JPH10340831A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH10340831A
JPH10340831A JP16523297A JP16523297A JPH10340831A JP H10340831 A JPH10340831 A JP H10340831A JP 16523297 A JP16523297 A JP 16523297A JP 16523297 A JP16523297 A JP 16523297A JP H10340831 A JPH10340831 A JP H10340831A
Authority
JP
Japan
Prior art keywords
electrode foil
solvent
polymerization reaction
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16523297A
Other languages
Japanese (ja)
Inventor
Atsuko Kaneko
敦子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP16523297A priority Critical patent/JPH10340831A/en
Publication of JPH10340831A publication Critical patent/JPH10340831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing the solid electrolytic capacitor of a large capacitance with superior electrical characteristics by generating a fine and uniform solid electrolyte layer composed of a conductive high polymer inside of a wound capacitor element. SOLUTION: After a capacitor element 10, for which an anode electrode foil 1 and a cathode electrode foil 2 are wound via separators 3 is impregnated with 3,4-ethylene dioxithiophene and an oxidant in a solvent, polyethylene dioxithiophene is generated by a chemical polymerization reaction with at least two more times of heat processings. By executing at least two or more times of the heat processings for a fixed time, the chemical polymerization reaction can be accelerated stepwise, the solid electrolyte layer is generated inside the etching pit of the anode electrode foil 1 and the residuals of the solvent are removed efficiently as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解コンデ
ンサの製造方法にかかり、特に導電性高分子を電解質に
用いた固体電解コンデンサに関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly, to a solid electrolytic capacitor using a conductive polymer as an electrolyte.

【0002】[0002]

【従来の技術】固体電解コンデンサに用いる固体電解質
としては、二酸化マンガンや7、7、8、8−テトラシ
アノキノジメタン(TCNQ)錯体が知られている。
2. Description of the Related Art Manganese dioxide and a complex of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are known as solid electrolytes used for solid electrolytic capacitors.

【0003】二酸化マンガンからなる固体電解質層は、
硝酸マンガン水溶液に、タンタルの焼結体からなる陽極
素子を浸漬し、300℃〜400℃前後の温度で熱分解
して生成している。このような固体電解質層を用いたコ
ンデンサでは、硝酸マンガンの熱分解の際に酸化皮膜層
が破損し易く、そのため漏れ電流が大きくなる傾向が見
られ、また二酸化マンガン自体の比抵抗も高いためにイ
ンピーダンス特性において充分満足できる特性を得るこ
とは困難であった。また熱処理によるリード線の損傷も
あり、後工程として接続用の外部端子を別途設ける必要
があった。
A solid electrolyte layer made of manganese dioxide is
The anode element made of a sintered body of tantalum is immersed in an aqueous solution of manganese nitrate, and is produced by thermal decomposition at a temperature of about 300 to 400 ° C. In a capacitor using such a solid electrolyte layer, the oxide film layer is easily damaged during the thermal decomposition of manganese nitrate, which tends to increase the leakage current, and the specific resistance of manganese dioxide itself is high. It has been difficult to obtain sufficiently satisfactory impedance characteristics. In addition, the lead wire was damaged by the heat treatment, and it was necessary to separately provide an external terminal for connection as a later process.

【0004】TCNQ錯体を用いた固体電解コンデンサ
としては、特開昭58−191414号公報に記載され
たものなどが知られており、TCNQ錯体を熱溶融して
陽極電極に浸漬、塗布して固体電解質層を形成してい
る。このTCNQ錯体は、導電性が高く、周波数特性や
温度特性において良好な結果を得ることができる。しか
し、TCNQ錯体は溶融したのち短時間で絶縁体に移行
する性質があるため、コンデンサの製造過程における温
度管理が困難であるほか、TCNQ錯体自体が耐熱性に
欠けるため、プリント基板に実装する際の半田熱により
著しい特性変動が見られる。
As a solid electrolytic capacitor using a TCNQ complex, one described in Japanese Patent Application Laid-Open No. 58-191414 is known. An electrolyte layer is formed. This TCNQ complex has high conductivity and can obtain good results in frequency characteristics and temperature characteristics. However, since the TCNQ complex has the property of transferring to an insulator in a short time after being melted, it is difficult to control the temperature in the manufacturing process of the capacitor, and since the TCNQ complex itself lacks heat resistance, it is difficult to mount it on a printed circuit board. A remarkable characteristic change is seen by the solder heat.

