JP4363022B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4363022B2
JP4363022B2 JP2002283503A JP2002283503A JP4363022B2 JP 4363022 B2 JP4363022 B2 JP 4363022B2 JP 2002283503 A JP2002283503 A JP 2002283503A JP 2002283503 A JP2002283503 A JP 2002283503A JP 4363022 B2 JP4363022 B2 JP 4363022B2
Authority
JP
Japan
Prior art keywords
chemical conversion
voltage
cathode body
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283503A
Other languages
Japanese (ja)
Other versions
JP2004119830A (en
Inventor
典仁 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2002283503A priority Critical patent/JP4363022B2/en
Publication of JP2004119830A publication Critical patent/JP2004119830A/en
Application granted granted Critical
Publication of JP4363022B2 publication Critical patent/JP4363022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサの製造方法に係り、特に、等価直列抵抗(以下、ESRという)の低減を図り、静電容量の大きい固体電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。
【0003】
この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。
【0004】
また、電解コンデンサの静電容量を高めるために、電極材料の基材であるアルミニウム箔の表面積を、化学的にあるいは電気化学的にエッチングにより拡大することが行われている。
【0005】
【特許文献1】
特開2000−106331号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述したような従来の固体電解コンデンサには、以下に述べるような問題点があった。すなわち、従来の固体電解コンデンサにおいては、電解コンデンサの静電容量を高めるために、電極材料の基材であるアルミニウム箔の表面にエッチング処理を施しているが、エッチングが過大になるとアルミニウム箔表面の溶解が同時に進行し、却って拡面率の増大を妨げることなどの理由から、エッチング技術による電極材料の静電容量の増大化には限界があった。
【0007】
また、従来、固体電解コンデンサの固体電解質には、主に硝酸マンガンの熱分解により形成される二酸化マンガンが用いられていたが、この二酸化マンガンは導電率が比較的高いため、コンデンサとしてのESRの低減には限度があった。この問題点を解決するため、本出願人は、陰極箔の表面に化成電圧が10V以下の化成皮膜を形成するという方法を提案した(特許文献1)。
しかしながら、近年のデジタル機器においては、さらなる低ESRのコンデンサや静電容量の大きいコンデンサの開発が切望されている。
【0008】
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、等価直列抵抗(ESR)の低減を可能とし、静電容量の大きい固体電解コンデンサの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく、ESRの低減と、静電容量の向上を可能とした固体電解コンデンサの製造方法について鋭意検討を重ねた結果、本発明を完成するに至ったものである。
【0010】
(固体電解コンデンサの製造方法…その1)
エッチング処理した弁金属箔を化成液中で電圧印加して金属箔表面に誘電体酸化皮膜を形成し、この箔を所定の大きさに切断して陽極体として用いる。また、陰極体にはエッチング箔を用いるが、この陰極体には、巻回又は積層前に化成処理を行わない。そして、このように形成した陽極体と陰極体を、セパレータを介して巻回又は積層してコンデンサ素子を形成した後、このコンデンサ素子を化成液に浸漬して、陰極体に電圧印加して化成を行う。
続いて、陽極体にも電圧印加して修復化成を行い、電極体の切断面や、コンデンサ素子作成工程で損傷を受けた酸化皮膜の損傷部分を修復する。そして、コンデンサ素子を乾燥させた後、コンデンサ素子に重合性モノマーと酸化剤を含浸し、固体電解質層を形成して固体電解コンデンサを形成する。
【0011】
