JP4608865B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4608865B2
JP4608865B2 JP2003339573A JP2003339573A JP4608865B2 JP 4608865 B2 JP4608865 B2 JP 4608865B2 JP 2003339573 A JP2003339573 A JP 2003339573A JP 2003339573 A JP2003339573 A JP 2003339573A JP 4608865 B2 JP4608865 B2 JP 4608865B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
solution
electrolytic capacitor
capacitor
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003339573A
Other languages
Japanese (ja)
Other versions
JP2005109093A (en
Inventor
一明 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003339573A priority Critical patent/JP4608865B2/en
Publication of JP2005109093A publication Critical patent/JP2005109093A/en
Application granted granted Critical
Publication of JP4608865B2 publication Critical patent/JP4608865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、固体電解コンデンサの製造方法に係り、特に、固体電解コンデンサの静電容量及び等価直列抵抗(以下、ESRと記す)特性を向上させるべく改良を施した固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method of manufacturing a solid electrolytic capacitor, and more particularly to a method of manufacturing a solid electrolytic capacitor that has been improved to improve the capacitance and equivalent series resistance (hereinafter referred to as ESR) characteristics of the solid electrolytic capacitor. It is.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作成される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。   A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is produced as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Like the anode foil, the cathode foil is made of a valve action metal such as aluminum, but the surface is only subjected to etching treatment.

このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
特開平2−15611号公報
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixture of both. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
JP-A-2-15611

ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサ(MPU)の駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。   Incidentally, in recent years, electronic information devices have been digitized, and further, the driving frequency of a microprocessor (MPU), which is the heart of these electronic information devices, has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.

上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する回路として電圧制御モジュールと呼ばれるDC−DCコンバーターが広く使用されており、その出力側コンデンサには、電圧降下を防ぐためESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが実用化され、多用されている。   In order to reduce the drive voltage, a DC-DC converter called a voltage control module is widely used as a circuit for supplying highly accurate power to the microprocessor, and the output side capacitor is used to prevent a voltage drop. Many capacitors with low ESR are used. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above has been put into practical use and widely used.

しかしながら、マイクロプロセッサの駆動周波数の高速化は著しく、それに伴って消費電力がさらに増大し、それに対応するために電圧降下を防ぐためのコンデンサからの供給電力のさらなる増大化が求められている。すなわち、大きな電力を短時間で供給することができなければならず、このために固体電解コンデンサには大容量化、小型化、低電圧化と共に、さらに優れたESR特性が要求されている。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
However, the increase in the driving frequency of the microprocessor is remarkable, and accordingly, the power consumption further increases. In order to cope with this, further increase in the power supplied from the capacitor to prevent the voltage drop is required. That is, a large amount of power must be able to be supplied in a short time. For this reason, solid electrolytic capacitors are required to have higher ESR characteristics as well as larger capacity, smaller size, and lower voltage.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、静電容量とESR特性を向上させることができる固体電解コンデンサの製造方法を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and an object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor capable of improving capacitance and ESR characteristics. There is.

本発明者は、上記課題を解決すべく、静電容量を向上させ、ESRを従来よりもさらに低減させることができる固体電解コンデンサの製造方法について鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、本発明者は、酸化剤溶液の粘度を40〜180mpa.sとすることによって、良好な結果が得られることを見出したものである。   In order to solve the above-mentioned problems, the present inventor has intensively studied a method for producing a solid electrolytic capacitor capable of improving the electrostatic capacity and further reducing the ESR as compared with the prior art. It has come. That is, the present inventor adjusted the viscosity of the oxidant solution to 40 to 180 mpa. It has been found that good results can be obtained by setting s.

(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔を、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。続いて、このコンデンサ素子に重合性モノマー溶液を含浸し、その後に、粘度が40〜180mpa.sの酸化剤溶液を含浸して、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。その後、このコンデンサ素子を外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した後、エージングを行い、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil having an oxide film layer formed on the surface thereof are wound through a separator to form a capacitor element, and this capacitor element is subjected to restoration conversion. Subsequently, this capacitor element was impregnated with a polymerizable monomer solution, and thereafter the viscosity was 40 to 180 mpa. The s oxidizing solution is impregnated to cause a polymerization reaction of the conductive polymer in the capacitor element, thereby forming a solid electrolyte layer. Thereafter, the capacitor element is inserted into an outer case, a sealing rubber is attached to the opening end, and sealing is performed by caulking, and then aging is performed to form a solid electrolytic capacitor.

なお、重合性モノマー及び酸化剤をコンデンサ素子に含浸する方法としては、重合性モノマー溶液にコンデンサ素子を浸漬した後、酸化剤溶液に浸漬する方法、あるいはコンデンサ素子に重合性モノマーを注入した後、酸化剤溶液を注入する方法を用いることができる。   In addition, as a method of impregnating the capacitor element with the polymerizable monomer and the oxidizing agent, after immersing the capacitor element in the polymerizable monomer solution, after immersing in the oxidizing agent solution, or after injecting the polymerizable monomer into the capacitor element, A method of injecting an oxidant solution can be used.

(酸化剤溶液の粘度)
酸化剤溶液の粘度は、40〜180mpa.sが好ましい。酸化剤溶液の粘度が40mpa.s未満では、粘度が低すぎて、酸化剤がリード線を這い上がってしまうため、漏れ電流が増大し、場合によってはショートが発生する。さらに、酸化剤が不足してしまうため、ESR特性が低下する。一方、酸化剤溶液の粘度が180mpa.sを超えると、酸化剤溶液の酸化皮膜のピットへの浸透が不足して、静電容量が低下する。なお、酸化剤溶液の粘度は、B形粘度計で測定する。
(Viscosity of oxidizer solution)
The viscosity of the oxidant solution is 40 to 180 mpa. s is preferred. The viscosity of the oxidant solution is 40 mpa. If it is less than s, the viscosity is too low and the oxidant scoops up the lead wire, increasing the leakage current and possibly causing a short circuit. Furthermore, since the oxidizing agent is insufficient, the ESR characteristic is deteriorated. On the other hand, the viscosity of the oxidant solution is 180 mpa. When s is exceeded, the penetration of the oxidant solution into the pits of the oxide film is insufficient, and the electrostatic capacity decreases. The viscosity of the oxidant solution is measured with a B-type viscometer.

(粘度の調製)
酸化剤溶液の粘度を40〜180mpa.sに調製する方法としては、酸化剤濃度による調製が困難な場合、酸化剤溶液に増粘剤を添加し、撹拌する方法が好ましい。この増粘剤としては、アエロジルを用いることが好ましい。また、酸化剤に添加する増粘剤の量は、0.5〜1.5wt%が好ましい。
(Preparation of viscosity)
The viscosity of the oxidant solution is 40 to 180 mpa. As a method for preparing s, a method in which a thickener is added to an oxidant solution and stirring is preferable when preparation by an oxidant concentration is difficult. As this thickener, it is preferable to use Aerosil. The amount of the thickener added to the oxidizing agent is preferably 0.5 to 1.5 wt%.

(EDT)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTと揮発性溶媒とをEDT濃度が25〜30wt%となるように混合したモノマー溶液を用いることが好ましい。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT)
When EDT is used as the polymerizable monomer, it is preferable to use a monomer solution in which EDT and a volatile solvent are mixed so that the EDT concentration is 25 to 30 wt% as the EDT impregnated in the capacitor element.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.

(酸化剤)
酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は45〜55wt%が好ましく、50〜55wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。
(Oxidant)
As the oxidizing agent, an aqueous solution of paratoluenesulfonic acid ferric acid, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 45 to 55 wt%, and 50 to 55 wt%. More preferred. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。

Figure 0004608865
(Other polymerizable monomers)
The polymerizable monomer used in the present invention includes, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, and is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
Figure 0004608865

(作用・効果)
上述したように、酸化剤溶液の粘度を40〜180mpa.sとすることによって、良好な結果が得られた理由は、以下の通りと考えられる。
すなわち、酸化剤溶液の粘度が40〜180mpa.sの範囲内であると、酸化剤がリード線に這い上がることがなく、十分な量の酸化剤が素子に含浸されるので、ESR特性が良好となる。また、酸化剤が電極箔のエッチングピット内に十分浸透するため、静電容量も向上する。
(Action / Effect)
As described above, the viscosity of the oxidant solution is 40 to 180 mpa. The reason why a favorable result was obtained by setting s is considered as follows.
That is, the viscosity of the oxidant solution is 40 to 180 mpa. If it is within the range of s, the oxidant does not crawl up the lead wire, and a sufficient amount of oxidant is impregnated in the element, so that the ESR characteristics are improved. Further, since the oxidizing agent sufficiently penetrates into the etching pits of the electrode foil, the electrostatic capacity is also improved.

本発明によれば、静電容量とESR特性を向上させることができる固体電解コンデンサの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid electrolytic capacitor which can improve an electrostatic capacitance and an ESR characteristic can be provided.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。   Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.

(実施例1)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。
一方、所定の容器にEDTの30wt%エタノール溶液を注入し、ここにコンデンサ素子を浸漬してEDT溶液を含浸した後、乾燥した。次いで、アエロジルを添加して、粘度を40mpa.sに調製したパラトルエンスルホン酸第二鉄のエタノール溶液を所定の容器に注入し、ここに、前記のコンデンサ素子を浸漬して酸化剤溶液を含浸し、120℃、60分加熱して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。
そして、このコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、エージングを行い、固体電解コンデンサを形成した。
Example 1
An electrode lead means was connected to the anode foil and the cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed.
On the other hand, a 30 wt% ethanol solution of EDT was poured into a predetermined container, and a capacitor element was immersed therein to impregnate the EDT solution, followed by drying. Aerosil was then added to give a viscosity of 40 mpa. The ethanol solution of paratoluenesulfonic acid ferric acid prepared in s is poured into a predetermined container, and the capacitor element is immersed therein and impregnated with an oxidant solution, and heated at 120 ° C. for 60 minutes to obtain a capacitor. A PEDT polymerization reaction was generated in the device to form a solid electrolyte layer.
And this capacitor | condenser element was inserted in the bottomed cylindrical exterior case, the sealing rubber was attached to the opening edge part, and it sealed by the crimping process. Thereafter, aging was performed to form a solid electrolytic capacitor.

(実施例2)
酸化剤溶液の粘度を180mpa.sに調製した。その他の条件及び工程は、実施例1と同様である。
(Example 2)
The viscosity of the oxidant solution is 180 mpa. s. Other conditions and steps are the same as in Example 1.

(比較例1)
酸化剤溶液の粘度を35mpa.sに調製した。その他の条件及び工程は、実施例1と同様である。
(比較例2)
酸化剤溶液の粘度を250mpa.sに調製した。その他の条件及び工程は、実施例1と同様である。
(Comparative Example 1)
The viscosity of the oxidant solution is 35 mpa. s. Other conditions and steps are the same as in Example 1.
(Comparative Example 2)
The viscosity of the oxidant solution is 250 mpa. s. Other conditions and steps are the same as in Example 1.

[比較結果]
上記の方法により得られた実施例及び比較例について、静電容量及びESRを調べたところ、表1に示すような結果が得られた。

Figure 0004608865
[Comparison result]
The capacitance and ESR of the examples and comparative examples obtained by the above methods were examined, and the results shown in Table 1 were obtained.
Figure 0004608865

表1から明らかなように、酸化剤溶液の粘度を本発明の範囲とした実施例1、2はいずれも、比較例1、2に比べてESRが低減した。   As is clear from Table 1, both Examples 1 and 2 in which the viscosity of the oxidant solution was within the scope of the present invention showed lower ESR than Comparative Examples 1 and 2.

Claims (1)

陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子に、重合性モノマー溶液を含浸した後、乾燥し、この乾燥したコンデンサ素子に酸化剤溶液を含浸して、導電性ポリマーからなる固体電解質層を形成する固体電解コンデンサの製造方法において、
前記酸化剤溶液の粘度を40〜180mpa.sとすることを特徴とする固体電解コンデンサの製造方法。
A capacitor element in which an anode foil and a cathode foil are wound through a separator is impregnated with a polymerizable monomer solution and then dried, and the dried capacitor element is impregnated with an oxidant solution to form a solid made of a conductive polymer. In the method for producing a solid electrolytic capacitor for forming the electrolyte layer,
The oxidant solution has a viscosity of 40 to 180 mpa. s for producing a solid electrolytic capacitor.
JP2003339573A 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor Expired - Lifetime JP4608865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339573A JP4608865B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339573A JP4608865B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005109093A JP2005109093A (en) 2005-04-21
JP4608865B2 true JP4608865B2 (en) 2011-01-12

Family

ID=34534731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339573A Expired - Lifetime JP4608865B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4608865B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283875A (en) * 1998-03-30 1999-10-15 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2000216061A (en) * 1999-01-25 2000-08-04 Nec Toyama Ltd Manufacture for solid-state electrolytic capacitor
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2002541659A (en) * 1999-04-06 2002-12-03 昭和電工株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2003272953A (en) * 2002-03-13 2003-09-26 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283875A (en) * 1998-03-30 1999-10-15 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2000216061A (en) * 1999-01-25 2000-08-04 Nec Toyama Ltd Manufacture for solid-state electrolytic capacitor
JP2002541659A (en) * 1999-04-06 2002-12-03 昭和電工株式会社 Solid electrolytic capacitor and method of manufacturing the same
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2003272953A (en) * 2002-03-13 2003-09-26 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2005109093A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4529687B2 (en) Manufacturing method of solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP4110905B2 (en) Solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term