【0005】これら二酸化マンガンやTCNQ錯体の持
つ不都合を解決するため、ポリピロール等の導電性高分
子を固体電解質層として用いることが試みられている。
ポリピロール、ポリチオフェンに代表される導電性高分
子は、主に化学的酸化重合法(化学重合)や電解酸化重
合法(電解重合)により生成される。
[0005] In order to solve the disadvantages of these manganese dioxide and TCNQ complexes, attempts have been made to use a conductive polymer such as polypyrrole as a solid electrolyte layer.
A conductive polymer represented by polypyrrole and polythiophene is mainly produced by a chemical oxidation polymerization method (chemical polymerization) or an electrolytic oxidation polymerization method (electrolytic polymerization).

【0006】電解重合により固体電解質を生成する場
合、電圧の印加が必要であり、そのため表面に絶縁体で
ある酸化皮膜層が形成された電解コンデンサ用の陽極電
極に適用することは困難で、酸化皮膜層の表面に、予め
導電性のプレコート層、例えば酸化剤を用いて化学重合
した導電性高分子膜をプレコート層とし、その後このプ
レコート層を電極として電解重合による電解質層を形成
する方法などが提案されている(特開昭63−1733
13号公報、特開昭63−158829号公報:二酸化
マンガンをプレコート層とする)。しかし、予めプレコ
ート層を形成するため製造工程が煩雑となるほか、電解
重合では、陽極電極の被皮膜面に配置した重合用の外部
電極の近傍から固体電解質層が生成されるため、広範囲
にわたって均一な厚さの導電性高分子膜を連続的に生成
することは非常に困難であった。
When a solid electrolyte is produced by electrolytic polymerization, it is necessary to apply a voltage. Therefore, it is difficult to apply the solid electrolyte to an anode electrode for an electrolytic capacitor having an oxide film layer as an insulator formed on the surface. On the surface of the coating layer, there is a method in which a conductive precoat layer, for example, a conductive polymer film chemically polymerized using an oxidizing agent is used as a precoat layer, and then the electrolyte layer is formed by electrolytic polymerization using the precoat layer as an electrode. It has been proposed (JP-A-63-1733).
No. 13, JP-A-63-158829: manganese dioxide is used as a precoat layer). However, the manufacturing process is complicated because the pre-coat layer is formed in advance, and in the electrolytic polymerization, a solid electrolyte layer is generated from the vicinity of the polymerization external electrode arranged on the coating surface of the anode electrode, so that it is uniform over a wide range. It has been very difficult to continuously form a conductive polymer film having a large thickness.

【0007】そこで、箔状の陽極電極及び陰極電極を、
セパレータを介して巻き取って、いわゆる巻回型のコン
デンサ素子を形成し、このコンデンサ素子にピロール等
のモノマー溶液と酸化剤を浸漬して化学重合のみにより
生成した導電性高分子膜からなる電解質層を形成するこ
とを試みた。このような巻回型のコンデンサ素子は、ア
ルミニウム電解コンデンサにおいて周知であるが、導電
性高分子層をセパレータで保持することで電解重合の煩
雑さを回避するとともに、併せて表面積の大きい箔状の
電極により容量を拡大させることが期待された。更に、
巻回型のコンデンサ素子を用いることで、両極の電極と
セパレータが一定の緊締力で保持され、両極の電極と電
解質層との密着性に貢献することが期待された。
Therefore, a foil-shaped anode electrode and a cathode electrode are
An electrolyte layer consisting of a conductive polymer film formed only by chemical polymerization by immersing a monomer solution such as pyrrole and an oxidizing agent into this capacitor element by winding it up through a separator to form a so-called winding type capacitor element Tried to form Such a wound-type capacitor element is well known in an aluminum electrolytic capacitor, but by avoiding the complexity of electrolytic polymerization by holding a conductive polymer layer with a separator, a foil-shaped capacitor having a large surface area. It was expected that the capacity would be expanded by the electrodes. Furthermore,
It was expected that the use of a wound-type capacitor element would maintain both electrodes and the separator with a constant tightening force and contribute to the adhesion between the electrodes and the electrolyte layer.

【0008】[0008]

【発明が解決しようとする課題】しかし、モノマー溶液
と酸化剤とを混合した混合溶液をコンデンサ素子に含浸
したところ、コンデンサ素子の内部にまで固体電解質層
が形成されておらず、期待された電気的特性を得ること
はできないことが判明した。
However, when a capacitor element is impregnated with a mixed solution obtained by mixing a monomer solution and an oxidizing agent, a solid electrolyte layer is not formed even inside the capacitor element, and the expected electric power is not obtained. It turned out that the characteristic could not be obtained.

【0009】そこで、モノマー溶液と酸化剤を別々に含
浸したり、反応の際の溶液の重合温度を低くしたり、あ
るいは重合反応速度が緩やかなポリエチレンジオキシチ
オフェンを用いると、ある程度良好な電気的特性が得ら
れたが、耐圧特性だけは不充分であり、またESR特性
も満足できるものではないという問題点があった。その
原因は、これらの手段によっても、コンデンサ素子の端
面付近に生成された固体電解質層がそれ以降の溶液の浸
透を妨害してその内部にまで充分な溶液が浸透しておら
ず、結果として緻密で均一な固体電解質層を形成するに
は至っていないことが原因と考えられた。また、低温で
化学重合をする場合、厳重な温度制御が必要であるほ
か、製造装置が複雑になり、結果として製品コストが高
くなってしまう問題点もあった。
[0009] Therefore, if a monomer solution and an oxidizing agent are separately impregnated, the polymerization temperature of the solution during the reaction is lowered, or polyethylene dioxythiophene having a slow polymerization reaction rate is used, it is possible to obtain a good electrical conductivity. Although the characteristics were obtained, there was a problem that only the withstand voltage characteristics were insufficient and the ESR characteristics were not satisfactory. The cause is that even with these means, the solid electrolyte layer formed near the end face of the capacitor element hinders the subsequent penetration of the solution, so that a sufficient solution has not penetrated into the inside, and as a result, It was considered that the reason was that a uniform solid electrolyte layer was not formed. In addition, when chemical polymerization is carried out at a low temperature, strict temperature control is required, and the production apparatus becomes complicated, resulting in an increase in product cost.

【0010】本発明の課題は、ポリエチレンジオキシチ
オフェンの重合反応速度が緩やかなことに着目し、巻回
型のコンデンサ素子の内部に緻密で均一な導電性高分子
からなる固体電解質層を生成し、電気的特性に優れかつ
大容量の固体電解コンデンサを製造する方法を提供する
ことにある。
An object of the present invention is to focus on the fact that the polymerization reaction rate of polyethylenedioxythiophene is slow, and to form a solid electrolyte layer made of a dense and uniform conductive polymer inside a wound-type capacitor element. Another object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor having excellent electric characteristics and a large capacity.

【0011】[0011]

【課題を解決するための手段】この発明は、固体電解コ
ンデンサの製造方法において、陽極電極箔と陰極電極箔
とをセパレータを介して巻回したコンデンサ素子に3,
4−エチレンジオキシチオフェンと溶媒中の酸化剤とを
含浸した後、少なくとも2回以上の熱処理による化学重
合反応でポリエチレンジオキシチオフェンを生成するこ
とを特徴としている。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, comprising: a capacitor element having an anode electrode foil and a cathode electrode foil wound around a separator;
After impregnating 4-ethylenedioxythiophene and an oxidizing agent in a solvent, polyethylenedioxythiophene is produced by a chemical polymerization reaction by at least two or more heat treatments.

