JP4110905B2 - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitor Download PDFInfo
- Publication number
- JP4110905B2 JP4110905B2 JP2002287906A JP2002287906A JP4110905B2 JP 4110905 B2 JP4110905 B2 JP 4110905B2 JP 2002287906 A JP2002287906 A JP 2002287906A JP 2002287906 A JP2002287906 A JP 2002287906A JP 4110905 B2 JP4110905 B2 JP 4110905B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- solid electrolytic
- capacitor element
- solid
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐湿特性の向上を図った固体電解コンデンサに関する。
【0002】
【従来の技術】
タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。
【0003】
この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。
【0004】
また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。
【0005】
このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作製される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。
【0006】
このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
【0007】
なお、本出願人は、外装ケース内の水分が素子内に侵入することに起因する固体電解質層の劣化を防止するために、コンデンサ素子を外装ケース内に収納し、外装ケースとコンデンサ素子との間に、酸無水物系の硬化剤を使用した二液性のエポキシ樹脂を充填して、コンデンサ素子の内部及び全外周面を覆うエポキシ樹脂層を形成する方法を提案している(特許文献2参照)。
【0008】
【特許文献1】
特開平2−15611号公報
【特許文献2】
特開平11−87192号公報
【0009】
【発明が解決しようとする課題】
ところで、近年、上述したような固体電解コンデンサが車載用として用いられるようになってきている。しかしながら、従来の耐湿試験規格は60℃/95%RHであったが、車載用途では、85℃/85%RHとさらに厳しい耐湿特性が要求される。しかし、このような厳しい耐湿試験規格に対して、従来の固体電解コンデンサでは、吸湿と高温放置によって酸化剤が劣化することによるためと考えられるが、ESRが上昇するといった問題点があった。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
【0010】
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、耐湿特性を向上させ、85℃/85%RHでの試験でも良好な特性を有する固体電解コンデンサを提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく、固体電解コンデンサの耐湿特性を向上させるべく鋭意検討を重ねた結果、本発明を完成するに至ったものである。
すなわち、固体電解コンデンサの耐湿特性を向上させるには、コンデンサ素子を樹脂封止すればよいが、これまで用いられていた二液性のエポキシ樹脂では硬化不良を起こし、ハンダリフロー中に分解してガスを発生するという問題点があった。
【0012】
本発明者等は、その原因が、固体電解質形成後にも残余する酸化剤の影響、すなわち、残余する酸化剤が架橋硬化を阻害しているのではないかと考え、一液性、熱硬化性のフェノール樹脂、シリコーン樹脂等を検討したが、酸化剤との反応または酸化剤による溶解が原因と考えられるが、いずれも硬化不良が発生し、コンデンサ素子を被覆することができなかった。
この後、種々の樹脂を検討した結果、ポリイミドシリコンが被覆状態も良く、耐湿特性が良く、さらにハンダリフローでの耐熱性、高温放置特性も良好であることが判明した。
【0013】
なお、本発明者等は、本発明を焼結体型の固体電解コンデンサにも適用できることを確認している。この焼結体型の固体電解コンデンサとは、焼結体の内部及び外部に固体電解質を形成した後、カーボン、銀ペースト等で被覆して、これを陰極としたものである。
【0014】
(コンデンサ素子を被覆する樹脂)
固体電解質を形成したコンデンサ素子を被覆する樹脂としては、酸化剤との反応性の低い樹脂が好ましく、特に、ポリイミドシリコンが望ましい。この他にも、重合温度が150〜200数十度のポリイミド系樹脂等も用いることができる。
【0015】
(被覆方法)
コンデンサ素子を被覆する方法は以下の通りである。すなわち、ポリイミドシリコンを溶媒に溶解し、その溶液に導電性ポリマーを形成したコンデンサ素子を浸漬した後、引き上げ、40〜100℃で溶媒を蒸発させ、その後、ポリイミドシリコンの重合温度である150〜200℃で加熱して重合させる。
【0016】
(重合性モノマー)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ぺンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
【0017】
(酸化剤)
酸化剤としては、ブタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜65wt%が好ましく、45〜57wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。
【0018】
(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、コンデンサ素子を化成液に浸漬し、電圧印加して修復化成する時間は、5〜120分が望ましい。
【0019】
(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。
【化1】
【0020】
【実施例】
続いて、以下のようにして製造した実施例及び従来例に基づいて本発明をさらに詳細に説明する。
【0021】
(実施例)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。
一方、所定の容器に、EDTとp−トルエンスルホン酸第二鉄の40wt%ブタノール溶液を、その重量比が1:3となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。そして、このコンデンサ素子を120℃の恒温槽内に1時間放置して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。
そして、このコンデンサ素子を、ポリイミドシリコンと重合促進剤を混合した10wt%シクロヘキサノン系溶液に浸漬した後、引き上げ、175℃で加熱してポリイミドシリコンの重合を促進させてコンデンサ素子を被覆した。その後、このコンデンサ素子を有底筒状のアルミニウムケースに収納し、封ロゴムで封止し、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は4WV、定格容量は150μFである。
【0022】
(従来例)
樹脂被覆せずに、コンデンサ素子を有底筒状のアルミニウムケースに収納し、封ロゴムで封止し、固体電解コンデンサを形成した。その他は、実施例と同様の条件及び工程で固体電解コンデンサを作成した。
【0023】
[比較結果1]
上記の方法により得られた実施例及び従来例について、85℃/85%RH、500H放置の耐湿試験を行ったところ、表1に示したような結果が得られた。
【表1】
【0024】
表1から明らかなように、実施例においては、耐湿試験後のESRは従来例の約88.2%に低減し、静電容量の低下率も従来例より小さかった。
【0025】
[比較結果2]
上記の方法により得られた実施例及び従来例について、105℃、1000Hの高温負荷試験を行ったところ、表2に示したような結果が得られた。
【表2】
【0026】
表2から明らかなように、実施例においては、高温負荷試験後のESRは従来例とほぼ同様であったものの、静電容量の低下率は従来例より大幅に減少した。このように本発明の固体電解コンデンサにおいては、耐湿特性は良好で、高温寿命特性も従来のものより向上している。
【0027】
【発明の効果】
以上述べたように、本発明によれば、固体電解質を形成したコンデンサ素子を、酸化剤との反応性の低い樹脂で被覆することにより、耐湿特性を向上させ、85℃/85%RHでの試験でも良好な特性を有する固体電解コンデンサを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolytic capacitor with improved moisture resistance.
[0002]
[Prior art]
An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.
[0003]
In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.
[0004]
As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.
[0005]
A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is manufactured as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.
[0006]
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixed solution of the two. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
[0007]
In order to prevent the deterioration of the solid electrolyte layer caused by the moisture in the outer case entering the element, the present applicant stores the capacitor element in the outer case, and In the meantime, a method of forming an epoxy resin layer covering the inside and the entire outer peripheral surface of the capacitor element by filling a two-component epoxy resin using an acid anhydride-based curing agent is proposed (Patent Document 2). reference).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-15611 [Patent Document 2]
Japanese Patent Laid-Open No. 11-87192
[Problems to be solved by the invention]
By the way, in recent years, the solid electrolytic capacitor as described above has been used for in-vehicle use. However, the conventional moisture resistance test standard is 60 ° C./95% RH. However, in automotive applications, 85 ° C./85% RH and more severe moisture resistance characteristics are required. However, with respect to such a strict moisture resistance test standard, the conventional solid electrolytic capacitor has a problem that the ESR is increased although it is considered that the oxidant deteriorates due to moisture absorption and high temperature storage.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.
[0010]
The present invention has been proposed in order to solve the above-described problems of the prior art, and the object thereof is to improve moisture resistance and to have good characteristics even in a test at 85 ° C./85% RH. The object is to provide a solid electrolytic capacitor.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has intensively studied to improve the moisture resistance characteristics of a solid electrolytic capacitor, and as a result, has completed the present invention.
In other words, in order to improve the moisture resistance characteristics of the solid electrolytic capacitor, the capacitor element may be resin-sealed. However, the two-component epoxy resin that has been used until now causes poor curing and decomposes during solder reflow. There was a problem of generating gas.
[0012]
The present inventors consider that the cause is the influence of the remaining oxidant after the formation of the solid electrolyte, i.e., the remaining oxidant may inhibit the cross-linking curing. A phenol resin, a silicone resin, etc. were examined, but it was considered that the reaction was caused by the reaction with the oxidant or the dissolution by the oxidant. However, in all cases, a curing failure occurred and the capacitor element could not be coated.
Thereafter, as a result of examining various resins, it was found that the polyimide silicon is well coated, has good moisture resistance, and also has good heat resistance during solder reflow and high temperature standing characteristics.
[0013]
The present inventors have confirmed that the present invention can also be applied to a sintered solid electrolytic capacitor. This sintered body type solid electrolytic capacitor is obtained by forming a solid electrolyte inside and outside of a sintered body and then coating it with carbon, silver paste or the like to form a cathode.
[0014]
(Resin coating the capacitor element)
As the resin for covering the capacitor element on which the solid electrolyte is formed, a resin having low reactivity with the oxidizing agent is preferable, and polyimide silicon is particularly preferable. In addition, a polyimide resin having a polymerization temperature of 150 to 200 tens of degrees can be used.
[0015]
(Coating method)
The method for coating the capacitor element is as follows. That is, after dissolving the capacitor | condenser element which formed the conductive polymer in the solution which melt | dissolved polyimide silicon in the solvent, it pulls up and evaporates a solvent at 40-100 degreeC, Then, 150-200 which is the polymerization temperature of polyimide silicon Polymerize by heating at ℃.
[0016]
(Polymerizable monomer)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.
[0017]
(Oxidant)
As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in butanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 65 wt%, and 45 to 57 wt%. More preferred. The higher the oxidant concentration in the solvent, the lower the ESR.
[0018]
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. Further, it is desirable that the time for repairing and forming by immersing the capacitor element in the chemical conversion solution and applying voltage is 5 to 120 minutes.