このようにして形成した固体電解コンデンサにおいては、ESR特性が大幅に低減され、かつ静電容量も増加することが判明した。その理由は、陰極体に酸化皮膜を形成した直後に固体電解質を形成することにより、酸化皮膜は良質な状態で、その上に固体電解質層が形成されるため、陰極体と固体電解質層との密着性が向上すると考えられる。
【0012】
(固体電解コンデンサの製造方法…その2)
エッチング処理した弁金属箔を化成液中で電圧印加して金属箔表面に誘電体酸化皮膜を形成し、この箔を所定の大きさに切断して陽極体として用いる。また、陰極体にはエッチング箔を用いるが、この陰極体には、巻回又は積層前に予め数Vで化成処理を行う。このようにして誘電体酸化皮膜が形成された陰極体と陽極体とをセパレータを介して巻回又は積層してコンデンサ素子を形成した後、このコンデンサ素子を化成液に浸漬して、陰極体に電圧印加して化成を行う。
続いて、陽極体にも電圧印加して修復化成を行い、電極体の切断面や、コンデンサ素子作成工程で損傷を受けた酸化皮膜の損傷部分を修復する。そして、コンデンサ素子を乾燥させた後、コンデンサ素子に重合性モノマーと酸化剤を含浸し、固体電解質層を形成して固体電解コンデンサを形成する。
【0013】
このようにして形成した固体電解コンデンサにおいては、ESR特性がさらに改善されることが判明した。その理由は、予め形成されている酸化皮膜層に再度電圧印加して化成を行った直後に固体電解質層を形成することにより、陰極体の酸化皮膜は表面状態が均一に再生された状態で、その上に固体電解質層が形成されるため、陰極体と固体電解質層との密着性が向上するためと考えられる。
【0014】
(化成電圧)
固体電解質層形成の直前に陰極体に行う化成処理を「第1の化成処理」、巻回又は積層前に陰極体に行う化成処理を「第2の化成処理」と言うこととすると、第1の化成処理の化成電圧は、0.5〜5Vが好ましく、また、第2の化成処理の化成電圧は、第1の化成処理の化成電圧以下とすることが望ましい。この第2の化成処理の化成電圧を、第1の化成処理の化成電圧を超える電圧としても、ESR特性の改善にはあまり効果は認められなかった。
【0015】
(陰極体の化成液)
陰極体の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液等を用いることができるが、なかでもリン酸二水素アンモニウムを用いることが望ましい。なお、リン酸二水素アンモニウムの水溶液の濃度は、0.005〜3%が適している。
【0016】
(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
また、酸化剤としては、ブタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができる。
【0017】
(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。
【化1】

Figure 0004363022
【0018】
(作用・効果)
本発明によれば、陽極体と陰極体をセパレータを介して巻回又は積層してコンデンサ素子を形成し、陰極体を化成液中に浸漬して化成処理した後、セパレータに導電性ポリマーを保持させることにより、固体電解コンデンサの電気的特性が改善される。特に、巻回又は積層前に酸化皮膜を形成していない陰極体を用いてコンデンサ素子を形成した後、陰極体に電圧印加して化成処理を行うと、ESR特性、静電容量が良好な結果が得られた。また、巻回又は積層前に予め化成により酸化皮膜を形成した陰極体を用いてコンデンサ素子を形成した後、再度電圧印加して陰極体に化成処理を行うと、ESR特性がさらに改善される効果が得られる。
【0019】
【実施例】
続いて、以下のようにして製造した実施例1〜4及び従来例1〜3に基づいて本発明をさらに詳細に説明する。
【0020】
(実施例1)
(a)素子形成工程:エッチングのみのアルミニウム箔からなる陰極体と、エッチング及び酸化皮膜が形成された陽極体を、セパレータを介して巻回してコンデンサ素子を形成した。
(b)化成工程:0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に上記のコンデンサ素子を浸漬して、陰極体を化成した。なお、化成電圧は1V、化成時間は10分とした。また、陽極体も化成電圧9Vで修復化成した。
(c)固体電解質層形成工程:上記のコンデンサ素子にEDTモノマー、45%パラトルエンスルホン酸第二鉄のブタノール溶液を酸化剤溶液として含浸して、100℃、一時間加熱した。
(d)ケース収納工程:上記のコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口部材を配して加締め加工により封止した。その後、エージングを行って固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は4WVである。
【0021】
(実施例2)
(a)素子形成工程:陰極体を、0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に浸漬し、化成電圧1Vで10分間化成して予め酸化皮膜を形成し、この陰極体と陽極体とをセパレータを介して巻回してコンデンサ素子を形成した。
(b)以降の化成工程、固体電解質層形成工程、ケース収納工程は実施例1と同様とした。
【0022】
(実施例3)
(a)素子形成工程:陰極体を、0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に浸漬し、化成電圧2Vで10分間化成して予め酸化皮膜を形成し、この陰極体と陽極体とをセパレータを介して巻回してコンデンサ素子を形成した。
(b)化成工程:0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に上記のコンデンサ素子を浸漬して、陰極体を化成した。なお、化成電圧は2V、化成時間は10分とした。また、陽極体も化成電圧9Vで修復化成した。
(c)以降の工程は実施例1と同様とした。
【0023】
(実施例4)
(a)素子形成工程:陰極体を、0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に浸漬し、化成電圧1Vで10分間化成して予め酸化皮膜を形成し、この陰極体と陽極体とをセパレータを介して巻回してコンデンサ素子を形成した。
(b)化成工程:0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に上記のコンデンサ素子を浸漬して、陰極体を化成した。なお、化成電圧は2V、化成時間は10分とした。また、陽極体も化成電圧9Vで修復化成した。
(c)以降の工程は実施例1と同様とした。
【0024】
(従来例1)
(a)素子形成工程:エッチング処理のみのアルミニウム箔からなる陰極体と、エッチング及び酸化皮膜が形成された陽極体を、セパレータを介して巻回してコンデンサ素子を形成した。
(b)化成工程:陽極体のみ化成電圧9Vで修復化成し、陰極体は化成を行っていない。
(c)以降の工程は実施例1と同様とした。
【0025】
(従来例2)
(a)素子形成工程:陰極体を、0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に浸漬し、化成電圧1Vで10分間化成して予め酸化皮膜を形成し、この陰極体と陽極体とをセパレータを介して巻回してコンデンサ素子を形成した。
(b)以降の工程は従来例1と同様とした。
【0026】
(従来例3)
(a)素子形成工程:陰極体を、0.15%のリン酸二水素アンモニウムを添加した温度50℃の水溶液に浸漬し、化成電圧2Vで10分間化成して予め酸化皮膜を形成し、この陰極体と陽極体とをセパレータを介して巻回してコンデンサ素子を形成した。
(b)以降の工程は従来例1と同様とした。
【0027】
[比較結果1]
まず、陰極体の巻回前に予め化成を行っていない場合、すなわち、実施例1と従来例1とを比較したところ、表1のような結果が得られた。
【表1】
Figure 0004363022
【0028】
実施例1及び従来例1は、共に、コンデンサ素子の巻回前には化成処理を行っていないが、コンデンサ素子の形成後に陰極体に電圧印加して化成を行った実施例1においては、ESR特性及び静電容量共に良好な結果が得られた。
【0029】
[比較結果2]
次に、陰極体の巻回前に、化成電圧1Vで予め化成を行った場合、すなわち、実施例2、実施例4及び従来例2を比較したところ、表2のような結果が得られた。
【表2】
Figure 0004363022
【0030】
実施例2、実施例4及び従来例2は、共に、コンデンサ素子の巻回前に化成電圧1Vで化成処理を行い、酸化皮膜を形成したものであるが、さらに、コンデンサ素子の形成後に再度陰極体に電圧印加して化成を行った実施例2及び実施例4においては、ESR特性は従来例2より良好な結果が得られた。
【0031】
また、実施例2と実施例4を比較すると、再度化成する際の電圧、すなわち、固体電解質層形成前の陰極体の化成電圧の違いによる差は認められなかった。このことから、再度化成する際の電圧を、巻回前に予め行った化成電圧より大きくしても、ESR特性に効果は認められないことが分かった。
【0032】
[比較結果3]
さらに、陰極体の巻回前に、化成電圧2Vで予め化成を行った場合、すなわち、実施例3及び従来例3を比較したところ、表3のような結果が得られた。
【表3】
Figure 0004363022
【0033】
実施例3及び従来例3は、共に、コンデンサ素子の巻回前に化成電圧2Vで化成処理を行い、酸化皮膜を形成したものであるが、さらに、コンデンサ素子の形成後に陰極体に電圧印加して化成を行った実施例3は、従来例3と比較して、ESR特性に良好な結果が得られた。
【0034】
【発明の効果】
以上述べたように、本発明によれば、固体電解質層の形成前に、陰極体の表面に化成皮膜を形成することにより、あるいは、さらに、陰極体と陽極体を巻回又は積層する前に、予め陰極体の表面に化成皮膜を形成することにより、等価直列抵抗(ESR)の低減を可能とし、静電容量の大きい固体電解コンデンサの製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor having a large electrostatic capacity by reducing an equivalent series resistance (hereinafter referred to as ESR).
[0002]
[Prior art]
An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.
[0003]
In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.
[0004]
In addition, in order to increase the capacitance of the electrolytic capacitor, the surface area of the aluminum foil that is the base material of the electrode material is expanded chemically or electrochemically by etching.
[0005]
[Patent Document 1]
JP-A-2000-106331 [0006]
[Problems to be solved by the invention]
However, the conventional solid electrolytic capacitor as described above has the following problems. That is, in the conventional solid electrolytic capacitor, in order to increase the capacitance of the electrolytic capacitor, the surface of the aluminum foil that is the base material of the electrode material is subjected to etching treatment. The increase in the capacitance of the electrode material by the etching technique has a limit because the dissolution proceeds simultaneously and the increase in the area expansion rate is hindered.
[0007]
Conventionally, manganese dioxide formed mainly by thermal decomposition of manganese nitrate has been used as the solid electrolyte of the solid electrolytic capacitor. However, since this manganese dioxide has a relatively high conductivity, There was a limit to the reduction. In order to solve this problem, the present applicant has proposed a method of forming a conversion film having a conversion voltage of 10 V or less on the surface of the cathode foil (Patent Document 1).
However, in recent digital devices, development of a capacitor having a lower ESR and a capacitor having a larger capacitance is desired.
[0008]
The present invention has been proposed in order to solve the above-described problems of the prior art, and an object of the present invention is to reduce the equivalent series resistance (ESR) and to provide a solid electrolytic capacitor having a large capacitance. It is to provide a manufacturing method.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventor has intensively studied a method for producing a solid electrolytic capacitor capable of reducing ESR and improving capacitance, and as a result, has completed the present invention. is there.
[0010]
(Solid electrolytic capacitor manufacturing method ... 1)
A voltage is applied to the etched valve metal foil in the chemical liquid to form a dielectric oxide film on the surface of the metal foil, and this foil is cut into a predetermined size and used as an anode body. Moreover, although etching foil is used for a cathode body, chemical conversion treatment is not performed on this cathode body before winding or lamination. Then, the anode body and the cathode body formed in this manner are wound or laminated through a separator to form a capacitor element, and then this capacitor element is immersed in a chemical conversion solution and a voltage is applied to the cathode body to form a capacitor element. I do.
Subsequently, a voltage is also applied to the anode body to perform repair formation, and the cut surface of the electrode body and the damaged portion of the oxide film damaged in the capacitor element forming process are repaired. Then, after the capacitor element is dried, the capacitor element is impregnated with a polymerizable monomer and an oxidizing agent, and a solid electrolyte layer is formed to form a solid electrolytic capacitor.
[0011]
In the solid electrolytic capacitor thus formed, it has been found that the ESR characteristic is greatly reduced and the capacitance is also increased. The reason is that by forming the solid electrolyte immediately after forming the oxide film on the cathode body, the oxide film is in a good quality state, and a solid electrolyte layer is formed thereon. It is thought that adhesion improves.
[0012]
(Solid electrolytic capacitor manufacturing method ... 2)
A voltage is applied to the etched valve metal foil in the chemical liquid to form a dielectric oxide film on the surface of the metal foil, and this foil is cut into a predetermined size and used as an anode body. Moreover, although etching foil is used for a cathode body, this cathode body is previously subjected to chemical conversion treatment at several V before winding or lamination. After forming the capacitor element by winding or laminating the cathode body and the anode body with the dielectric oxide film formed in this way through a separator, the capacitor element is immersed in a chemical conversion solution to form a cathode body. Chemical conversion is performed by applying voltage.
Subsequently, a voltage is also applied to the anode body to perform repair formation, and the cut surface of the electrode body and the damaged portion of the oxide film damaged in the capacitor element forming process are repaired. Then, after the capacitor element is dried, the capacitor element is impregnated with a polymerizable monomer and an oxidizing agent, and a solid electrolyte layer is formed to form a solid electrolytic capacitor.
[0013]
It has been found that the ESR characteristics are further improved in the solid electrolytic capacitor thus formed. The reason is that by forming a solid electrolyte layer immediately after applying a voltage again to the pre-formed oxide film layer and forming it, the oxide film of the cathode body is in a state where the surface state is uniformly regenerated, The solid electrolyte layer is formed thereon, which is considered to improve the adhesion between the cathode body and the solid electrolyte layer.
[0014]
(Formation voltage)
The chemical conversion treatment performed on the cathode body immediately before the formation of the solid electrolyte layer is referred to as “first chemical conversion treatment”, and the chemical conversion treatment performed on the cathode body before winding or lamination is referred to as “second chemical conversion treatment”. The conversion voltage of the chemical conversion treatment is preferably 0.5 to 5 V, and the chemical conversion voltage of the second chemical conversion treatment is preferably set to be equal to or lower than the chemical conversion voltage of the first chemical conversion treatment. Even if the chemical voltage of the second chemical conversion treatment is set to a voltage exceeding the chemical conversion voltage of the first chemical conversion treatment, there is little effect in improving the ESR characteristics.
[0015]
(Cathode formation liquid)
Cathodic body chemicals include phosphoric acid-based chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid-based chemicals such as ammonium borate, and adipic acid-based chemicals such as ammonium adipate. A liquid or the like can be used, but among them, it is desirable to use ammonium dihydrogen phosphate. In addition, 0.005-3% is suitable for the density | concentration of the aqueous solution of ammonium dihydrogen phosphate.
[0016]
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.
As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in butanol can be used.
[0017]
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
[Chemical 1]
Figure 0004363022
[0018]
(Action / Effect)
According to the present invention, a capacitor element is formed by winding or laminating an anode body and a cathode body via a separator, and after the cathode body is immersed in a chemical conversion solution and subjected to chemical conversion treatment, the conductive polymer is held in the separator. By doing so, the electrical characteristics of the solid electrolytic capacitor are improved. In particular, when a capacitor element is formed using a cathode body in which an oxide film is not formed before winding or stacking, and a chemical conversion treatment is performed by applying a voltage to the cathode body, a good ESR characteristic and capacitance are obtained. was gotten. In addition, if a capacitor element is formed using a cathode body in which an oxide film is formed by chemical conversion in advance before winding or stacking and then a chemical treatment is applied to the cathode body by applying a voltage again, the ESR characteristics are further improved. Is obtained.
[0019]
【Example】
Subsequently, the present invention will be described in more detail based on Examples 1-4 and Conventional Examples 1-3 manufactured as follows.
[0020]
Example 1
(A) Element formation step: A cathode body made of an aluminum foil only for etching and an anode body on which etching and an oxide film were formed were wound through a separator to form a capacitor element.
(B) Chemical conversion step: The above-described capacitor element was immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate had been added to form a cathode body. The formation voltage was 1 V and the formation time was 10 minutes. The anode body was also repaired and formed at a conversion voltage of 9V.
(C) Solid electrolyte layer forming step: The capacitor element was impregnated with an EDT monomer and a butanol solution of 45% ferric paratoluenesulfonic acid as an oxidant solution, and heated at 100 ° C. for 1 hour.
(D) Case storing step: The above capacitor element was inserted into a bottomed cylindrical outer case, a sealing member was disposed at the opening end, and sealing was performed by caulking. Thereafter, aging was performed to form a solid electrolytic capacitor. The rated voltage of this solid electrolytic capacitor is 4 WV.
[0021]
(Example 2)
(A) Element formation step: The cathode body is immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate has been added, and is formed at a formation voltage of 1 V for 10 minutes to form an oxide film in advance. The cathode body and the anode body were wound through a separator to form a capacitor element.
(B) The subsequent chemical conversion process, solid electrolyte layer forming process, and case housing process were the same as in Example 1.
[0022]
(Example 3)
(A) Element formation step: The cathode body is immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate has been added, and is formed at a formation voltage of 2 V for 10 minutes to form an oxide film in advance. The cathode body and the anode body were wound through a separator to form a capacitor element.
(B) Chemical conversion step: The above-described capacitor element was immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate had been added to form a cathode body. The formation voltage was 2 V and the formation time was 10 minutes. The anode body was also repaired and formed at a conversion voltage of 9V.
(C) The subsequent steps were the same as in Example 1.
[0023]
(Example 4)
(A) Element formation step: The cathode body is immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate has been added, and is formed at a formation voltage of 1 V for 10 minutes to form an oxide film in advance. The cathode body and the anode body were wound through a separator to form a capacitor element.
(B) Chemical conversion step: The above-described capacitor element was immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate had been added to form a cathode body. The formation voltage was 2 V and the formation time was 10 minutes. The anode body was also repaired and formed at a conversion voltage of 9V.
(C) The subsequent steps were the same as in Example 1.
[0024]
(Conventional example 1)
(A) Element formation step: A cathode element made of an aluminum foil only subjected to etching treatment and an anode element on which etching and oxide film were formed were wound through a separator to form a capacitor element.
(B) Conversion step: Only the anode body is repaired and formed at a formation voltage of 9 V, and the cathode body is not formed.
(C) The subsequent steps were the same as in Example 1.
[0025]
(Conventional example 2)
(A) Element formation step: The cathode body is immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate has been added, and is formed at a formation voltage of 1 V for 10 minutes to form an oxide film in advance. The cathode body and the anode body were wound through a separator to form a capacitor element.
(B) The subsequent steps were the same as in Conventional Example 1.
[0026]
(Conventional example 3)
(A) Element formation step: The cathode body is immersed in an aqueous solution at a temperature of 50 ° C. to which 0.15% ammonium dihydrogen phosphate has been added, and is formed at a formation voltage of 2 V for 10 minutes to form an oxide film in advance. The cathode body and the anode body were wound through a separator to form a capacitor element.
(B) The subsequent steps were the same as in Conventional Example 1.
[0027]
[Comparison result 1]
First, when chemical conversion was not performed in advance before winding the cathode body, that is, when Example 1 was compared with Conventional Example 1, the results shown in Table 1 were obtained.
[Table 1]
Figure 0004363022
[0028]
In both Example 1 and Conventional Example 1, the chemical conversion treatment was not performed before winding the capacitor element. However, in Example 1 in which the voltage was applied to the cathode body after the capacitor element was formed, the ESR was performed. Good results were obtained for both characteristics and capacitance.
[0029]
[Comparison result 2]
Next, when the formation was performed in advance at a formation voltage of 1 V before the cathode body was wound, that is, when Example 2, Example 4 and Conventional Example 2 were compared, the results shown in Table 2 were obtained. .
[Table 2]
Figure 0004363022
[0030]
In each of Example 2, Example 4 and Conventional Example 2, a chemical conversion treatment was performed at a conversion voltage of 1 V before winding the capacitor element to form an oxide film. Further, after the capacitor element was formed, the cathode was again formed. In Example 2 and Example 4 in which the voltage was applied to the body and chemical conversion was performed, the ESR characteristic was better than that of Conventional Example 2.
[0031]
Moreover, when Example 2 and Example 4 were compared, the difference by the difference in the voltage at the time of re-formation, ie, the formation voltage of the cathode body before solid electrolyte layer formation, was not recognized. From this, it was found that even if the voltage at the time of re-formation is made larger than the pre-formation voltage formed before winding, no effect is recognized in the ESR characteristics.
[0032]
[Comparison result 3]
Further, when the formation was performed in advance at a formation voltage of 2 V before winding the cathode body, that is, when Example 3 and Conventional Example 3 were compared, the results shown in Table 3 were obtained.
[Table 3]
Figure 0004363022
[0033]
In both Example 3 and Conventional Example 3, a chemical conversion treatment was performed at a conversion voltage of 2 V before the capacitor element was wound to form an oxide film. Further, a voltage was applied to the cathode body after the capacitor element was formed. In Example 3 where the chemical conversion was performed, a better result was obtained in ESR characteristics than in Conventional Example 3.
[0034]
【The invention's effect】
As described above, according to the present invention, before forming the solid electrolyte layer, by forming a chemical conversion film on the surface of the cathode body, or further, before winding or laminating the cathode body and the anode body. By forming a chemical conversion film on the surface of the cathode body in advance, it is possible to reduce the equivalent series resistance (ESR) and provide a method for manufacturing a solid electrolytic capacitor having a large capacitance.

Claims (3)

弁金属からなり巻回又は積層してコンデンサ素子を形成する前に化成処理を施していない陰極体と、表面に酸化皮膜を形成した弁金属からなる陽極体とを巻回又は積層してコンデンサ素子を形成し、前記陰極体の表面に化成皮膜を形成する化成処理を行った後、重合性モノマーと酸化剤とを含浸して導電性ポリマーからなる固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。 Chemical conversion treatment and have no cathode body which is subjected to, the anode body comprising a valve metal to form an oxide film on the surface and wound or laminated capacitor prior to forming the capacitor element and Do Ri wound or stacked from a valve metal After forming an element and performing a chemical conversion treatment for forming a chemical conversion film on the surface of the cathode body, a solid electrolyte layer made of a conductive polymer is formed by impregnating a polymerizable monomer and an oxidizing agent. A method for producing a solid electrolytic capacitor. 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項に記載の固体電解コンデンサの製造方法。The method for producing a solid electrolytic capacitor according to claim 1 , wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項に記載の固体電解コンデンサの製造方法。The method for producing a solid electrolytic capacitor according to claim 2 , wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2002283503A 2002-09-27 2002-09-27 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4363022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283503A JP4363022B2 (en) 2002-09-27 2002-09-27 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283503A JP4363022B2 (en) 2002-09-27 2002-09-27 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004119830A JP2004119830A (en) 2004-04-15
JP4363022B2 true JP4363022B2 (en) 2009-11-11

Family

ID=32277351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283503A Expired - Fee Related JP4363022B2 (en) 2002-09-27 2002-09-27 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4363022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088131A (en) * 2004-07-23 2007-12-12 桑德夫技术有限公司 Capacitors with high energy storage density and low ESR
JP5093978B2 (en) * 2004-09-30 2012-12-12 日本ケミコン株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004119830A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP4062787B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004128048A (en) Solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees