JP2003017369A - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2003017369A
JP2003017369A JP2001199356A JP2001199356A JP2003017369A JP 2003017369 A JP2003017369 A JP 2003017369A JP 2001199356 A JP2001199356 A JP 2001199356A JP 2001199356 A JP2001199356 A JP 2001199356A JP 2003017369 A JP2003017369 A JP 2003017369A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
capacitor
electrolytic capacitor
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001199356A
Other languages
Japanese (ja)
Inventor
Toshiyuki Murakami
敏行 村上
Atsushi Yamada
篤 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001199356A priority Critical patent/JP2003017369A/en
Publication of JP2003017369A publication Critical patent/JP2003017369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid electrolytic capacitor in which the yield can be increased at the time of manufacturing a high withstand voltage capacitor. SOLUTION: An anode foil having an oxide film formed on the surface and a cathode foil are wound through a separator to form a capacitor element which is then subjected to repair formation. Subsequently, the capacitor element is immersed into a mixture liquid prepared by mixing polymeric monomer, an oxidizing agent and a specified solvent in order to cause polymerization of conductive polymer in the capacitor element thus forming a solid electrolytic layer. The capacitor element is inserted into a case which is then sealed by caulking while fixing a sealing rubber to the end part of the opening and then it is subjected to aging to produce a solid electrolytic capacitor. Heat treatment is carried out for a specified time at a temperature not higher than 200 deg.C at an arbitrary time before aging after the conductive polymer is formed in the capacitor element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に係り、特に、高耐電圧が要求される固体
電解コンデンサの歩留まりを向上させることができる固
体電解コンデンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor capable of improving the yield of a solid electrolytic capacitor that requires a high withstand voltage. .

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art An electrolytic capacitor using a metal having a valve action, such as tantalum or aluminum, has a valve action metal as a counter electrode on the anode side formed into a sintered body, an etching foil, or the like so that the dielectric is expanded. It is widely used because it is possible to obtain a small size and a large capacity. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics such as small size, large capacity, low equivalent series resistance, easy chip formation, and suitability for surface mounting. It is indispensable for downsizing, high functionality, and cost reduction of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for use in small size and large capacity, generally, an anode foil and a cathode foil made of a valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolytic solution, and the capacitor element is housed in a case made of metal such as aluminum or a case made of synthetic resin, which is hermetically sealed. In addition, aluminum, tantalum, niobium, titanium, etc. are used as the anode material, and the same kind of metal as the anode material is used as the cathode material.

【0004】また、固体電解コンデンサに用いられる固
体電解質としては、二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いるが、近年、反応速度が緩やかで、かつ陽極電極の酸
化皮膜層との密着性に優れたポリエチレンジオキシチオ
フェン(以下、PEDTと記す)等の導電性ポリマーに
着目した技術(特開平2−15611号公報)が存在し
ている。
As the solid electrolyte used in the solid electrolytic capacitor, manganese dioxide, 7, 7, 8, 8-
Tetracyanoquinodimethane (TCNQ) complex is known, but in recent years, polyethylenedioxythiophene (hereinafter referred to as PEDT) has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode. There is a technique (Japanese Patent Application Laid-Open No. 2-15611) that focuses on the conductive polymer.

【0005】このような巻回型のコンデンサ素子にPE
DT等の導電性ポリマーからなる固体電解質層を形成す
るタイプの固体電解コンデンサは、以下のようにして作
製される。まず、アルミニウム等の弁作用金属からなる
陽極箔の表面を塩化物水溶液中での電気化学的なエッチ
ング処理により粗面化して、多数のエッチングピットを
形成した後、ホウ酸アンモニウム等の水溶液中で電圧を
印加して誘電体となる酸化皮膜層を形成する(化成)。
陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属
からなるが、その表面にはエッチング処理を施すのみで
ある。
PE in such a winding type capacitor element
A solid electrolytic capacitor of the type in which a solid electrolyte layer made of a conductive polymer such as DT is formed is manufactured as follows. First, the surface of the anode foil made of a valve metal such as aluminum is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits, and then in an aqueous solution of ammonium borate or the like. A voltage is applied to form an oxide film layer that becomes a dielectric (formation).
Similar to the anode foil, the cathode foil is also made of a valve metal such as aluminum, but its surface is only subjected to etching treatment.

【0006】このようにして表面に酸化皮膜層が形成さ
れた陽極箔とエッチングピットのみが形成された陰極箔
とを、セパレータを介して巻回してコンデンサ素子を形
成する。続いて、修復化成を施したコンデンサ素子に、
3,4−エチレンジオキシチオフェン(以下、EDTと
記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出
し、あるいは両者の混合液に浸漬して、コンデンサ素子
内で重合反応を促進し、PEDT等の導電性ポリマーか
らなる固体電解質層を生成する。その後、このコンデン
サ素子を有底筒状の外装ケースに収納して固体電解コン
デンサを作成する。
In this way, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound around the separator to form a capacitor element. Then, on the capacitor element that has been subjected to repair formation,
A polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidant solution are respectively discharged or immersed in a mixed solution of both to accelerate the polymerization reaction in the capacitor element, and to improve the PEDT. To produce a solid electrolyte layer composed of a conductive polymer such as. Then, the capacitor element is housed in a cylindrical outer case having a bottom to form a solid electrolytic capacitor.

【0007】ところで、このような固体電解コンデンサ
を実装する場合、リフロー法等による比較的高温での半
田付けを行うと、ケースや封口部材が膨れて不具合が生
じることが知られている。そのため、従来から、コンデ
ンサ素子を外装ケースに収納する前に、コンデンサ素子
を200〜300℃に昇温する熱処理を施す方法が提案
されている(特開2000−58389号)。
By the way, when mounting such a solid electrolytic capacitor, it is known that when the soldering is performed at a relatively high temperature by a reflow method or the like, the case and the sealing member swell and a problem occurs. Therefore, conventionally, a method has been proposed in which a heat treatment for raising the temperature of the capacitor element to 200 to 300 ° C. is performed before housing the capacitor element in an outer case (Japanese Patent Laid-Open No. 2000-58389).

【0008】[0008]

【発明が解決しようとする課題】一方、近年、上述した
ような固体電解コンデンサが車載用として用いられるよ
うになってきている。通常、車載用回路の駆動電圧は1
2Vであり、固体電解コンデンサには25Vの高耐電圧
が要求される。しかしながら、上述したような従来の製
造方法によりこのような高耐電圧品を製造した場合、エ
ージング工程でショートが発生する割合が高く、歩留ま
りが低いという欠点があった。なお、このような問題点
は、重合性モノマーとしてEDTを用いた場合に限ら
ず、他のチオフェン誘導体、ピロール、アニリン等を用
いた場合にも同様に生じていた。
On the other hand, in recent years, the solid electrolytic capacitors as described above have been used for vehicles. Normally, the drive voltage of the in-vehicle circuit is 1.
It is 2V, and a high withstand voltage of 25V is required for the solid electrolytic capacitor. However, when such a high withstand voltage product is manufactured by the conventional manufacturing method as described above, there is a drawback that a short circuit occurs at a high rate in the aging process and the yield is low. It should be noted that such a problem occurs not only when EDT is used as the polymerizable monomer, but also when other thiophene derivative, pyrrole, aniline, or the like is used.

【0009】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、高耐電圧品を製造する場合の歩留まりを向上させる
ことができる固体電解コンデンサの製造方法を提供する
ことにある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its purpose is to improve the yield in the production of high withstand voltage products. It is to provide a method of manufacturing a capacitor.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく、高耐電圧品を製造する場合に、エージン
グ工程でショートが発生する割合が高くなる原因につい
て種々検討を重ねた結果、本発明を完成するに至ったも
のである。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted various studies on the cause of increasing the rate of occurrence of short circuits in the aging process when manufacturing high withstand voltage products. As a result, the present invention has been completed.

【0011】上述したように、導電性ポリマーを固体電
解質として用いる場合、重合後に残存するモノマーや酸
化剤溶液を除去するために、通常は熱処理を行う。特
に、高温下におかれる半田リフローを行う場合には、重
合後に残存するモノマーや酸化剤溶液の蒸発によって電
気的特性の低下や開弁が起こるため、熱処理は重要であ
る。しかしながら、本発明者等は、25V級の高耐電圧
品を開発すべく検討を重ねる中で、この熱処理温度が高
いと耐電圧が低下することが判明し、耐電圧特性を向上
させると共に、半田リフローにも耐え得る最適な熱処理
温度条件を見出したものである。
As described above, when the conductive polymer is used as the solid electrolyte, heat treatment is usually performed in order to remove the monomer and the oxidant solution remaining after the polymerization. In particular, when performing solder reflow under high temperature, heat treatment is important because the electrical characteristics are lowered and the valve is opened due to evaporation of the monomer and oxidant solution remaining after polymerization. However, the inventors of the present invention have conducted a study to develop a high withstand voltage product of 25 V class, and found that the withstand voltage is lowered when the heat treatment temperature is high, and the withstand voltage characteristic is improved and the solderability is improved. The optimum heat treatment temperature condition that can withstand reflow is found.

【0012】(固体電解コンデンサの製造方法)表面に
酸化皮膜層が形成された陽極箔と陰極箔をセパレータを
介して巻回して、コンデンサ素子を形成し、このコンデ
ンサ素子に修復化成を施す。続いて、このコンデンサ素
子を重合性モノマーと酸化剤と所定の溶媒とを混合して
調製した混合液に浸漬し、コンデンサ素子内で導電性ポ
リマーの重合反応を発生させ、固体電解質層を形成す
る。そして、このコンデンサ素子を外装ケースに挿入
し、開口端部に封口ゴムを装着して、加締め加工によっ
て封止した後、エージングを行い、固体電解コンデンサ
を形成する。
(Manufacturing Method of Solid Electrolytic Capacitor) An anode foil and a cathode foil having an oxide film layer formed on the surface are wound with a separator interposed therebetween to form a capacitor element, and this capacitor element is subjected to restoration chemical conversion. Subsequently, this capacitor element is immersed in a mixed solution prepared by mixing a polymerizable monomer, an oxidizing agent and a predetermined solvent, and a polymerization reaction of a conductive polymer is generated in the capacitor element to form a solid electrolyte layer. . Then, this capacitor element is inserted into an outer case, a sealing rubber is attached to the opening end, and after sealing by caulking, aging is performed to form a solid electrolytic capacitor.

【0013】なお、コンデンサ素子内に導電性ポリマー
を形成した後、エージング前に、200℃未満の温度で
所定時間熱処理を行う。また、導電性ポリマーの形成
は、コンデンサ素子を重合性モノマーと酸化剤の混合液
に浸漬した後、20〜90℃の条件下に保持して重合反
応を発生させて形成することが好適である。
After forming the conductive polymer in the capacitor element, heat treatment is performed at a temperature of less than 200 ° C. for a predetermined time before aging. In addition, the conductive polymer is preferably formed by immersing the capacitor element in a mixed liquid of a polymerizable monomer and an oxidant, and then maintaining the condition at 20 to 90 ° C. to cause a polymerization reaction. .

【0014】(熱処理の条件)導電性ポリマーを形成し
た後、エージング前に行う熱処理温度は200℃未満、
好ましくは150℃以下、さらに好ましくは125℃以
下であり、また、常温以上、好ましくは80℃以上で行
うことが望ましい。また、熱処理の時間は熱処理温度に
よって異なり、190℃程度であれば5〜10分、12
5℃程度であれば1時間以上が好ましい。このように熱
処理温度が高い場合に処理時間が短いほうが好ましいの
は、処理時間を長くすると固体電解質の変質が起こるた
めと考えられるが、固体電解質の耐電圧特性が低下する
からである。一方、熱処理温度が低い場合に処理時間を
長くするほうが好ましいのは、残存物を蒸散させるため
にある程度の時間が必要になるからである。
(Conditions for heat treatment) After the conductive polymer is formed and before the aging, the heat treatment temperature is less than 200 ° C.,
The temperature is preferably 150 ° C. or lower, more preferably 125 ° C. or lower, and is preferably room temperature or higher, preferably 80 ° C. or higher. The heat treatment time varies depending on the heat treatment temperature.
If it is about 5 ° C., it is preferably 1 hour or more. The reason why the treatment time is preferably shorter when the heat treatment temperature is higher is considered to be because the solid electrolyte is deteriorated when the treatment time is lengthened, but the withstand voltage characteristic of the solid electrolyte is deteriorated. On the other hand, it is preferable to lengthen the treatment time when the heat treatment temperature is low, because a certain amount of time is required to evaporate the residue.

【0015】熱処理を行う時期は、エージング前であれ
ば良く、重合直後に行っても良いし、外装ケースへの収
納前でも、収納後でも良い。なお、上記の熱処理条件に
よって、エージング工程におけるショートが低減した理
由は、熱処理温度を下げることにより、固体電解質の耐
電圧特性が向上したためであると考えられる。
The heat treatment may be carried out before aging, immediately after polymerization, or before or after storage in the outer case. It is considered that the reason why the short-circuiting in the aging step was reduced by the heat treatment conditions was that the withstand voltage characteristics of the solid electrolyte were improved by lowering the heat treatment temperature.

【0016】(減圧)重合工程で減圧すると、さらに好
適である。その理由は、本発明のように200℃未満の
温度で熱処理をした場合、モノマーや酸化剤溶液が残存
する可能性があるが、加熱重合時に減圧すると、重合と
共に残存物を蒸散させることができるからである。な
お、減圧の程度は、10〜360mmHg程度の減圧状
態とすることが望ましい。
(Decompression) It is more preferable to reduce the pressure in the polymerization step. The reason is that when heat treatment is performed at a temperature lower than 200 ° C. as in the present invention, a monomer or an oxidant solution may remain, but when the pressure is reduced during heat polymerization, the residue can be evaporated together with the polymerization. Because. In addition, it is desirable that the degree of pressure reduction is such that the pressure is reduced to about 10 to 360 mmHg.

【0017】(EDT及び酸化剤)重合性モノマーとし
てEDTを用いた場合、コンデンサ素子に含浸するED
Tとしては、EDTモノマーを用いることができるが、
EDTと揮発性溶媒とを1:0〜1:3の体積比で混合
したモノマー溶液を用いることもできる。前記揮発性溶
媒としては、ペンタン等の炭化水素類、テトラヒドロフ
ラン等のエーテル類、ギ酸エチル等のエステル類、アセ
トン等のケトン類、メタノール等のアルコール類、アセ
トニトリル等の窒素化合物等を用いることができるが、
なかでも、メタノール、エタノール、アセトン等が好ま
しい。
(EDT and Oxidizing Agent) When EDT is used as the polymerizable monomer, the ED that impregnates the capacitor element
Although EDT monomer can be used as T,
It is also possible to use a monomer solution in which EDT and a volatile solvent are mixed in a volume ratio of 1: 0 to 1: 3. As the volatile solvent, hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile and the like can be used. But,
Of these, methanol, ethanol, acetone and the like are preferable.

【0018】また、酸化剤としては、エタノールに溶解
したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしく
はヨウ素酸の水溶液を用いることができ、酸化剤の溶媒
に対する濃度は40〜55wt%が好ましい。なお、酸
化剤の溶媒としては、上記モノマー溶液に用いた揮発性
溶媒を用いることができ、なかでもエタノールが好適で
ある。酸化剤の溶媒としてエタノールが好適であるの
は、蒸気圧が低いため蒸発しやすく、残存する量が少な
いためであると考えられる。
As the oxidant, an aqueous solution of ferric p-toluenesulfonate, periodate or iodic acid dissolved in ethanol can be used, and the concentration of the oxidant in the solvent is preferably 40 to 55 wt%. As the solvent for the oxidizing agent, the volatile solvent used for the monomer solution can be used, and among them, ethanol is preferable. It is considered that ethanol is suitable as a solvent for the oxidant because it has a low vapor pressure and is likely to evaporate, and a small amount remains.

【0019】(EDTと酸化剤の混合比)EDTと酸化
剤(溶媒を含まず)の混合比は、重量比で1:0.5〜
1:2.5の範囲が好適であり、1:1.0〜1:2.
0の範囲がより好適である。この範囲外ではESRが上
昇する。その理由は、以下の通りであると考えられる。
すなわち、モノマーに対する酸化剤の量が多過ぎると、
相対的に含浸されるモノマーの量が低下するので、形成
されるPEDTの量が低下してESRが上昇する。一
方、酸化剤の量が少なすぎると、モノマーを重合するの
に必要な酸化剤が不足して、形成されるPEDTの量が
低下してESRが上昇する。
(Mixing ratio of EDT and oxidizer) The mixing ratio of EDT and oxidizer (excluding solvent) is 1: 0.5 by weight.
A range of 1: 2.5 is preferred, 1: 1.0 to 1: 2.
The range of 0 is more preferable. ESR rises outside this range. The reason is considered to be as follows.
That is, if the amount of the oxidant with respect to the monomer is too large,
Since the amount of impregnated monomer is relatively low, the amount of PEDT formed is low and the ESR is high. On the other hand, if the amount of the oxidant is too small, the amount of the oxidant necessary for polymerizing the monomer is insufficient, the amount of PEDT formed is decreased, and the ESR is increased.

【0020】(浸漬工程)コンデンサ素子を混合液に浸
漬する時間は、コンデンサ素子の大きさによって決まる
が、φ5×2L程度のコンデンサ素子では5秒以上、φ
8×4L程度のコンデンサ素子では10秒以上が望まし
く、最低でも5秒間は浸漬することが必要である。な
お、長時間浸漬しても特性上の弊害はない。また、この
ように浸漬した後、減圧状態で保持すると好適である。
その理由は、揮発性溶媒の残留量が少なくなるためであ
ると考えられる。減圧の条件は上述した重合工程での減
圧条件と同様である。
(Dip Step) The time for immersing the capacitor element in the mixed solution depends on the size of the capacitor element, but for a capacitor element of about φ5 × 2L, 5 seconds or more, φ
For a capacitor element of about 8 × 4 L, 10 seconds or more is desirable, and it is necessary to soak for at least 5 seconds. It should be noted that even if it is immersed for a long time, there is no adverse effect on the characteristics. Moreover, it is preferable to hold in a reduced pressure state after soaking.
It is considered that the reason is that the residual amount of the volatile solvent decreases. The reduced pressure conditions are the same as the reduced pressure conditions in the above-mentioned polymerization step.

【0021】(修復化成の化成液)修復化成の化成液と
しては、リン酸二水素アンモニウム、リン酸水素二アン
モニウム等のリン酸系の化成液、ホウ酸アンモニウム等
のホウ酸系の化成液、アジピン酸アンモニウム等のアジ
ピン酸系の化成液を用いることができるが、なかでも、
リン酸二水素アンモニウムを用いることが望ましい。ま
た、浸漬時間は、5〜120分が望ましい。
(Chemical conversion solution for repair chemical conversion) As the chemical conversion solution for repair chemical conversion, phosphoric acid-based chemical conversion solutions such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid-based chemical conversion solutions such as ammonium borate, Adipic acid-based chemical conversion solutions such as ammonium adipate can be used, but above all,
It is desirable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

【0022】(他の重合性モノマー)本発明に用いられ
る重合性モノマーとしては、上記EDTの他に、EDT
以外のチオフェン誘導体、アニリン、ピロール、フラ
ン、アセチレンまたはそれらの誘導体であって、所定の
酸化剤により酸化重合され、導電性ポリマーを形成する
ものであれば適用することができる。なお、チオフェン
誘導体としては、下記の構造式のものを用いることがで
きる。
(Other Polymerizable Monomer) As the polymerizable monomer used in the present invention, in addition to the above EDT, EDT
Other thiophene derivatives, aniline, pyrrole, furan, acetylene or their derivatives, which are oxidatively polymerized by a predetermined oxidant to form a conductive polymer, can be applied. As the thiophene derivative, one having the following structural formula can be used.

【化1】 [Chemical 1]

【0023】(作用・効果)上記のように、コンデンサ
素子内に導電性ポリマーを形成した後、エージング前に
200℃未満の温度で所定時間熱処理を行うことによ
り、エージング工程でショートが発生する割合を大幅に
低減することができる。その理由は、熱処理温度を下げ
ることにより、固体電解質の耐電圧特性が向上したため
であると考えられる。
(Operation / Effect) As described above, after the conductive polymer is formed in the capacitor element, heat treatment is performed at a temperature of less than 200 ° C. for a predetermined time before aging, so that a short circuit occurs in the aging process. Can be significantly reduced. It is considered that the reason is that the withstand voltage characteristic of the solid electrolyte was improved by lowering the heat treatment temperature.

【0024】[0024]

【実施例】続いて、以下のようにして製造した実施例及
び比較例に基づいて本発明をさらに詳細に説明する。 (実施例1)表面に酸化皮膜層が形成された陽極箔と陰
極箔に電極引き出し手段を接続し、両電極箔をセパレー
タを介して巻回して、素子形状が3φ×4Lのコンデン
サ素子を形成した。そして、このコンデンサ素子をリン
酸二水素アンモニウム水溶液に40分間浸漬して、修復
化成を行った。一方、所定の容器に、EDTと45%の
パラトルエンスルホン酸第二鉄のエタノール溶液を、そ
の重量比が1:2となるように注入し、コンデンサ素子
を上記混合液に10秒間浸漬し、250mmHg程度の
減圧状態で保持し、次いで同じ条件下で60℃、60分
加熱して、コンデンサ素子内でPEDTの重合反応を発
生させ、固体電解質層を形成した。その後、190℃で
10分間熱処理を行った。そして、このコンデンサ素子
を有底筒状の外装ケースに挿入し、開口端部に封口ゴム
を装着して、加締め加工によって封止した。その後に、
150℃、120分、33Vの電圧印加によってエージ
ングを行い、固体電解コンデンサを形成した。なお、こ
の固体電解コンデンサの定格電圧は25WV、定格容量
は6.8μFである。
EXAMPLES Next, the present invention will be described in more detail based on Examples and Comparative Examples produced as follows. (Example 1) An electrode lead-out means was connected to an anode foil and a cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound with a separator interposed therebetween to form a capacitor element having an element shape of 3φ x 4L. did. Then, this capacitor element was immersed in an aqueous solution of ammonium dihydrogen phosphate for 40 minutes to carry out repair formation. On the other hand, EDT and 45% ferric paratoluene sulfonate ethanol solution were poured into a predetermined container so that the weight ratio thereof was 1: 2, and the capacitor element was immersed in the mixed solution for 10 seconds, It was held under a reduced pressure of about 250 mmHg, and then heated at 60 ° C. for 60 minutes under the same conditions to cause a polymerization reaction of PEDT in the capacitor element to form a solid electrolyte layer. Then, heat treatment was performed at 190 ° C. for 10 minutes. Then, this capacitor element was inserted into an outer case having a bottomed cylindrical shape, a sealing rubber was attached to the opening end, and sealing was performed by caulking. After that,
Aging was performed by applying a voltage of 33 V at 150 ° C. for 120 minutes to form a solid electrolytic capacitor. The solid electrolytic capacitor has a rated voltage of 25 WV and a rated capacity of 6.8 μF.

【0025】(実施例2)重合後に150℃で30分、
熱処理を行った。その他の条件及び工程は、実施例1と
同様である。 (実施例3)重合後に125℃で1時間、熱処理を行っ
た。その他の条件及び工程は、実施例1と同様である。 (実施例4)熱処理を外装ケースへの収納後に行い、1
25℃で1時間、熱処理を行った。その他の条件及び工
程は、実施例1と同様である。 (比較例)重合後に200℃で5分間、熱処理を行っ
た。その他の条件及び工程は、実施例1と同様である。
(Example 2) After polymerization, at 150 ° C. for 30 minutes,
Heat treatment was performed. The other conditions and steps are the same as in Example 1. (Example 3) After polymerization, heat treatment was performed at 125 ° C for 1 hour. The other conditions and steps are the same as in Example 1. (Embodiment 4) Heat treatment is performed after housing in an outer case, and 1
Heat treatment was performed at 25 ° C. for 1 hour. The other conditions and steps are the same as in Example 1. (Comparative Example) After polymerization, heat treatment was performed at 200 ° C. for 5 minutes. The other conditions and steps are the same as in Example 1.

【0026】[比較結果]上記の方法により得られた実
施例1〜4及び比較例の固体電解コンデンサ各50個の
それぞれについて、エージング時のショートの数を調べ
たところ、表1に示したような結果が得られた。
[Comparison Results] For each of the 50 solid electrolytic capacitors of Examples 1 to 4 and Comparative Example obtained by the above method, the number of short circuits during aging was examined, and as shown in Table 1. The results were obtained.

【表1】 [Table 1]

【0027】表1から明らかなように、熱処理温度を2
00℃とした比較例においては、50個すべてにおいて
ショートが発生した。これに対して、熱処理温度を低く
した各実施例においては、熱処理温度が低くなるほどシ
ョート数が低減することが分かった。特に、熱処理温度
を125℃とした実施例3及び実施例4においては、熱
処理の時期に関係なく、50個すべてにおいてショート
は発生しなかった。
As is clear from Table 1, the heat treatment temperature is set to 2
In the comparative example in which the temperature was 00 ° C., short-circuit occurred in all 50 pieces. In contrast, in each of the examples in which the heat treatment temperature was lowered, it was found that the lower the heat treatment temperature, the smaller the number of shorts. In particular, in Examples 3 and 4 in which the heat treatment temperature was 125 ° C., short-circuit did not occur in all 50 regardless of the heat treatment timing.

【0028】また、実施例1〜4の内、エージング時に
ショートしなかった各固体電解コンデンサについてリフ
ロー試験を行ったところ、それらのすべてにおいて、特
性は良好であった。なお、リフロー試験条件は、ピーク
温度250℃、230℃以上30秒保持である。
When a reflow test was conducted on each of the solid electrolytic capacitors which did not short-circuit during aging among Examples 1 to 4, the characteristics were good in all of them. The reflow test conditions are a peak temperature of 250 ° C. and a holding time of 230 ° C. or higher for 30 seconds.

【0029】[0029]

【発明の効果】以上述べたように、本発明によれば、高
耐電圧品を製造する場合の歩留まりを向上させることが
できる固体電解コンデンサの製造方法を提供することが
できる。
As described above, according to the present invention, it is possible to provide a method of manufacturing a solid electrolytic capacitor which can improve the yield when manufacturing a high withstand voltage product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に、重合性モノマーと
酸化剤とを含浸して導電性ポリマーからなる固体電解質
層を形成してなる固体電解コンデンサにおいて、前記コ
ンデンサ素子内に導電性ポリマーを形成した後、エージ
ング前に200℃未満の温度で熱処理を行うことを特徴
とする固体電解コンデンサの製造方法。
1. A solid obtained by forming a solid electrolyte layer made of a conductive polymer by impregnating a capacitor element obtained by winding an anode electrode foil and a cathode electrode foil via a separator and impregnating a polymerizable monomer and an oxidizing agent. In the electrolytic capacitor, a method for producing a solid electrolytic capacitor, characterized in that, after forming a conductive polymer in the capacitor element, heat treatment is performed at a temperature of less than 200 ° C. before aging.
【請求項2】 前記重合性モノマーが、チオフェン誘導
体であることを特徴とする請求項1に記載の固体電解コ
ンデンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative.
【請求項3】 前記チオフェン誘導体が、3,4−エチ
レンジオキシチオフェンであることを特徴とする請求項
2に記載の固体電解コンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 2, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2001199356A 2001-06-29 2001-06-29 Method for manufacturing solid electrolytic capacitor Pending JP2003017369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199356A JP2003017369A (en) 2001-06-29 2001-06-29 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199356A JP2003017369A (en) 2001-06-29 2001-06-29 Method for manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2003017369A true JP2003017369A (en) 2003-01-17

Family

ID=19036658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199356A Pending JP2003017369A (en) 2001-06-29 2001-06-29 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2003017369A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014028A1 (en) * 2003-07-14 2005-01-20 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and recording method
JP2009278122A (en) * 2009-07-14 2009-11-26 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
CN109461587A (en) * 2018-10-12 2019-03-12 福建国光电子科技股份有限公司 The preparation method of solid electrolytic capacitor
JP2021052079A (en) * 2019-09-25 2021-04-01 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor, solid electrolytic capacitor, and manufacturing method of electronic component module
JP2022017716A (en) * 2020-07-14 2022-01-26 ニチコン株式会社 Manufacturing method of electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513286A (en) * 1991-07-02 1993-01-22 Rubycon Corp Solid electrolytic capacitor
JP2000114118A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2000114112A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2001110685A (en) * 1996-04-26 2001-04-20 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513286A (en) * 1991-07-02 1993-01-22 Rubycon Corp Solid electrolytic capacitor
JP2001110685A (en) * 1996-04-26 2001-04-20 Nippon Chemicon Corp Solid electrolytic capacitor
JP2000114118A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2000114112A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014028A1 (en) * 2003-07-14 2005-01-20 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and recording method
JP2009278122A (en) * 2009-07-14 2009-11-26 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
CN109461587A (en) * 2018-10-12 2019-03-12 福建国光电子科技股份有限公司 The preparation method of solid electrolytic capacitor
JP2021052079A (en) * 2019-09-25 2021-04-01 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor, solid electrolytic capacitor, and manufacturing method of electronic component module
JP2022017716A (en) * 2020-07-14 2022-01-26 ニチコン株式会社 Manufacturing method of electrolytic capacitor
JP7458258B2 (en) 2020-07-14 2024-03-29 ニチコン株式会社 Manufacturing method of electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP5134173B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP5117655B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003289019A (en) Manufacturing method for solid electrolytic capacitor
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2003068579A (en) Solid electrolytic capacitor and manufacturing method therefor
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004128093A (en) Solid-state electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129