JP2001284174A - Solid electrolytic capacitor and its manufacturing method - Google Patents

Solid electrolytic capacitor and its manufacturing method

Info

Publication number
JP2001284174A
JP2001284174A JP2000095444A JP2000095444A JP2001284174A JP 2001284174 A JP2001284174 A JP 2001284174A JP 2000095444 A JP2000095444 A JP 2000095444A JP 2000095444 A JP2000095444 A JP 2000095444A JP 2001284174 A JP2001284174 A JP 2001284174A
Authority
JP
Japan
Prior art keywords
round bar
electrode
capacitor element
bar portion
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000095444A
Other languages
Japanese (ja)
Inventor
Norihito Fukui
典仁 福井
Akihiro Shimada
晶弘 島田
Hidehiko Ito
英彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2000095444A priority Critical patent/JP2001284174A/en
Publication of JP2001284174A publication Critical patent/JP2001284174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid electrolytic capacitor with which short circuits between terminals can be prevented and an LC (leakage current) failure reduced. SOLUTION: At least a round bar part as a measure for leading an electrode on anode side among the flat plate part and round bar part for leading an electrode is immerged in advance in an ammonium dihydrogenphosphate aqueous solution of 0.05-0.5 wt.%, and a voltage of 5-150 V is applied for 1 sec to 5 min, and then a chemical cover film is formed at least on the surface of the round bar part as a means for leading out an electrode on the anode side and means is connected with both electrode foils, and furthermore, it is wound around together with a separator to form a capacitor element. Then, the capacitor element is immerged in an ammonium dihydrogenphosphate aqueous solution, and a voltage is applies thereto for 5 to 120 min for chemical repairing treatment. In addition, the capacitor is immersed in an EDT or an EDT solution and dipped in a butanol solution, containing a para-toluene sulphonic secondary iron of 30-60% and is heated at 20-180 deg.C for 30 min or longer, thereby chemically polymerizing a conductive polymer in the capacitor element. Thereafter, it is housed in a casing together with a sealing body, to finish a solid electrolytic capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サとその製造方法に係り、特に、固体電解質を重合した
際に、電極引き出し手段の丸棒部間に固体電解質が形成
されることに起因する端子間におけるショートの発生を
防止し、LC(漏れ電流)不良を低減すべく改良を施し
た固体電解コンデンサとその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly, to a method in which a solid electrolyte is formed between round rod portions of an electrode lead means when a solid electrolyte is polymerized. The present invention relates to a solid electrolytic capacitor improved to prevent occurrence of short circuit between terminals and to reduce LC (leakage current) failure, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art In an electrolytic capacitor using a metal having a valve action such as tantalum or aluminum, a valve action metal as an anode-side counter electrode is formed into a shape of a sintered body or an etching foil to expand a dielectric material. By using such a structure, it is possible to obtain a large capacity with a small size. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics that it is small, large-capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high performance, and low cost of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for small size and large capacity applications, generally, an anode foil and a cathode foil made of valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolyte, and the capacitor element is housed in a metal case such as aluminum or a synthetic resin case, and has a sealed structure. Note that as the anode material, aluminum, tantalum, niobium, titanium, or the like is used, and as the cathode material, the same kind of metal as the anode material is used.

【0004】また、固体電解コンデンサに用いられる固
体電解質としては、二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いるが、近年、反応速度が緩やかで、かつ陽極電極の酸
化皮膜層との密着性に優れたポリエチレンジオキシチオ
フェン(以下、PEDTと記す)に着目した技術(特開
平2−15611号公報)が存在している。
As a solid electrolyte used for a solid electrolytic capacitor, manganese dioxide, 7, 7, 8, 8-
A tetracyanoquinodimethane (TCNQ) complex is known, but recently, polyethylenedioxythiophene (hereinafter, referred to as PEDT), which has a slow reaction rate and excellent adhesion to an oxide film layer of an anode electrode, has been developed. There is a technique (Japanese Patent Laid-Open No. 2-15611) that has been focused on.

【0005】このような巻回型のコンデンサ素子にPE
DTからなる固体電解質層を形成するタイプの固体電解
コンデンサは、例えば、以下のようにして作製される。
まず、アルミニウム等の弁作用金属からなる陽極箔の表
面を塩化物水溶液中での電気化学的なエッチング処理に
より粗面化して、多数のエッチングピットを形成した
後、ホウ酸アンモニウム等の水溶液中で電圧を印加して
誘電体となる酸化皮膜層を形成する(化成)。陰極箔も
陽極箔と同様にアルミニウム等の弁作用金属からなる
が、その表面にはエッチング処理を施すのみである。
[0005] Such a wound-type capacitor element is made of PE.
A solid electrolytic capacitor of the type forming a solid electrolyte layer made of DT is manufactured, for example, as follows.
First, the surface of the anode foil made of a valve metal such as aluminum is roughened by electrochemical etching treatment in a chloride aqueous solution to form a large number of etching pits, and then, in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical formation). Like the anode foil, the cathode foil is made of a valve metal such as aluminum, but its surface is only subjected to etching.

【0006】また、図2及び図3に示すように、陽極箔
1及び陰極箔2には、それぞれの電極を外部に接続する
ための外部引き出し手段4、5が接続され、両電極箔を
セパレータ3と共に巻回してコンデンサ素子10が形成
されている。なお、この外部引き出し手段4、5は、電
極箔と接続される平板部11、封口手段貫通用の丸棒部
12及び外部接続部(リード線)13とから構成され、
平板部11及び丸棒部12はアルミニウムから構成され
ている。また、丸棒部12とリード線13とは溶接によ
り接続されている。以下、この溶接部分を溶接部14と
いう。
As shown in FIGS. 2 and 3, the anode foil 1 and the cathode foil 2 are connected to external lead-out means 4 and 5 for connecting the respective electrodes to the outside. 3 and the capacitor element 10 is formed. The external drawing means 4 and 5 are composed of a flat plate portion 11 connected to the electrode foil, a round bar portion 12 for penetrating the sealing means, and an external connection portion (lead wire) 13.
The flat plate 11 and the round bar 12 are made of aluminum. Further, the round bar portion 12 and the lead wire 13 are connected by welding. Hereinafter, this welded portion is referred to as a welded portion 14.