[0019]
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
[Chemical 1]
[0020]
【Example】
Subsequently, the present invention will be described in more detail based on examples and conventional examples manufactured as follows.
[0021]
(Example)
An electrode lead means was connected to the anode foil and the cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed.
On the other hand, a 40 wt% butanol solution of EDT and ferric p-toluenesulfonate is poured into a predetermined container so that the weight ratio is 1: 3, and a mixed solution is prepared. For 10 seconds, the capacitor element was impregnated with EDT and an oxidizing agent. Then, this capacitor element was left in a constant temperature bath at 120 ° C. for 1 hour to cause a polymerization reaction of PEDT in the capacitor element, thereby forming a solid electrolyte layer.
Then, this capacitor element was immersed in a 10 wt% cyclohexanone-based solution in which polyimide silicon and a polymerization accelerator were mixed, and then pulled up and heated at 175 ° C. to promote the polymerization of polyimide silicon to cover the capacitor element. Then, this capacitor | condenser element was accommodated in the bottomed cylindrical aluminum case, and it sealed with sealing rubber | gum, and formed the solid electrolytic capacitor. This solid electrolytic capacitor has a rated voltage of 4 WV and a rated capacity of 150 μF.
[0022]
(Conventional example)
Without covering the resin, the capacitor element was housed in a bottomed cylindrical aluminum case and sealed with sealing rubber to form a solid electrolytic capacitor. Other than that, a solid electrolytic capacitor was produced under the same conditions and steps as in the example.
[0023]
[Comparison result 1]
When the humidity resistance test of the Example and the conventional example obtained by the above method was left at 85 ° C./85% RH for 500 H, the results shown in Table 1 were obtained.
[Table 1]
[0024]
As apparent from Table 1, in the examples, the ESR after the moisture resistance test was reduced to about 88.2% of the conventional example, and the rate of decrease in the capacitance was also smaller than that of the conventional example.
[0025]
[Comparison result 2]
About the Example and conventional example which were obtained by said method, when the high temperature load test of 105 degreeC and 1000H was done, the result as shown in Table 2 was obtained.
[Table 2]
[0026]
As is apparent from Table 2, in the examples, although the ESR after the high temperature load test was almost the same as that of the conventional example, the rate of decrease in the capacitance was greatly reduced as compared with the conventional example. Thus, in the solid electrolytic capacitor of the present invention, the moisture resistance characteristics are good and the high-temperature life characteristics are also improved over the conventional ones.
[0027]
【The invention's effect】
As described above, according to the present invention, the capacitor element formed with the solid electrolyte is coated with the resin having low reactivity with the oxidizing agent, thereby improving the moisture resistance, and at 85 ° C./85% RH. It is possible to provide a solid electrolytic capacitor having good characteristics even in a test.
Claims (5)
前記固体電解質を形成した素子を、重合温度が150〜200数十度のポリイミド系樹脂で被覆したことを特徴とする固体電解コンデンサ。In a solid electrolytic capacitor made of an anode body made of a valve metal having an oxide film formed on the surface and a solid electrolyte,
A solid electrolytic capacitor characterized in that the element on which the solid electrolyte is formed is coated with a polyimide resin having a polymerization temperature of 150 to 200 degrees .
前記固体電解質層を形成したコンデンサ素子を、重合温度が150〜200数十度のポリイミド系樹脂で被覆したことを特徴とする固体電解コンデンサ。A cathode foil made of a valve metal and an anode foil made of a valve metal having an oxide film formed on the surface thereof are wound through a separator to form a capacitor element, which is impregnated with a polymerizable monomer and an oxidizing agent to be conductive. In a solid electrolytic capacitor in which a solid electrolyte layer made of a polymer is formed,
A solid electrolytic capacitor, wherein the capacitor element on which the solid electrolyte layer is formed is coated with a polyimide resin having a polymerization temperature of 150 to 200 tens of degrees .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002287906A JP4110905B2 (en) | 2002-09-30 | 2002-09-30 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002287906A JP4110905B2 (en) | 2002-09-30 | 2002-09-30 | Solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004128088A JP2004128088A (en) | 2004-04-22 |
JP4110905B2 true JP4110905B2 (en) | 2008-07-02 |
Family
ID=32280551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002287906A Expired - Fee Related JP4110905B2 (en) | 2002-09-30 | 2002-09-30 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110905B2 (en) |
-
2002
- 2002-09-30 JP JP2002287906A patent/JP4110905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004128088A (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4779277B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4773031B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4110905B2 (en) | Solid electrolytic capacitor | |
JP4774664B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4780893B2 (en) | Solid electrolytic capacitor | |
JP4314774B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4720075B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4720074B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5011624B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003017369A (en) | Method for manufacturing solid electrolytic capacitor | |
JP4780894B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4483504B2 (en) | Conductive material and solid electrolytic capacitor using the same | |
JP5015382B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4639504B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4378908B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4608865B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4982027B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2004128048A (en) | Solid electrolytic capacitor | |
JP4314938B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4720076B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4529403B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5303085B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5541756B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2005085911A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2003289019A (en) | Manufacturing method for solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080331 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |