処理は公知の方法で行うことが可能であり、固体電解コンデンサに通常用いられている公知の材料・条件で処理してもよいし、購入品を用いることもできる。例えば、化成酸化処理に用いる化成液は、カルボン酸基を有する有機酸塩類、リン酸等の無機酸塩類の溶質を有機溶媒又は無機溶媒に溶解した化成液が使用できる。   The above-described etching treatment and chemical conversion oxidation treatment can be carried out by known methods, and may be carried out using known materials and conditions usually used for solid electrolytic capacitors, or purchased products may be used. For example, the chemical conversion liquid used for the chemical conversion treatment may be a chemical conversion liquid in which a solute of an organic acid salt having a carboxylic acid group or an inorganic acid salt such as phosphoric acid is dissolved in an organic solvent or an inorganic solvent.

本発明の固体電解コンデンサにおけるセパレータ2としては、加水分解性を有さないセパレータ、例えば、ポリアクリロニトリル、アラミドを主体とするセパレータであることが好ましく、このようなセパレータを用いることで、特に高温領域において、より耐久性に優れた固体電解コンデンサを得ることができる。
なお、図1に示されるように、陽極電極箔1および陰極電極箔3からは、それぞれ陽極リード線5および陰極リード線6が引き出されている。
As the separator 2 in the solid electrolytic capacitor of the present invention, a separator having no hydrolyzability, for example, a separator mainly composed of polyacrylonitrile or aramid is preferable. By using such a separator, particularly in a high temperature region. Thus, a solid electrolytic capacitor having higher durability can be obtained.
As shown in FIG. 1, an anode lead wire 5 and a cathode lead wire 6 are drawn from the anode electrode foil 1 and the cathode electrode foil 3, respectively.

次に、上記の固体電解コンデンサを製造するための本発明の製法における各工程の好ましい例について説明する。
まず、本発明の固体電解コンデンサの製造方法の最初の工程においては、陽極電極箔1と陰極電極箔3とをセパレータ2を介して巻回してコンデンサ素子4とし、このコンデンサ素子4に化成液中で電圧を印加して切り口化成(素子化成)を行い、陽極電極箔の切断端面に誘電体酸化皮膜を形成させる。この際、使用される化成液としては、アジピン酸および/またはアジピン酸塩(例えば1〜5重量%のアジピン酸アンモニウム)を含む化成液が挙げられる。
上述のような巻回型コンデンサ素子には、最初に、ポリアニリンまたはその誘導体を主体とする溶液を用いて、ポリアニリンまたはその誘導体を主体とする導電性高分子層を形成することが好ましい。
Next, the preferable example of each process in the manufacturing method of this invention for manufacturing said solid electrolytic capacitor is demonstrated.
First, in the first step of the method for producing a solid electrolytic capacitor of the present invention, the anode electrode foil 1 and the cathode electrode foil 3 are wound through a separator 2 to form a capacitor element 4. A voltage is applied to perform cut formation (element formation) to form a dielectric oxide film on the cut end surface of the anode electrode foil. In this case, the chemical conversion liquid used includes a chemical conversion liquid containing adipic acid and / or adipic acid salt (for example, 1 to 5% by weight of ammonium adipate).
In the wound capacitor element as described above, it is preferable to first form a conductive polymer layer mainly composed of polyaniline or a derivative thereof using a solution mainly composed of polyaniline or a derivative thereof.

そして、次の工程においては、上記工程で得られたコンデンサ素子を、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)と、亜リン酸またはその塩を含むポリマー分散体溶液に少なくとも1回含浸させ(好ましくは2〜4回)、乾燥を行って溶媒を除去し、導電性高分子層(亜リン酸またはその塩を含有したPEDOT/PSS層)を形成させる。本発明では、PEDOT/PSSと、亜リン酸またはその塩を含むポリマー分散体溶液に、コンデンサ素子を減圧下で浸漬させた後、加熱を行う。
この際使用される、亜リン酸またはその塩を含有するPEDOT/PSS/ポリマー分散体溶液としては、溶媒として水を使用したものが好ましく、分散液中の亜リン酸の濃度を0.05〜10.0wt%として作製したものがより好ましい。また、PEDOT/PSSの濃度は0.5〜3.0wt%が適切である。このような導電性高分子層を形成する工程において、含浸を常圧で行ってもよいが、減圧下で行うことも好ましい。また、含浸及び乾燥は、2回以上繰り返して行うことができる。乾燥条件は、溶媒である水を除去可能かつコンデンサ素子に悪影響を及ぼさない限り制限されないが、例えば85〜200℃で30〜120分、乾燥させることができる。特に好ましくは、1.0〜10.0wt%の亜リン酸を含むポリマー分散体溶液にコンデンサ素子を5〜30kPaの減圧下で10〜20分間含浸させ、130〜170℃で50〜80分乾燥を行う工程を3回繰り返すことによって、導電性高分子層を形成することができる。
In the next step, the capacitor element obtained in the above step is at least once in a polymer dispersion solution containing polyethylene dioxythiophene (PEDOT), polystyrene sulfonic acid (PSS), and phosphorous acid or a salt thereof. Impregnation (preferably 2 to 4 times), drying is performed to remove the solvent, and a conductive polymer layer (PEDOT / PSS layer containing phosphorous acid or a salt thereof) is formed. In the present invention, the capacitor element is immersed in a polymer dispersion solution containing PEDOT / PSS and phosphorous acid or a salt thereof, and then heated.
As the PEDOT / PSS / polymer dispersion solution containing phosphorous acid or a salt thereof used at this time, one using water as a solvent is preferable, and the concentration of phosphorous acid in the dispersion is 0.05 to What was produced as 10.0 wt% is more preferable. The concentration of PEDOT / PSS is suitably 0.5 to 3.0 wt%. In the step of forming such a conductive polymer layer, the impregnation may be performed at normal pressure, but it is also preferable to perform it under reduced pressure. The impregnation and drying can be repeated twice or more. The drying conditions are not limited as long as water as a solvent can be removed and the capacitor element is not adversely affected. For example, drying can be performed at 85 to 200 ° C. for 30 to 120 minutes. Particularly preferably, the capacitor element is impregnated with a polymer dispersion solution containing 1.0 to 10.0 wt% phosphorous acid under a reduced pressure of 5 to 30 kPa for 10 to 20 minutes and dried at 130 to 170 ° C. for 50 to 80 minutes. The conductive polymer layer can be formed by repeating the step of performing 3 times.

その後、前記工程により得られたコンデンサ素子を、リード線挿通部を有する封口部材と共に外装ケースに収納し、外装ケースの開口端部をカーリングして封止し、150℃程度の温度条件にてコンデンサに定格電圧(例えば35V)を印加してエージング処理を施すことにより、本発明の固体電解コンデンサが得られる。   Thereafter, the capacitor element obtained by the above process is housed in an exterior case together with a sealing member having a lead wire insertion portion, and the opening end portion of the exterior case is curled and sealed, and the capacitor is subjected to a temperature condition of about 150 ° C. A solid electrolytic capacitor of the present invention can be obtained by applying an aging treatment by applying a rated voltage (for example, 35 V) to the capacitor.

以下に、実施例によって本発明をより具体的に説明するが、本発明は下記の実施例に制限されない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples.

[実施例1]
陽極電極箔、陰極電極箔として、いずれも、エッチング処理により表面を粗面化したアルミニウム箔を用い、さらに陰極電極箔の表面に酸化チタンを形成した。所定の幅に切断された陽極電極箔及び陰極電極箔に外部引き出し電極用のタブ端子を接続した。この際、陽極電極箔には、弁金属の表面にエッチング処理及び化成処理を施すことによって、誘電体酸化皮膜が形成されたものを用いた。また、セパレータとしては、ポリアクリロニトリル100%からなるセパレータ(密度0.40g/cm、厚み50μm)を用いた。
上記の陽極電極箔及び陰極電極箔を、上記セパレータを介して巻回し、巻回素子を完成した。作製する素子の定格は35WV−120μF、サイズはφ8×10Lの製品とした。
続いて、陽極電極箔の切り口や外部引き出し電極取り付け時に欠損した誘電体酸化皮膜の修復、いわゆる化成処理を行った。この際、アジピン酸アンモニウムを水溶媒に溶解させた2.0wt%の化成液を用いて、誘電体酸化皮膜の化成電圧値に近似した電圧を印加し、切り口化成を行い、陽極電極箔の切断端面に誘電体酸化皮膜を形成した。
[Example 1]
As the anode electrode foil and the cathode electrode foil, an aluminum foil whose surface was roughened by etching treatment was used, and titanium oxide was further formed on the surface of the cathode electrode foil. A tab terminal for an external lead electrode was connected to the anode electrode foil and the cathode electrode foil cut to a predetermined width. At this time, an anode electrode foil having a dielectric oxide film formed by performing etching and chemical conversion on the surface of the valve metal was used. As the separator, a separator made of 100% polyacrylonitrile (density 0.40 g / cm 3 , thickness 50 μm) was used.
Said anode electrode foil and cathode electrode foil were wound through the said separator, and the winding element was completed. The rating of the element to be manufactured was a product of 35 WV-120 μF and the size was φ8 × 10 L.
Subsequently, a so-called chemical conversion treatment was performed on the dielectric oxide film that was lost when the anode electrode foil was cut or the external lead electrode was attached. At this time, using a 2.0 wt% chemical conversion solution in which ammonium adipate is dissolved in an aqueous solvent, a voltage approximating the chemical conversion voltage value of the dielectric oxide film is applied to cut and form the anode electrode foil. A dielectric oxide film was formed on the end face.

その後、上述のような巻回型コンデンサ素子に、最初に、ポリアニリンまたはその誘導体を主体とする溶液を用いて、ポリアニリンまたはその誘導体を主体とする第1の導電性高分子層を形成した。続いて、PEDOT/PSSと亜リン酸を含むポリマー分散体溶液を10kPaの減圧下で15分間浸漬・含浸させ、150℃で60分加熱することによって水分を除去した。この含浸及び乾燥を3回繰り返して、第2の導電性高分子層(亜リン酸を含むPEDOT/PSS層)を形成させた。ここで、ポリマー分散体溶液に対するPEDOT/PSSの含有量を2.0wt%とし、亜リン酸の含有量を0.01wt%とした。
そして、上記方法で導電性高分子層が形成されたコンデンサ素子を、リード線挿通部を有する封口部材と共に外装ケースに収納し、外装ケースの開口部をカーリングした。続いて、150℃程度の温度条件にてコンデンサに定格電圧35Vを1時間印加してエージング処理を施し、固体電解コンデンサを完成した。
Thereafter, a first conductive polymer layer mainly composed of polyaniline or a derivative thereof was first formed on the wound capacitor element as described above using a solution mainly composed of polyaniline or a derivative thereof. Subsequently, the polymer dispersion solution containing PEDOT / PSS and phosphorous acid was immersed and impregnated under a reduced pressure of 10 kPa for 15 minutes, and the water was removed by heating at 150 ° C. for 60 minutes. This impregnation and drying were repeated three times to form a second conductive polymer layer (PEDOT / PSS layer containing phosphorous acid). Here, the content of PEDOT / PSS in the polymer dispersion solution was 2.0 wt%, and the content of phosphorous acid was 0.01 wt%.
And the capacitor | condenser element in which the conductive polymer layer was formed by the said method was accommodated in the exterior case with the sealing member which has a lead wire penetration part, and the opening part of the exterior case was curled. Subsequently, an aging treatment was performed by applying a rated voltage of 35 V to the capacitor under a temperature condition of about 150 ° C. for 1 hour to complete a solid electrolytic capacitor.

[実施例2]
コンデンサ素子に含浸させるポリマー分散体溶液中の亜リン酸含有量を0.05wt%とする以外は、実施例1と同様に固体電解コンデンサを作製した。
[Example 2]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the phosphorous acid content in the polymer dispersion solution impregnated in the capacitor element was 0.05 wt%.

[実施例3]
コンデンサ素子に含浸させるポリマー分散体溶液中の亜リン酸含有量を1.0wt%とする以外は、実施例1と同様に固体電解コンデンサを作製した。
[Example 3]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the phosphorous acid content in the polymer dispersion solution impregnated in the capacitor element was 1.0 wt%.

[実施例4]
コンデンサ素子に含浸させるポリマー分散体溶液中の亜リン酸含有量を10.0wt%とする以外は、実施例1と同様に固体電解コンデンサを作製した。
[Example 4]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the phosphorous acid content in the polymer dispersion solution impregnated in the capacitor element was 10.0 wt%.

[実施例5]
コンデンサ素子に含浸させるポリマー分散体溶液中の亜リン酸含有量を12.0wt%とする以外は、実施例1と同様に固体電解コンデンサを作製した。
[Example 5]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the phosphorous acid content in the polymer dispersion solution impregnated in the capacitor element was 12.0 wt%.

[従来例]
コンデンサ素子に含浸させるポリマー分散体溶液として、亜リン酸を配合しないものを使用し、陰極電極箔として、エッチング処理により表面を粗面化したアルミニウム箔を使用する以外は、実施例1と同様に固体電解コンデンサを作製した。
[Conventional example]
As in Example 1, except that the polymer dispersion solution impregnated in the capacitor element is a solution containing no phosphorous acid, and the cathode electrode foil is an aluminum foil whose surface is roughened by etching. A solid electrolytic capacitor was produced.

[比較例]
コンデンサ素子に含浸させるポリマー分散体溶液として、正リン酸(HPO)を1.0wt%含有するものを使用し、陰極電極箔として、エッチング処理により表面を粗面化したアルミニウム箔を使用する以外は、実施例1と同様に固体電解コンデンサを作製した。
[Comparative example]
As the polymer dispersion solution impregnated in the capacitor element, one containing 1.0 wt% of normal phosphoric acid (H 3 PO 4 ) is used, and as the cathode electrode foil, an aluminum foil whose surface is roughened by etching treatment is used. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that.

[実施例1〜5、従来例および比較例の固体電解コンデンサの評価]
上記で得られた実施例1〜5、従来例および比較例の固体電解コンデンサについてそれぞれ、測定温度20℃の条件にて、静電容量(Cap)、tanδ(損失角の正接)、等価直列抵抗(ESR)及び漏れ電流(LC)を測定した。
[Evaluation of Solid Electrolytic Capacitors of Examples 1 to 5, Conventional Example and Comparative Example]
With respect to the solid electrolytic capacitors of Examples 1 to 5 obtained above, the conventional example and the comparative example, the capacitance (Cap), tan δ (tangent of loss angle), and equivalent series resistance, respectively, at the measurement temperature of 20 ° C. (ESR) and leakage current (LC) were measured.

[実施例1〜5、従来例及び比較例にて使用したポリマー分散体溶液]
従来例:亜リン酸を含まないポリマー分散体溶液
実施例1:0.01wt%の亜リン酸を含むポリマー分散体溶液
実施例2:0.05wt%の亜リン酸を含むポリマー分散体溶液
実施例3:1.0wt%の亜リン酸を含むポリマー分散体溶液
実施例4:10.0wt%の亜リン酸を含むポリマー分散体溶液
実施例5:12.0wt%の亜リン酸を含むポリマー分散体溶液
比較例:1.0wt%の正リン酸(オルトリン酸)を含むポリマー分散体溶液
[Polymer dispersion solutions used in Examples 1 to 5, conventional example and comparative example]
Conventional Example: Polymer dispersion solution containing no phosphorous acid Example 1: Polymer dispersion solution containing 0.01 wt% phosphorous acid Example 2: Polymer dispersion solution containing 0.05 wt% phosphorous acid Example 3: Polymer dispersion solution containing 1.0 wt% phosphorous acid Example 4: Polymer dispersion solution containing 10.0 wt% phosphorous acid Example 5: Polymer containing 12.0 wt% phosphorous acid Dispersion Solution Comparative Example: Polymer dispersion solution containing 1.0 wt% orthophosphoric acid (orthophosphoric acid)

Figure 2017017182
Figure 2017017182

上記表1の実験結果から、ポリマー分散体溶液に亜リン酸を添加することによって、漏れ電流低減の効果が認められた。また、ポリマー分散体溶液に亜リン酸を添加する量は、等価直列抵抗(ESR)と漏れ電流(LC)とを両立させる観点から、特に1.0〜10.0wt%が好ましいことが分かった。
また、正リン酸(オルトリン酸)を1.0wt%含有したポリマー分散体溶液を用いて作製された比較例の固体電解コンデンサは、漏れ電流が低く、皮膜修復能向上は可能であるが、ESRの増加が観察され、これに対して、亜リン酸は添加してもESRの上昇が少ないメリットがあることがわかった。なお、このようなESRの値の違いは、亜リン酸が2価の酸であるのに対して、正リン酸が3価の酸であり、PSSとの反応性が高く、脱ドープが起こりやすいためであると考えられる。
なお、本発明の上記実施例では亜リン酸を使用したが、亜リン酸塩を上記含有量で用いた場合にも上記と同様の効果が得られる。
From the experimental results in Table 1 above, the effect of reducing leakage current was recognized by adding phosphorous acid to the polymer dispersion solution. Further, it was found that the amount of phosphorous acid added to the polymer dispersion solution is preferably 1.0 to 10.0 wt% from the viewpoint of achieving both equivalent series resistance (ESR) and leakage current (LC). .
Moreover, the solid electrolytic capacitor of the comparative example produced using the polymer dispersion solution containing 1.0 wt% of orthophosphoric acid (orthophosphoric acid) has low leakage current and can improve the film repair ability, but ESR On the other hand, it was found that there is a merit that the increase in ESR is small even when phosphorous acid is added. The difference in the ESR values is that phosphorous acid is a divalent acid, whereas orthophosphoric acid is a trivalent acid, has high reactivity with PSS, and dedope occurs. It is thought that it is easy.
In addition, although phosphorous acid was used in the said Example of this invention, when the phosphite is used with the said content, the effect similar to the above is acquired.

また、上記実施例では、陰極電極箔として、酸化チタンが表面に形成された陰極電極箔を用いたが、カーボンが表面に形成された陰極電極箔を用いても同様の効果が得られる。   In the above embodiment, the cathode electrode foil having titanium oxide formed on the surface is used as the cathode electrode foil, but the same effect can be obtained by using the cathode electrode foil having carbon formed on the surface.

さらに、上記実施例では、水を溶媒としたが、副溶媒として、エチレングリコール、ポリエチレングリコール、DIMSO等の高沸点溶媒を用いても同様の効果が得られる。   Furthermore, although water was used as the solvent in the above-described examples, the same effect can be obtained even when a high-boiling solvent such as ethylene glycol, polyethylene glycol, or DIMSO is used as the auxiliary solvent.

また、上記実施例では、定格電圧が35Vである固体電解コンデンサを適用したが、このように、特に定格電圧100V以下の固体電解コンデンサにおいて本発明は有効である。   In the above embodiment, a solid electrolytic capacitor having a rated voltage of 35V is applied. Thus, the present invention is particularly effective for a solid electrolytic capacitor having a rated voltage of 100V or less.

なお、上記実施例では、誘電体酸化皮膜が形成された陽極電極箔と陰極電極箔とをセパレータを介して巻回してコンデンサ素子を形成したが、誘電体酸化皮膜が形成された陽極電極箔を積層したコンデンサ素子や、弁作用金属の粉体を焼結後、誘電体酸化皮膜を形成したコンデンサ素子を使用してもよい。   In the above embodiment, the capacitor element was formed by winding the anode electrode foil and the cathode electrode foil on which the dielectric oxide film was formed via the separator, but the anode electrode foil on which the dielectric oxide film was formed was A laminated capacitor element or a capacitor element in which a dielectric oxide film is formed after sintering a valve action metal powder may be used.

1 陽極電極箔
2 セパレータ
3 陰極電極箔
4 コンデンサ素子
5 陽極リード線
6 陰極リード線
1 Anode electrode foil 2 Separator 3 Cathode electrode foil 4 Capacitor element 5 Anode lead wire 6 Cathode lead wire

Claims (3)

誘電体酸化皮膜が形成されたコンデンサ素子に、電解質として少なくとも1回、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸を基本組成とするポリマー分散体溶液を含浸および乾燥させることによって導電性高分子層が形成された固体電解コンデンサにおいて、
前記導電性高分子層中に、亜リン酸またはその塩が含有されていることを特徴とする固体電解コンデンサ。
A conductive polymer layer is formed by impregnating and drying a polymer dispersion solution having a basic composition of polyethylenedioxythiophene / polystyrene sulfonic acid as an electrolyte at least once on a capacitor element on which a dielectric oxide film is formed. In solid electrolytic capacitors
A solid electrolytic capacitor characterized in that phosphorous acid or a salt thereof is contained in the conductive polymer layer.
誘電体酸化皮膜が形成されたコンデンサ素子を作製する工程と、
ポリエチレンジオキシチオフェンとポリスチレンスルホン酸と、亜リン酸またはその塩を含むポリマー分散体溶液に前記コンデンサ素子を少なくとも1回含浸及び乾燥させて、誘電体酸化皮膜の表面に導電性高分子層を形成させる工程、
を含むことを特徴とする固体電解コンデンサの製造方法。
Producing a capacitor element having a dielectric oxide film formed thereon;
The capacitor element is impregnated at least once in a polymer dispersion solution containing polyethylene dioxythiophene, polystyrene sulfonic acid, phosphorous acid or a salt thereof, and a conductive polymer layer is formed on the surface of the dielectric oxide film. The process of
The manufacturing method of the solid electrolytic capacitor characterized by including this.
前記ポリマー分散体溶液中に亜リン酸またはその塩が0.05〜10重量%含有されていることを特徴とする請求項2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 2, wherein the polymer dispersion solution contains 0.05 to 10% by weight of phosphorous acid or a salt thereof.
JP2015132507A 2015-07-01 2015-07-01 Solid electrolytic capacitor and manufacturing method thereof Active JP6433024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132507A JP6433024B2 (en) 2015-07-01 2015-07-01 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132507A JP6433024B2 (en) 2015-07-01 2015-07-01 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017017182A true JP2017017182A (en) 2017-01-19
JP6433024B2 JP6433024B2 (en) 2018-12-05

Family

ID=57830991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132507A Active JP6433024B2 (en) 2015-07-01 2015-07-01 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6433024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210513A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Method for manufacturing electrolytic capacitor
JP7391812B2 (en) 2020-10-01 2023-12-05 ニチコン株式会社 Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776825A (en) * 1980-10-30 1982-05-14 Elna Co Ltd Electrolytic condenser
JPH0442911A (en) * 1990-06-06 1992-02-13 Elna Co Ltd Electrolyte for driving electrolytic capacitor
JP2001155964A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Manufacturing methods for precursor of conductive composition, the conductive composition, and solid electrolytic capacitor
JP2005039245A (en) * 2003-06-26 2005-02-10 Matsushita Electric Ind Co Ltd Electrolyte for driving and electrolytic capacitor using the same
JP2009001624A (en) * 2007-06-20 2009-01-08 Tayca Corp Dispersant and dopant for synthesizing electroconductive polymer, electroconductive polymer synthesized by using the same, electroconductive composition comprising the electroconductive polymer, dispersion of the electroconductive polymer or electroconductive composition and applied material of the electroconductive polymer or electroconductive composition
JP2014103292A (en) * 2012-11-21 2014-06-05 Nec Tokin Corp Electroconductive polymer, insulating resin, and structure using the same
JP2015095616A (en) * 2013-11-14 2015-05-18 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776825A (en) * 1980-10-30 1982-05-14 Elna Co Ltd Electrolytic condenser
JPH0442911A (en) * 1990-06-06 1992-02-13 Elna Co Ltd Electrolyte for driving electrolytic capacitor
JP2001155964A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Manufacturing methods for precursor of conductive composition, the conductive composition, and solid electrolytic capacitor
JP2005039245A (en) * 2003-06-26 2005-02-10 Matsushita Electric Ind Co Ltd Electrolyte for driving and electrolytic capacitor using the same
JP2009001624A (en) * 2007-06-20 2009-01-08 Tayca Corp Dispersant and dopant for synthesizing electroconductive polymer, electroconductive polymer synthesized by using the same, electroconductive composition comprising the electroconductive polymer, dispersion of the electroconductive polymer or electroconductive composition and applied material of the electroconductive polymer or electroconductive composition
JP2014103292A (en) * 2012-11-21 2014-06-05 Nec Tokin Corp Electroconductive polymer, insulating resin, and structure using the same
JP2015095616A (en) * 2013-11-14 2015-05-18 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391812B2 (en) 2020-10-01 2023-12-05 ニチコン株式会社 Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method
WO2022210513A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Method for manufacturing electrolytic capacitor

Also Published As

Publication number Publication date
JP6433024B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP7462177B2 (en) Electrolytic capacitor
US11094471B2 (en) Electrolytic capacitor
KR101770859B1 (en) Solid electrolyte capacitor
JP5388811B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6384896B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6358646B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN109478466A (en) Electrolytic capacitor and its manufacturing method
JP6669461B2 (en) Electrolytic capacitor and method of manufacturing the same
JP6528087B2 (en) Method of manufacturing electrolytic capacitor
JP2016072284A (en) Solid electrolytic capacitor and method of manufacturing the same
JP6433024B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2016002175A1 (en) Method for producing electrolytic capacitor
JP6652835B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4019968B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6735510B2 (en) Electrolytic capacitor
JP4909246B2 (en) Manufacturing method of solid electrolytic capacitor
JP6537105B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2008034440A (en) Method of manufacturing solid-state electrolytic capacitor
JPWO2019225523A1 (en) Electrolytic capacitor
JP6395202B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008091358A (en) Solid-state electrolytic capacitor, and its manufacturing process
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4668140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP6145838B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6433024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250