【0007】このようにしてコンデンサ素子10を形成
した後、修復化成を行う。この修復化成は、前記巻回工
程において電極箔に機械的ストレスがかかり、これが原
因となって酸化皮膜に亀裂が発生する等の損傷を受けた
場合に、再度化成液中で化成することによって、この亀
裂の発生した部分に酸化皮膜を形成して、損傷を修復す
るものである。
After forming the capacitor element 10 in this manner, a repair formation is performed. In the repair formation, the electrode foil is subjected to mechanical stress in the winding step, and when the oxide film is damaged due to cracks caused by the mechanical stress, the electrode foil is formed again in a chemical conversion solution, An oxide film is formed on the cracked portion to repair the damage.

【0008】続いて、修復化成を施したコンデンサ素子
10を3,4−エチレンジオキシチオフェン(以下、E
DTと記す)と酸化剤の混合溶液(重合液)に浸漬する
ことにより、この重合液をコンデンサ素子10に含浸す
る。あるいはまた、コンデンサ素子10をEDTと酸化
剤溶液に交互に浸漬して含浸する。いずれの場合でも、
コンデンサ素子10にEDTと酸化剤を含浸した後、重
合反応させ、PEDTからなる固体電解質層を生成す
る。その後、図4に示したように、コンデンサ素子10
を封口体16と共に外装ケース15に収納し、固体電解
コンデンサを作製する。
Subsequently, the restoration-formed capacitor element 10 is replaced with 3,4-ethylenedioxythiophene (hereinafter referred to as E
This polymer solution is impregnated in the capacitor element 10 by immersion in a mixed solution (polymer solution) of an oxidant and an oxidizing agent. Alternatively, the capacitor element 10 is alternately immersed in the EDT and the oxidizing agent solution for impregnation. In either case,
After impregnating the capacitor element 10 with EDT and an oxidizing agent, a polymerization reaction is performed to generate a solid electrolyte layer made of PEDT. Thereafter, as shown in FIG.
Is stored in the outer case 15 together with the sealing body 16 to produce a solid electrolytic capacitor.

【0009】なお、上記の製造方法においては、コンデ
ンサ素子にEDTと酸化剤を含浸する方法として浸漬法
を用いたが、EDTと酸化剤を常温で、シリンジ等によ
り定量注入する方法(注入法)を用いることもできる。
このようなPEDTを固体電解質とした巻回型の電解コ
ンデンサにおいては、PEDTの電極箔間の形成性が良
好なため、特性の優れた固体電解コンデンサを得ること
ができる。
In the above manufacturing method, a dipping method is used as a method for impregnating the capacitor element with EDT and an oxidizing agent. However, a method of injecting the EDT and the oxidizing agent at room temperature by a syringe or the like (injection method) Can also be used.
In such a wound-type electrolytic capacitor using PEDT as a solid electrolyte, a solid electrolytic capacitor having excellent characteristics can be obtained since the formability between PEDT electrode foils is good.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記のよう
な方法によって作製されたPEDTを用いた固体電解コ
ンデンサにおいては、コンデンサ素子をEDTもしくは
酸化剤溶液に浸漬した際に、外部引き出し手段4、5の
丸棒部12の表面に、EDTおよび酸化剤溶液が表面張
力によって這い上がって付着し、重合後に、PEDTの
形成性が良好なため、両側の丸棒部12、12の表面に
PEDTが形成されたり、また、コンデンサ素子内部の
PEDTが素子外部へ押し出されて丸棒部の表面に付着
して、LC増大やショートが発生するという問題があっ
た。また、PEDTが片方の丸棒部に付着した場合で
も、同様にLC増大やショートが発生するという問題が
あった。
By the way, in a solid electrolytic capacitor using PEDT manufactured by the above-described method, when the capacitor element is immersed in EDT or an oxidizing agent solution, external drawing means 4, 5 The EDT and the oxidizing agent solution creep up and adhere to the surface of the round bar portion 12 due to the surface tension, and the PEDT is formed on the surface of the round bar portions 12 on both sides because of the good formability of PEDT after polymerization. Also, there is a problem that the PEDT inside the capacitor element is pushed out of the element and adheres to the surface of the round bar portion, thereby increasing LC and causing a short circuit. Further, even when PEDT adheres to one of the round bars, there is a problem that LC increase and short-circuit occur similarly.

【0011】このような問題を解決するためには、丸棒
部の表面に化成等によって酸化皮膜層を形成して、丸棒
部とPEDTを絶縁すれば良いとの考えから、コンデン
サ素子の修復化成時に、丸棒部の表面に酸化皮膜層を形
成する方法を用いることができる。すなわち、コンデン
サ素子の修復化成においては、通常、コンデンサ素子の
電極箔とセパレータの巻回部分(図3の“A”部分)を
化成液に浸漬しているが、この場合、それと同時に、陽
極側の電極引き出し手段の平板部や、平板部と電極箔と
の接合部のような酸化皮膜が形成されていない部分に酸
化皮膜が形成されるため、電極間の絶縁性が保たれるこ
とになり、これらの部分においては、LC不良やショー
トが発生することを防止できる。
In order to solve such a problem, it is necessary to form an oxide film layer on the surface of the round bar by chemical conversion to insulate the round bar from the PEDT. At the time of chemical conversion, a method of forming an oxide film layer on the surface of the round bar portion can be used. That is, in the repair formation of the capacitor element, the wound part of the electrode foil of the capacitor element and the separator (the “A” part in FIG. 3) is usually immersed in the chemical conversion solution. Since the oxide film is formed on the flat portion of the electrode drawing means and the portion where the oxide film is not formed, such as the joint portion between the flat portion and the electrode foil, the insulation between the electrodes is maintained. In these portions, it is possible to prevent LC failure and short circuit from occurring.

【0012】しかしながら、コンデンサ素子の修復化成
時に、丸棒部12まで(図3の“B”部分)を化成液に
浸漬して化成しようとすると、リード線13との溶接部
14まで化成液に浸漬してしまう危険性がある。このよ
うにリード線との溶接部14まで化成液に浸漬してしま
うと、通電してしまうので、コンデンサ素子の修復化成
時に、丸棒部12を化成することには限界があった。
However, at the time of repair formation of the capacitor element, if the formation is carried out by immersing the round bar portion 12 (portion "B" in FIG. 3) in the formation solution, the formation solution is formed up to the welding portion 14 with the lead wire 13. There is a danger of immersion. If the welding portion 14 with the lead wire is immersed in the chemical conversion solution as described above, the current will flow, and there is a limit to forming the round bar portion 12 during the repair formation of the capacitor element.

【0013】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、固体電解質を重合した際に、丸棒部間に固体電解質
が形成されることによる端子間におけるショートの発生
を防止し、LC(漏れ電流)不良を低減することができ
る固体電解コンデンサとその製造方法を提供することに
ある。
The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to form a solid electrolyte between round bars when a solid electrolyte is polymerized. It is an object of the present invention to provide a solid electrolytic capacitor capable of preventing occurrence of a short circuit between terminals due to the above and reducing LC (leakage current) failure and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく、固体電解質を重合した際に、丸棒部間に
固体電解質が形成されることを防止できる固体電解コン
デンサとその製造方法について鋭意検討を重ねた結果、
本発明を完成するに至ったものである。すなわち、図1
に示したように、電極引き出し手段の平板部11及び丸
棒部12の内、少なくとも陽極側の電極引き出し手段の
丸棒部12に、予め酸化皮膜20を形成し、その後に電
極箔と共に巻回してコンデンサ素子を形成する。そし
て、コンデンサ素子の電極箔とセパレータの巻回部分の
みを化成液に浸漬して修復化成を施し、その後にコンデ
ンサ素子内でPEDTを重合することによって、良好な
結果が得られることを見出したものである。
Means for Solving the Problems In order to solve the above problems, the present inventors have developed a solid electrolytic capacitor and a solid electrolytic capacitor which can prevent the solid electrolyte from being formed between the round bars when the solid electrolyte is polymerized. As a result of intensive studies on the manufacturing method,
The present invention has been completed. That is, FIG.
As shown in (2), an oxide film 20 is formed in advance on at least the round bar portion 12 of the electrode drawing means on the anode side of the flat plate portion 11 and the round bar portion 12 of the electrode drawing means, and then wound together with the electrode foil. To form a capacitor element. Then, only the wound portion of the electrode foil and the separator of the capacitor element was immersed in a chemical conversion solution to perform repair formation, and thereafter, good results were obtained by polymerizing PEDT in the capacitor element. It is.

【0015】[1.電解コンデンサの製造方法]次に、
本発明の固体電解コンデンサの製造方法について説明す
る。すなわち、本発明に係る固体電解コンデンサは、予
め電極引き出し手段の平板部及び丸棒部の内、少なくと
も陽極側の電極引き出し手段の丸棒部を、0.05〜
0.5wt%リン酸二水素アンモニウム水溶液中に浸漬
し、5〜150Vの電圧を1秒〜5分間印加して、少な
くとも陽極側の電極引き出し手段の丸棒部の表面に化成
皮膜を形成し、この電極引き出し手段を両電極箔に接続
し、セパレータと共に巻回してコンデンサ素子を形成す
る。その後、このコンデンサ素子をリン酸二水素アンモ
ニウム水溶液に浸漬し、電圧印加して5〜120分間修
復化成を行う。
[1. Manufacturing method of electrolytic capacitor]
The method for manufacturing the solid electrolytic capacitor of the present invention will be described. That is, in the solid electrolytic capacitor according to the present invention, among the flat plate portion and the round bar portion of the electrode lead means, at least the round bar portion of the electrode lead means on the anode side is 0.05 to
Immersed in a 0.5 wt% aqueous solution of ammonium dihydrogen phosphate, and applied with a voltage of 5 to 150 V for 1 second to 5 minutes to form a chemical conversion film on at least the surface of the round bar portion of the electrode drawing means on the anode side; This electrode lead means is connected to both electrode foils and wound together with the separator to form a capacitor element. Thereafter, this capacitor element is immersed in an aqueous solution of ammonium dihydrogen phosphate, and a voltage is applied to perform repair formation for 5 to 120 minutes.

【0016】続いて、このコンデンサ素子にEDT又は
EDT溶液を含浸し、さらに30〜60%のパラトルエ
ンスルホン酸第二鉄のブタノール溶液を含浸して、20
〜180℃、30分以上加熱することにより、コンデン
サ素子内で導電性ポリマーを化学重合する。その後、封
口体と共に外装ケースに収納して固体電解コンデンサを
作製する。なお、EDT及び酸化剤をコンデンサ素子に
含浸する方法としては、常温で、シリンジ等により定量
注入する注入法、あるいは浸漬法を用いることができ
る。
Subsequently, the capacitor element is impregnated with EDT or an EDT solution, and further impregnated with a 30 to 60% ferric paratoluenesulfonate butanol solution to give
By heating at 180 ° C. for 30 minutes or more, the conductive polymer is chemically polymerized in the capacitor element. Thereafter, the solid electrolytic capacitor is housed in an outer case together with the sealing body to produce a solid electrolytic capacitor. In addition, as a method of impregnating the capacitor element with EDT and an oxidizing agent, an injection method in which a fixed amount is injected with a syringe or the like at room temperature or an immersion method can be used.

【0017】[2.丸棒部等に酸化皮膜を形成する方
法]ホウ酸アンモニウム、リン酸アンモニウム、リン酸
二水素アンモニウム、アジピン酸アンモニウム等の水溶
液(濃度は、0.05〜0.5wt%)中で、5〜50
0Vの電圧を1秒〜5分間印加して、陽極酸化処理(い
わゆる化成処理)を行って、電極引き出し手段の平板部
及び丸棒部の内、少なくとも陽極側の電極引き出し手段
の丸棒部に酸化皮膜を形成する。
[2. Method for forming an oxide film on a round bar or the like] In an aqueous solution (concentration: 0.05 to 0.5 wt%) of ammonium borate, ammonium phosphate, ammonium dihydrogen phosphate, ammonium adipate, etc. 50
A voltage of 0 V is applied for 1 second to 5 minutes to perform anodic oxidation treatment (a so-called chemical conversion treatment), and at least to the round bar portion of the electrode drawing means on the anode side among the flat plate portion and the round bar portion of the electrode drawing means. An oxide film is formed.

【0018】なお、この際の化成電圧は、絶縁性の酸化
皮膜が形成されれば良く、通常は5〜150Vである。
また、酸化皮膜を形成する時期は、コンデンサ素子を巻
回する前なら良く、丸棒部にリード線を溶接した後でも
良いが、丸棒部にリード線を溶接する前の方がより望ま
しい。
The formation voltage at this time is only required to form an insulating oxide film, and is usually 5 to 150 V.
The time for forming the oxide film may be any time before winding the capacitor element, and may be after the lead wire is welded to the round bar portion, but it is more preferable before the lead wire is welded to the round bar portion.

【0019】本発明は、少なくとも陽極側の電極引き出
し手段の丸棒部に酸化皮膜を形成してなるものである。
これは、以下のような挙動によるものであると考えられ
る。すなわち、コンデンサ素子として巻回する陰極箔に
は、アルミニウム箔を裁断したものを用いる。従って、
少なくともこの裁断した部分の表面には化成皮膜はな
く、その後に修復化成を行うが、これは陽極箔のみに行
われるので、陰極箔の化成はされず、陰極箔の裁断部分
は化成皮膜が形成されないままの状態である。従って、
PEDTが陽極側の電極引き出し手段の丸棒部に付着し
た場合、このPEDTがこのような陰極箔の裁断部分等
の陰極箔の導通部分と導通している場合は、コンデンサ
の陽極と陰極の絶縁性が低下する。
In the present invention, an oxide film is formed on at least the round bar portion of the electrode lead-out means on the anode side.
This is considered to be due to the following behavior. That is, the cathode foil wound as the capacitor element is obtained by cutting aluminum foil. Therefore,
At least there is no conversion coating on the surface of the cut portion, and then repair conversion is performed.However, since this is performed only on the anode foil, conversion of the cathode foil is not performed, and a conversion coating is formed on the cut portion of the cathode foil. It has not been done. Therefore,
When the PEDT adheres to the round bar portion of the electrode drawing means on the anode side, and when the PEDT is conducting with the conducting portion of the cathode foil such as the cut portion of the cathode foil, the insulation between the anode and the cathode of the capacitor is made. Is reduced.

【0020】そこで、本発明のように、陽極側の電極引
き出し手段の丸棒部に酸化皮膜を形成すれば、この丸棒
部にPEDTが付着しても、酸化皮膜が絶縁部分となっ
て絶縁性が低下することはない。また、陰極側の電極引
き出し手段の丸棒部にも酸化皮膜が形成されていると、
陰極全体の耐電圧が向上して、コンデンサの耐電圧が向
上するという新たな効果が得られるので、より好適であ
る。
Therefore, if an oxide film is formed on the round bar of the electrode extraction means on the anode side as in the present invention, even if PEDT adheres to this round bar, the oxide film becomes an insulating portion and becomes an insulating portion. There is no decrease in sex. Also, if an oxide film is also formed on the round bar portion of the electrode extraction means on the cathode side,
This is more preferable because a new effect that the withstand voltage of the entire cathode is improved and the withstand voltage of the capacitor is improved can be obtained.

【0021】[3.修復化成]修復化成の化成液として
は、リン酸二水素アンモニウム、リン酸水素二アンモニ
ウム等のリン酸系の化成液、ホウ酸アンモニウム等のホ
ウ酸系の化成液、アジピン酸アンモニウム等のアジピン
酸系の化成液を用いることができるが、なかでも、リン
酸二水素アンモニウムを用いることが望ましい。また、
コンデンサ素子を化成液に浸漬し、電圧印加して修復化
成する時間は、5〜120分が望ましい。なお、修復化
成の印加電圧は、陽極箔の化成電圧の0.5〜1.1倍
が望ましい。
[3. Restoration formation] As the formation solution of the restoration formation, there are phosphoric acid-based formation solutions such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid-based formation solutions such as ammonium borate, and adipic acid such as ammonium adipate. Although a chemical conversion solution of a system can be used, it is particularly preferable to use ammonium dihydrogen phosphate. Also,
The time for immersing the capacitor element in a chemical conversion solution and applying a voltage to perform repair formation is preferably 5 to 120 minutes. The applied voltage for the repair formation is preferably 0.5 to 1.1 times the formation voltage of the anode foil.

【0022】[4.EDT、酸化剤]また、コンデンサ
素子に含浸するEDTとしては、EDTモノマーを用い
ることができるが、EDTと揮発性溶媒とを1:1〜
1:3の体積比で混合したモノマー溶液を用いることも
できる。前記揮発性溶媒としては、ペンタン等の炭化水
素類、テトラヒドロフラン等のエーテル類、ギ酸エチル
等のエステル類、アセトン等のケトン類、メタノール等
のアルコール類、アセトニトリル等の窒素化合物等を用
いることができるが、なかでも、メタノール、エタノー
ル、アセトン等が好ましい。
[4. EDT, Oxidizing Agent] As the EDT to be impregnated into the capacitor element, an EDT monomer can be used.
A monomer solution mixed at a volume ratio of 1: 3 can also be used. Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, and nitrogen compounds such as acetonitrile. However, among them, methanol, ethanol, acetone and the like are preferable.

【0023】また、酸化剤としては、ブタノールに溶解
したパラトルエンスルホン酸第二鉄を用いる。この場
合、ブタノールとパラトルエンスルホン酸第二鉄の比率
は任意で良いが、本発明においては30〜60%溶液を
用いている。なお、EDTと酸化剤の配合比は1:1〜
1:6の範囲が好適である。
As the oxidizing agent, ferric paratoluenesulfonate dissolved in butanol is used. In this case, the ratio between butanol and ferric paratoluenesulfonate may be arbitrary, but in the present invention, a 30 to 60% solution is used. The mixing ratio of EDT and oxidizing agent is 1: 1 to 1
A range of 1: 6 is preferred.

【0024】[5.作用・効果]上記のような本発明の
製造方法によれば、コンデンサ素子をモノマー溶液と酸
化剤溶液に浸漬した際に、電極引き出し手段の丸棒部に
溶液が付着して、この部分にも導電性ポリマーが形成さ
れた場合でも、少なくとも陽極側の電極引き出し手段の
丸棒部には、予め酸化皮膜が形成されているために、端
子間でのショートの発生やLCの増大を防止することが
できる。
[5. Function / Effect] According to the manufacturing method of the present invention as described above, when the capacitor element is immersed in the monomer solution and the oxidant solution, the solution adheres to the round bar portion of the electrode lead-out means, and this portion also Even when a conductive polymer is formed, at least the round bar portion of the electrode lead-out means on the anode side has an oxide film formed in advance, so that short-circuiting between terminals and an increase in LC are prevented. Can be.

【0025】[0025]

【実施例】以下に実施例をあげて、本発明をさらに具体
的に説明する。 (実施例1)陽極側の電極引き出し手段を形成するにあ
たり、リード線を接続する前の電極タブ(平板部及び丸
棒部)を、0.2wt%リン酸二水素アンモニウム水溶
液中に浸漬し、130Vの電圧を2分間印加して、電極
タブの表面に化成皮膜を形成した。このようにして化成
皮膜を形成した電極タブの丸棒部にリード線を接続して
電極引き出し手段を形成し、この電極引き出し手段を、
表面に酸化皮膜層が形成された陽極箔に接続して陽極側
の電極引き出し手段を形成した。
The present invention will be described more specifically with reference to the following examples. (Example 1) In forming an electrode lead means on the anode side, an electrode tab (a flat plate portion and a round bar portion) before connecting a lead wire was immersed in a 0.2 wt% ammonium dihydrogen phosphate aqueous solution, A voltage of 130 V was applied for 2 minutes to form a chemical conversion film on the surface of the electrode tab. A lead wire is connected to the round bar portion of the electrode tab on which the chemical conversion film has been formed in this way to form an electrode lead-out means.
It was connected to an anode foil having an oxide film layer formed on the surface to form an electrode lead-out means on the anode side.

【0026】一方、陰極側の電極引き出し手段は、化成
皮膜を形成しない電極タブの丸棒部にリード線を接続し
て電極引き出し手段を形成し、この電極引き出し手段を
陰極箔に接続して陰極側の電極引き出し手段を形成し
た。この陽極箔と陰極箔とをセパレータを介して巻回し
てコンデンサ素子を形成した。そして、このコンデンサ
素子を、リン酸二水素アンモニウム水溶液に浸漬し、電
圧印加して40分間修復化成を行った。
On the other hand, the electrode lead means on the cathode side is formed by connecting a lead wire to a round bar portion of an electrode tab on which a chemical conversion film is not formed to form an electrode lead means. Side electrode lead means was formed. The anode foil and the cathode foil were wound via a separator to form a capacitor element. Then, the capacitor element was immersed in an aqueous solution of ammonium dihydrogen phosphate, and a voltage was applied to perform repair formation for 40 minutes.

【0027】続いて、このコンデンサ素子にEDTモノ
マー溶液を含浸し、さらに、酸化剤溶液として45%の
パラトルエンスルホン酸第二鉄のブタノール溶液を含浸
して、100℃、1時間加熱して、PEDTからなる固
体電解質層を形成した。その後、封口体と共に外装ケー
スに収納し、固体電解コンデンサを得た。
Subsequently, this capacitor element was impregnated with an EDT monomer solution, further impregnated with a 45% ferric paratoluenesulfonate butanol solution as an oxidizing agent solution, and heated at 100 ° C. for 1 hour. A solid electrolyte layer made of PEDT was formed. Thereafter, the solid electrolytic capacitor was housed in an outer case together with the sealing body to obtain a solid electrolytic capacitor.

【0028】なお、PEDTからなる固体電解質層は、
両極の丸棒部が接続するような状態で形成した。また、
この固体電解コンデンサの形状は、φ4×8L、定格電
圧は6.3V、定格容量は33μFである。
The solid electrolyte layer made of PEDT is
It was formed such that the round bar portions of both poles were connected. Also,
This solid electrolytic capacitor has a shape of φ4 × 8 L, a rated voltage of 6.3 V, and a rated capacity of 33 μF.

【0029】(実施例2)リード線を接続する前の電極
タブの内、丸棒部のみをリン酸二水素アンモニウム水溶
液中に浸漬し、実施例1と同様にして、陽極側の電極引
き出し手段の丸棒部の表面に化成皮膜を形成した。その
他の工程は、上記実施例1と同様にして固体電解コンデ
ンサを作製した。
(Example 2) Only the round bar portion of the electrode tab before the lead wire was connected was immersed in an aqueous solution of ammonium dihydrogen phosphate. A chemical conversion film was formed on the surface of the round bar portion. Other steps were the same as in Example 1 to produce a solid electrolytic capacitor.

【0030】(比較例1)電極タブに化成皮膜を形成せ
ずにリード線を接続し、この電極引き出し手段を、表面
に酸化皮膜層が形成された陽極箔と陰極箔に接続し、こ
の陽極箔と陰極箔とをセパレータを介して巻回してコン
デンサ素子を形成した。その他の工程は、上記実施例1
と同様にして固体電解コンデンサを作製した。
(Comparative Example 1) A lead wire was connected to an electrode tab without forming a chemical conversion film, and this electrode lead-out means was connected to an anode foil and a cathode foil having an oxide film layer formed on the surface. The foil and the cathode foil were wound via a separator to form a capacitor element. Other steps are described in Example 1 above.
A solid electrolytic capacitor was produced in the same manner as described above.

【0031】[比較結果]上記の実施例1と比較例1に
ついて、電気的特性を調べたところ、表1に示すような
結果が得られた。
[Comparative Results] The electrical characteristics of Example 1 and Comparative Example 1 were examined. The results shown in Table 1 were obtained.

【表1】 [Table 1]

【0032】表1から明らかなように、陽極側の電極引
き出し手段の丸棒部と平板部の両方に化成皮膜を形成し
た実施例1では、漏れ電流の最大値は3μAであり、電
極タブに化成皮膜を全く形成しない比較例1(400μ
A)と比較して、約0.008倍であった。また、比較
例1では10個中2個にショートが発生したが、実施例
1ではショートが発生したものは皆無であった。
As is apparent from Table 1, in Example 1 in which the chemical conversion film was formed on both the round bar portion and the flat plate portion of the electrode drawing means on the anode side, the maximum value of the leakage current was 3 μA, and Comparative Example 1 in which no conversion coating was formed (400 μm
Compared with A), it was about 0.008 times. In Comparative Example 1, two out of ten short-circuits occurred, but in Example 1, no short-circuit occurred.

【0033】また、陽極側の電極引き出し手段の丸棒部
のみに化成皮膜を形成した実施例2では、漏れ電流の最
大値は4μAであり、電極タブに化成皮膜を全く形成し
ない比較例1(400μA)と比較して約0.01倍で
あり、実施例1と同等の結果が得られた。また、実施例
2においても、ショートが発生したものは皆無であっ
た。なお、陽極側の電極引き出し手段の丸棒部のみに化
成皮膜を形成した実施例2において、実施例1と同等の
結果が得られたのは、平板部に化成皮膜を形成しなくて
も、平板部は修復化成時に化成されるためであると考え
られる。
Further, in Example 2 in which the chemical conversion film was formed only on the round bar portion of the electrode drawing means on the anode side, the maximum value of the leakage current was 4 μA, and Comparative Example 1 in which no chemical conversion film was formed on the electrode tabs ( 400 μA), which is about 0.01 times, and a result equivalent to that of Example 1 was obtained. Also, in Example 2, no short circuit occurred. In Example 2 in which the chemical conversion film was formed only on the round bar portion of the electrode drawing means on the anode side, the same result as in Example 1 was obtained even if the chemical conversion film was not formed on the flat plate portion. It is considered that the flat portion is formed during the repair formation.

【0034】このように、少なくとも陽極側の電極引き
出し手段の丸棒部に予め酸化皮膜を形成した場合には、
漏れ電流を大幅に低減することができ、ショートの発生
を防止することができることが判明した。また、丸棒部
と平板部の両方に予め酸化皮膜を形成した場合には、シ
ョートの発生を防止できるだけでなく、漏れ電流をほぼ
完全に防止することができることが判明した。
As described above, when an oxide film is previously formed on at least the round bar portion of the electrode drawing means on the anode side,
It has been found that the leakage current can be significantly reduced, and the occurrence of a short circuit can be prevented. In addition, it was found that when an oxide film was formed in advance on both the round bar portion and the flat plate portion, not only the occurrence of a short circuit but also the leakage current could be almost completely prevented.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、固
体電解質を重合した際に、丸棒部間に固体電解質が形成
されることによる端子間におけるショートの発生を防止
し、LC(漏れ電流)不良を低減することができる固体
電解コンデンサとその製造方法を提供することができ
る。
As described above, according to the present invention, when a solid electrolyte is polymerized, a short circuit between terminals due to formation of a solid electrolyte between round rod portions is prevented, and LC ( It is possible to provide a solid electrolytic capacitor capable of reducing defects (leakage current) and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法によって化成皮膜を形成した
電極タブの一例を示す斜視図
FIG. 1 is a perspective view showing an example of an electrode tab on which a chemical conversion film is formed by a production method of the present invention.

【図2】コンデンサ素子の巻回状態を示す斜視図FIG. 2 is a perspective view showing a winding state of a capacitor element.

【図3】コンデンサ素子の一例を示す分解斜視図FIG. 3 is an exploded perspective view showing an example of a capacitor element.

【図4】従来の製造方法によって得られた固体電解コン
デンサの一例を示す断面図
FIG. 4 is a sectional view showing an example of a solid electrolytic capacitor obtained by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1…陽極箔 2…陰極箔 3…セパレータ 4,5…電極引き出し手段 10…コンデンサ素子 11…平板部 12…丸棒部 13…リード線 14…溶接部 15…金属ケース 16…封口体 20…酸化皮膜 DESCRIPTION OF SYMBOLS 1 ... Anode foil 2 ... Cathode foil 3 ... Separator 4, 5 ... Electrode lead-out means 10 ... Capacitor element 11 ... Flat plate part 12 ... Round bar part 13 ... Lead wire 14 ... Welded part 15 ... Metal case 16 ... Sealing body 20 ... Oxidation Film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/24 B C A (72)発明者 伊東 英彦 東京都青梅市東青梅1丁目167番地の1 日本ケミコン株式会社内 Fターム(参考) 4J032 BA04 BB01 BC03 CG01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01G 9/24 BC (72) Inventor Hidehiko Ito 1-1167 Higashi-Ome, Ome-shi, Tokyo 1 Nippon Chemi-Con Co., Ltd. F-term (reference) 4J032 BA04 BB01 BC03 CG01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極箔と接続される平板部と、封口手段
貫通用の丸棒部と、溶接部を介して前記丸棒部と接続さ
れた外部接続部とを備えた電極引き出し手段が接続され
た両電極箔を、セパレータを介して巻回してコンデンサ
素子を形成し、前記両電極箔間にポリエチレンジオキシ
チオフェンからなる固体電解質層を形成してなる固体電
解コンデンサにおいて、 前記電極引き出し手段の前記平板部と丸棒部の内、少な
くとも陽極側の電極引き出し手段の丸棒部に予め酸化皮
膜が形成され、その後に前記丸棒部に外部接続部が接続
されたことを特徴とする固体電解コンデンサ。
1. An electrode lead means comprising: a flat plate portion connected to an electrode foil; a round bar portion for sealing means penetrating; and an external connection portion connected to the round bar portion via a welded portion. In the solid electrolytic capacitor formed by winding the two electrode foils wound through a separator to form a capacitor element and forming a solid electrolyte layer made of polyethylene dioxythiophene between the two electrode foils, Among the flat plate portion and the round bar portion, at least an oxide film is formed in advance on the round bar portion of the electrode drawing means on the anode side, and thereafter an external connection portion is connected to the round bar portion. Capacitors.
【請求項2】 電極箔と接続される平板部と、封口手段
貫通用の丸棒部と、溶接部を介して前記丸棒部と接続さ
れた外部接続部とからなる電極引き出し手段が接続され
た両電極箔を、セパレータを介して巻回してコンデンサ
素子を形成し、前記両電極箔間にポリエチレンジオキシ
チオフェンからなる固体電解質層を形成してなる固体電
解コンデンサにおいて、 前記電極引き出し手段の前記平板部と丸棒部の内、少な
くとも陽極側の電極引き出し手段の丸棒部に、前記コン
デンサ素子の巻回前に、予め酸化皮膜が形成されている
ことを特徴とする固体電解コンデンサ。
2. An electrode lead means comprising a flat plate portion connected to the electrode foil, a round bar portion for penetrating the sealing means, and an external connection portion connected to the round bar portion via a welded portion is connected. The two electrode foils are wound through a separator to form a capacitor element, and a solid electrolytic capacitor formed by forming a solid electrolyte layer made of polyethylene dioxythiophene between the two electrode foils. A solid electrolytic capacitor characterized in that an oxide film is previously formed on at least the round bar portion of the electrode drawing means on the anode side, out of the flat plate portion and the round bar portion, before winding the capacitor element.
【請求項3】 電極箔と接続される平板部と、封口手段
貫通用の丸棒部と、溶接部を介して前記丸棒部と接続さ
れた外部接続部とからなる電極引き出し手段の前記平板
部と丸棒部の内、少なくとも陽極側の電極引き出し手段
の丸棒部に予め酸化皮膜を形成し、その後に前記丸棒部
に前記外部接続部を接続して電極引き出し手段を形成
し、この電極引き出し手段を両電極箔に接続し、セパレ
ータと共に巻回してコンデンサ素子を形成し、その後に
このコンデンサ素子にモノマー溶液と酸化剤溶液を含浸
して固体電解質層を形成することを特徴とする固体電解
コンデンサの製造方法。
3. The flat plate of the electrode drawing means comprising a flat plate portion connected to the electrode foil, a round bar portion for penetrating the sealing means, and an external connection portion connected to the round bar portion via a welded portion. Of the part and the round bar part, at least an oxide film is formed in advance on the round bar part of the electrode lead means on the anode side, and then the external connection part is connected to the round rod part to form the electrode lead means, Connecting the electrode lead means to both electrode foils, winding the capacitor together with the separator to form a capacitor element, and then impregnating the capacitor element with a monomer solution and an oxidizing agent solution to form a solid electrolyte layer Manufacturing method of electrolytic capacitor.
【請求項4】 電極箔と接続される平板部と、封口手段
貫通用の丸棒部と、溶接部を介して前記丸棒部と接続さ
れた外部接続部とを備えた電極引き出し手段の前記平板
部と丸棒部の内、少なくとも陽極側の電極引き出し手段
の丸棒部に予め酸化皮膜を形成し、その後に前記電極引
き出し手段を両電極箔に接続し、セパレータと共に巻回
してコンデンサ素子を形成し、その後にこのコンデンサ
素子にモノマー溶液と酸化剤溶液を含浸して固体電解質
層を形成することを特徴とする固体電解コンデンサの製
造方法。
4. An electrode lead-out means comprising: a flat plate portion connected to an electrode foil; a round bar portion for sealing means penetration; and an external connection portion connected to the round bar portion via a welded portion. Of the flat plate portion and the round bar portion, an oxide film is formed in advance on at least the round bar portion of the electrode drawing means on the anode side, and then the electrode drawing means is connected to both electrode foils and wound together with the separator to form a capacitor element. Forming a solid electrolyte layer by impregnating the capacitor element with a monomer solution and an oxidizing agent solution.
JP2000095444A 2000-03-30 2000-03-30 Solid electrolytic capacitor and its manufacturing method Pending JP2001284174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095444A JP2001284174A (en) 2000-03-30 2000-03-30 Solid electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095444A JP2001284174A (en) 2000-03-30 2000-03-30 Solid electrolytic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001284174A true JP2001284174A (en) 2001-10-12

Family

ID=18610345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095444A Pending JP2001284174A (en) 2000-03-30 2000-03-30 Solid electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001284174A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253638A (en) * 2005-02-14 2006-09-21 Saga Sanyo Industries Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007189038A (en) * 2006-01-12 2007-07-26 Fujitsu Media Device Kk Wound capacitor, and method of manufacturing same
JP2007220804A (en) * 2006-02-15 2007-08-30 Kohoku Kogyo Kk Method for manufacturing tab terminal and the tab terminal obtained thereby
JP2009164360A (en) * 2008-01-08 2009-07-23 Sanyo Electric Co Ltd Lead tab terminal for capacitor
KR101140012B1 (en) * 2005-02-14 2012-05-02 사가 산요 고교 가부시키가이샤 Solid electrolytic capacitor and method of manufacturing the same
CN107644737A (en) * 2016-07-20 2018-01-30 湖北工业株式会社 Electrolytic capacitor lead terminal, the manufacture method of electrolytic capacitor lead terminal and electrolytic capacitor
JP2018022878A (en) * 2016-07-20 2018-02-08 湖北工業株式会社 Lead wire terminal for electrolytic capacitor, method for manufacturing the same, and electrolytic capacitor
JP7495848B2 (en) 2020-08-28 2024-06-05 ニチコン株式会社 Electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065516A (en) * 1983-09-20 1985-04-15 日本ケミコン株式会社 Method of treating electrode lead for aluminum electrolytic condenser
JPS611011A (en) * 1984-06-13 1986-01-07 三洋電機株式会社 Method of producing solid electrolytic condenser
JPH04103117A (en) * 1990-08-22 1992-04-06 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH06132174A (en) * 1992-10-21 1994-05-13 Elna Co Ltd Manufacture of tab terminal for electrolytic capacitor
JPH1032146A (en) * 1996-07-16 1998-02-03 Nichicon Corp Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH10144574A (en) * 1996-11-07 1998-05-29 Sanyo Electric Co Ltd Electrolytic capacitor
JPH11135365A (en) * 1997-08-28 1999-05-21 Nippon Chemicon Corp Electrolytic capacitor
JPH11317327A (en) * 1998-05-07 1999-11-16 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065516A (en) * 1983-09-20 1985-04-15 日本ケミコン株式会社 Method of treating electrode lead for aluminum electrolytic condenser
JPS611011A (en) * 1984-06-13 1986-01-07 三洋電機株式会社 Method of producing solid electrolytic condenser
JPH04103117A (en) * 1990-08-22 1992-04-06 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH06132174A (en) * 1992-10-21 1994-05-13 Elna Co Ltd Manufacture of tab terminal for electrolytic capacitor
JPH1032146A (en) * 1996-07-16 1998-02-03 Nichicon Corp Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH10144574A (en) * 1996-11-07 1998-05-29 Sanyo Electric Co Ltd Electrolytic capacitor
JPH11135365A (en) * 1997-08-28 1999-05-21 Nippon Chemicon Corp Electrolytic capacitor
JPH11317327A (en) * 1998-05-07 1999-11-16 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253638A (en) * 2005-02-14 2006-09-21 Saga Sanyo Industries Co Ltd Solid electrolytic capacitor and its manufacturing method
KR101140012B1 (en) * 2005-02-14 2012-05-02 사가 산요 고교 가부시키가이샤 Solid electrolytic capacitor and method of manufacturing the same
JP2007189038A (en) * 2006-01-12 2007-07-26 Fujitsu Media Device Kk Wound capacitor, and method of manufacturing same
JP2007220804A (en) * 2006-02-15 2007-08-30 Kohoku Kogyo Kk Method for manufacturing tab terminal and the tab terminal obtained thereby
JP4732181B2 (en) * 2006-02-15 2011-07-27 湖北工業株式会社 Tab terminal manufacturing method and tab terminal obtained by the method
JP2009164360A (en) * 2008-01-08 2009-07-23 Sanyo Electric Co Ltd Lead tab terminal for capacitor
CN107644737A (en) * 2016-07-20 2018-01-30 湖北工业株式会社 Electrolytic capacitor lead terminal, the manufacture method of electrolytic capacitor lead terminal and electrolytic capacitor
JP2018022878A (en) * 2016-07-20 2018-02-08 湖北工業株式会社 Lead wire terminal for electrolytic capacitor, method for manufacturing the same, and electrolytic capacitor
CN107644737B (en) * 2016-07-20 2022-07-19 湖北工业株式会社 Lead terminal for electrolytic capacitor, method for manufacturing same, and electrolytic capacitor
JP7495848B2 (en) 2020-08-28 2024-06-05 ニチコン株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2000138133A (en) Solid electrolytic capacitor and its manufacture
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4568947B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001102259A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001284175A (en) Solid electrolytic capacitor and its manufacturing method
JP2001284181A (en) Solid electrolytic capacitor
JP5117655B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001257131A (en) Manufacturing method of solid electrolytic capacitor
JP4560875B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517