【0012】この熱処理による2回以上の化学重合反応
は、必要に応じて異なる温度に設定してもよく、また異
なる温度であって順次高温となるよう設定してもよい。
また、化学重合反応での1回目の熱処理の温度が、少な
くとも前記溶媒の沸点よりも低く、かつ2回目以降の熱
処理の温度が前記溶媒の沸点よりも高く設定するとより
好適である。
The two or more chemical polymerization reactions by this heat treatment may be set at different temperatures as necessary, or may be set at different temperatures and successively higher temperatures.
Further, it is more preferable that the temperature of the first heat treatment in the chemical polymerization reaction is set at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is set higher than the boiling point of the solvent.

【0013】更に、前記酸化剤の溶媒がブタノールであ
る場合、化学重合反応での1回目の熱処理の温度が20
℃ないし90℃、2回目以降の熱処理の温度が120℃
ないし180℃に設定すると更に好適である。
Further, when the solvent of the oxidizing agent is butanol, the temperature of the first heat treatment in the chemical polymerization reaction is 20
℃ ~ 90 ℃, the temperature of the second and subsequent heat treatment is 120 ℃
It is more preferable to set the temperature to 180 ° C.

【0014】また、それぞれの化学重合反応において
は、少なくとも30分以上熱処理を施すとよい。
In each of the chemical polymerization reactions, it is preferable to perform a heat treatment for at least 30 minutes.

【0015】[0015]

【発明の実施の形態】次いで、本発明の実施の形態を図
面を用いて説明する。図1は、本発明の固体電解コンデ
ンサの製造方法では、アルミニウム等の弁作用金属から
なり表面に酸化皮膜層が形成された陽極電極箔1と、陰
極電極箔2とを、ビニロン繊維等を主体とする不織布か
らなるセパレータ3を介して巻回してコンデンサ素子1
0を形成している。そして、このコンデンサ素子10に
3,4−エチレンジオキシチオフェンと溶媒中の酸化剤
とを含浸し、コンデンサ素子10中での化学重合反応に
より生成したポリエチレンジオキシチオフェンを固体電
解質層5としてセパレータ3で保持している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows that in the method for manufacturing a solid electrolytic capacitor of the present invention, an anode electrode foil 1 made of a valve metal such as aluminum and having an oxide film layer formed on its surface and a cathode electrode foil 2 are mainly made of vinylon fiber or the like. Wound around a separator 3 made of non-woven fabric
0 is formed. Then, the capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent, and the polyethylenedioxythiophene generated by the chemical polymerization reaction in the capacitor element 10 is used as the solid electrolyte layer 5 as the separator 3. Holding in.

【0016】陽極電極箔1は、アルミニウム等の弁作用
金属からなり、図2に示すように、その表面を、塩化物
水溶液中での電気化学的なエッチング処理により粗面化
して多数のエッチングピット8を形成している。更にこ
の陽極電極箔1の表面には、ホウ酸アンモニウム等の水
溶液中で電圧を印加して誘電体となる酸化皮膜層4を形
成している。陰極電極箔2は、陽極電極箔1と同様にア
ルミニウム等からなり、表面にエッチング処理のみが施
されているものを用いる。
The anode electrode foil 1 is made of a valve metal such as aluminum. As shown in FIG. 2, the surface of the anode electrode foil 1 is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits. 8 are formed. Further, on the surface of the anode electrode foil 1, a voltage is applied in an aqueous solution of ammonium borate or the like to form an oxide film layer 4 serving as a dielectric. The cathode electrode foil 2 is made of aluminum or the like, similarly to the anode electrode foil 1, and has a surface subjected to only etching treatment.

【0017】陽極電極箔1及び陰極電極箔2にはそれぞ
れの電極を外部に接続するためのリード線6、7が、ス
テッチ、超音波溶接等の公知の手段により接続されてい
る。このリード線6、7は、アルミニウム等からなり、
陽極電極箔1、陰極電極箔2との接続部と外部との電気
的な接続を担う外部接続部からなり、巻回したコンデン
サ素子10の端面から導出される。
Lead wires 6 and 7 for connecting the respective electrodes to the outside are connected to the anode electrode foil 1 and the cathode electrode foil 2 by known means such as stitching and ultrasonic welding. The lead wires 6 and 7 are made of aluminum or the like,
It comprises an external connection portion for electrically connecting the connection portion between the anode electrode foil 1 and the cathode electrode foil 2 and the outside, and is led out from the end face of the wound capacitor element 10.

【0018】セパレータ3は、ビニロン繊維を主体とす
る不織布で、この他にビニロン繊維と、ガラス繊維、ポ
リエステル繊維、ナイロン繊維、レーヨン繊維、マニラ
紙等の紙繊維などとを混抄した不織布を用いることもで
きる。なお、上記不織布は、坪量が6〜36g/m2
繊維径5〜30μm、厚さ30〜150μm、密度0.
2〜0.5g/m3 のものを用いている。
The separator 3 is a nonwoven fabric mainly composed of vinylon fibers, and a nonwoven fabric obtained by mixing vinylon fibers with paper fibers such as glass fibers, polyester fibers, nylon fibers, rayon fibers, and manila paper. Can also. The nonwoven fabric has a basis weight of 6 to 36 g / m 2 ,
Fiber diameter 5-30 μm, thickness 30-150 μm, density 0.
Those having a density of 2 to 0.5 g / m 3 are used.

【0019】コンデンサ素子10は、上記の陽極電極箔
1と陰極電極箔2とを、セパレータ3を間に挟むように
して巻き取って形成している。両極電極箔1、2の寸法
は、製造する固体電解コンデンサの仕様に応じて任意で
あり、セパレータ3も両極電極箔1、2の寸法に応じて
これよりやや大きい幅寸法のものを用いればよい。
The capacitor element 10 is formed by winding the above-mentioned anode electrode foil 1 and cathode electrode foil 2 with the separator 3 interposed therebetween. The dimensions of the bipolar electrode foils 1 and 2 are arbitrary according to the specifications of the solid electrolytic capacitor to be manufactured, and the separator 3 may have a width slightly larger than this according to the dimensions of the bipolar electrode foils 1 and 2. .

【0020】モノマーである3,4−エチレンジオキシ
チオフェンは、特開平2−15611号公報等により開
示された公知の製法により得ることができる。また、酸
化剤は、溶媒であるブタノールに溶解したp−トルエン
スルホン酸第二鉄を用いており、酸化剤はブタノールに
対して40重量%を超える濃度であると良好な結果が得
られる。また、この酸化剤におけるブタノールとp−ト
ルエンスルホン酸第二鉄の比率は任意でよいが、配合比
は1:3ないし1:15の範囲が好適である。
3,4-Ethylenedioxythiophene as a monomer can be obtained by a known production method disclosed in, for example, JP-A-2-15611. Further, as the oxidizing agent, ferric p-toluenesulfonate dissolved in butanol as a solvent is used. When the oxidizing agent has a concentration of more than 40% by weight based on butanol, good results can be obtained. The ratio of butanol to ferric p-toluenesulfonate in the oxidizing agent may be arbitrary, but the mixing ratio is preferably in the range of 1: 3 to 1:15.

【0021】そして、コンデンサ素子10に、3,4−
エチレンジオキシチオフェンと溶媒中の酸化剤とを含浸
し、このコンデンサ素子10に少なくとも2回以上の熱
処理を施してコンデンサ素子10中での化学重合反応に
よるポリエチレンジオキシチオフェンを生成する。
Then, 3,4-
The capacitor element 10 is impregnated with ethylene dioxythiophene and an oxidizing agent in a solvent, and is subjected to at least two heat treatments to produce polyethylene dioxythiophene by a chemical polymerization reaction in the capacitor element 10.

【0022】通常、3,4−エチレンジオキシチオフェ
ンと溶媒中の酸化剤とを混合した場合、室温中において
も化学重合反応は進行してポリエチレンジオキシチオフ
ェンが生成される。しかし、化学重合反応が長時間に及
んで溶媒が除去されてしまうと重合反応は進行しなくな
り、十分な重合度を得ることができなくなるばかりか、
コンデンサ素子10内の溶媒の残留物が多くなり、各種
の電気特性に悪影響を及ぼしてしまう。一方、熱処理を
施すことで化学重合反応を促進することはできるもの
の、反応速度が速くなるために陽極電極箔1に形成され
たエッチングピット8内部への重合が進行する前に溶媒
が除去されてしまい、結果として緻密で均一な固体電解
質を生成することができなくなる。
Usually, when 3,4-ethylenedioxythiophene is mixed with an oxidizing agent in a solvent, the chemical polymerization reaction proceeds even at room temperature to produce polyethylenedioxythiophene. However, when the solvent is removed for a long time in the chemical polymerization reaction, the polymerization reaction does not proceed, and not only can not obtain a sufficient degree of polymerization,
Residue of the solvent in the capacitor element 10 increases and adversely affects various electric characteristics. On the other hand, although the chemical polymerization reaction can be promoted by performing the heat treatment, the solvent is removed before the polymerization proceeds into the etching pits 8 formed on the anode electrode foil 1 because the reaction speed is increased. As a result, a dense and uniform solid electrolyte cannot be produced.

【0023】そこで、この発明のように、少なくとも2
回以上の熱処理を一定時間施して化学重合反応を段階的
に促進させることで、陽極電極箔1のエッチングピット
8内部にまで固体電解質層を生成するとともに、溶媒の
残留物を効率的に除去することができるようになる。
Therefore, as in the present invention, at least 2
By performing heat treatment more than once for a certain period of time to promote the chemical polymerization reaction in a stepwise manner, a solid electrolyte layer is formed even inside the etching pit 8 of the anode electrode foil 1 and the solvent residue is efficiently removed. Will be able to do it.

【0024】なお、熱処理の温度および時間は、溶媒の
種類、工程時間等により任意だが、必要に応じて異なる
温度に設定してもよく、また順次高温となるよう設定し
てもよい。この場合、順次段階的に温度を上げることに
なるが、暫時温度を上げてもよい。また、化学重合反応
での1回目の熱処理の温度が、少なくとも前記溶媒の沸
点よりも低く、かつ2回目以降の熱処理の温度が前記溶
媒の沸点よりも高く設定するとより好適である。特に、
前記酸化剤の溶媒がブタノールである場合は、実験の結
果、1回目の熱処理の温度を20℃ないし90℃とし、
2回目以降の熱処理の温度を120℃ないし180℃が
良好な特性を得ることができた。
The temperature and time of the heat treatment are optional depending on the type of the solvent, the process time, and the like, but may be set to different temperatures as needed, or may be set so as to become higher sequentially. In this case, the temperature is increased step by step, but the temperature may be increased temporarily. More preferably, the temperature of the first heat treatment in the chemical polymerization reaction is set at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is set higher than the boiling point of the solvent. Especially,
When the solvent of the oxidizing agent is butanol, as a result of the experiment, the temperature of the first heat treatment was set to 20 ° C. to 90 ° C.,
Good characteristics could be obtained when the temperature of the second and subsequent heat treatments was 120 ° C. to 180 ° C.

【0025】[0025]

【実施例】次に、発明における固体電解コンデンサの製
造方法を具体的に説明する。陽極電極箔1及び陰極電極
箔2は、弁作用金属、例えばアルミニウム、タンタルか
らなり、その表面には予めエッチング処理が施されて表
面積が拡大されている。陽極電極箔1については、更に
化成処理が施され、表面に酸化アルミニウムからなる酸
化皮膜層4が形成されている。この陽極電極箔1及び陰
極電極箔2を、ビニロン繊維を主体とする不織布からな
るセパレータ3を介して巻回し、コンデンサ素子10を
得る。
Next, a method for manufacturing a solid electrolytic capacitor according to the present invention will be specifically described. The anode electrode foil 1 and the cathode electrode foil 2 are made of a valve metal, for example, aluminum or tantalum, and the surfaces thereof have been subjected to an etching treatment in advance to increase the surface area. The anode electrode foil 1 is further subjected to a chemical conversion treatment to form an oxide film layer 4 made of aluminum oxide on the surface. The anode electrode foil 1 and the cathode electrode foil 2 are wound via a separator 3 made of a non-woven fabric mainly composed of vinylon fibers to obtain a capacitor element 10.

【0030】この実施例において、コンデンサ素子10
は、径寸法が4φ、縦寸法が7mm、また定格電圧20
WV、定格静電容量10μFのものを用いている。なお
コンデンサ素子10の陽極電極箔1、陰極電極箔2には
それぞれリード線6、7が電気的に接続され、コンデン
サ素子10の端面から突出している。
In this embodiment, the capacitor element 10
Has a diameter of 4φ, a vertical dimension of 7 mm, and a rated voltage of 20
It has a WV and a rated capacitance of 10 μF. Lead wires 6 and 7 are electrically connected to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 10, respectively, and project from the end face of the capacitor element 10.

【0031】このコンデンサ素子10に、3,4−エチ
レンジオキシチオフェンと酸化剤とを含浸する。酸化剤
は、ブタノールに対して52重量%の配分で溶解したp
−トルエンスルホン酸第二鉄を用い、3,4−エチレン
ジオキシチオフェンに対して酸化剤を1:5で含浸し
た。
This capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. The oxidizing agent contained p dissolved in a proportion of 52% by weight with respect to butanol.
Using ferric toluenesulfonate, 3,4-ethylenedioxythiophene was impregnated with an oxidizing agent at a ratio of 1: 5.

【0032】次いで、3,4−エチレンジオキシチオフ
ェンと酸化剤とを含浸したコンデンサ素子10に、60
℃で1時間の熱処理を施して化学重合反応を促進させ
る。この時の熱処理では、緩やかに化学重合反応は進
み、陽極電極箔1のエッチングピット8の内部にポリマ
ーであるポリエチレンジオキシチオフェンが生成され
る。一方、溶媒であるブタノールは完全には除去され
ず、したがって、以降の熱処理でも化学重合反応は進行
することになる。次いで、150℃で1時間の熱処理を
施し、化学重合反応を更に促進させて重合度を上げると
ともに、溶媒を除去し、残留物による電気的特性への悪
影響を排除する。
Next, the capacitor element 10 impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent
Heat treatment at 1 ° C. for 1 hour accelerates the chemical polymerization reaction. In the heat treatment at this time, the chemical polymerization reaction proceeds slowly, and polyethylene dioxythiophene as a polymer is generated inside the etching pits 8 of the anode electrode foil 1. On the other hand, butanol as a solvent is not completely removed, and therefore, the chemical polymerization reaction proceeds even in the subsequent heat treatment. Next, heat treatment is performed at 150 ° C. for 1 hour to further promote the chemical polymerization reaction to increase the degree of polymerization, and remove the solvent to eliminate the adverse effect of the residue on the electrical characteristics.

【0033】このようにして形成された、陽極電極箔1
と陰極電極箔2との間に介在したセパレータ3が固体電
解質層5を保持したコンデンサ素子10を、通常のエー
ジング工程等の後工程を施した後、外装樹脂層で覆い、
あるいは外装ケースに収納して固体電解コンデンサを形
成する。
The anode electrode foil 1 thus formed
The capacitor element 10 in which the solid electrolyte layer 5 is held by the separator 3 interposed between the capacitor element 10 and the cathode electrode foil 2 is subjected to a post-process such as a normal aging process, and then covered with an exterior resin layer.
Alternatively, it is housed in an outer case to form a solid electrolytic capacitor.

【0034】次に、実施例による固体電解コンデンサに
おいて、熱処理温度の条件による特性の変化を以下に示
す。
Next, in the solid electrolytic capacitor according to the embodiment, changes in characteristics depending on the conditions of the heat treatment temperature will be described below.

【0035】表1から明らかなように、少なくとも2回
の熱処理により、ESR特性において良好な特性が得ら
れ、陽極電極箔のエッチングピットの内部にも緻密で均
一な固体電解質が形成されていることが理解される。
As is clear from Table 1, at least two heat treatments provide good ESR characteristics, and a dense and uniform solid electrolyte is formed inside the etching pits of the anode electrode foil. Is understood.

【0036】[0036]

【発明の効果】この発明は、固体電解コンデンサの製造
方法において、陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に3,4−エチレンジ
オキシチオフェンと溶媒中の酸化剤とを含浸した後、少
なくとも2回以上の熱処理による段階的な化学重合反応
の促進によりポリエチレンジオキシチオフェンを生成す
るので、エッチングピット内部にまで緻密で均一な固体
電解質層を形成することができ、かつ溶媒の残留物も少
なくなるので、ESR特性等の電気的特性が向上すると
ともに、工程時間を短縮することができる。
According to the present invention, there is provided a method for manufacturing a solid electrolytic capacitor, comprising: a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator; and 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent. After the impregnation with the above, since a stepwise chemical polymerization reaction is promoted by at least two or more heat treatments to generate polyethylene dioxythiophene, a dense and uniform solid electrolyte layer can be formed even inside the etching pit, In addition, since the solvent residue is reduced, the electric characteristics such as the ESR characteristics are improved, and the process time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図2】本発明で用いる陽極電極箔の概念図である。FIG. 2 is a conceptual diagram of an anode electrode foil used in the present invention.

【符号の説明】[Explanation of symbols]

1 陽極電極箔 2 陰極電極箔 3 セパレータ 4 酸化皮膜層 5 固体電解質層 6、7 リード線 8 エッチングピット 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4 Oxide film layer 5 Solid electrolyte layer 6, 7 Lead wire 8 Etching pit 10 Capacitor element

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年8月25日[Submission date] August 25, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で用いるコンデンサ素子の分解斜視図
である。
FIG. 1 is an exploded perspective view of a capacitor element used in the present invention.

【図2】 本発明で用いる陽極電極箔の概念図である。FIG. 2 is a conceptual diagram of an anode electrode foil used in the present invention.

【符号の説明】 1 陽極電極箔 2 陰極電極箔 3 セパレータ 4 酸化皮膜層 5 固体電解質層 6、7 リード線 8 エッチングピット 10 コンデンサ素子[Description of Signs] 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4 Oxide film layer 5 Solid electrolyte layer 6, 7 Lead wire 8 Etching pit 10 Capacitor element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に3,4−エチレンジ
オキシチオフェンと溶媒中の酸化剤とを含浸した後、少
なくとも2回以上の熱処理による化学重合反応でポリエ
チレンジオキシチオフェンを生成する固体電解コンデン
サの製造方法。
1. A capacitor element in which an anode electrode foil and a cathode electrode foil are wound with a separator interposed therebetween is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent, and then heat-treated at least twice. Of producing a solid electrolytic capacitor that produces polyethylenedioxythiophene by a chemical polymerization reaction using the same.
【請求項2】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に3,4−エチレンジ
オキシチオフェンと溶媒中の酸化剤とを含浸した後、異
なる温度で少なくとも2回以上の熱処理による化学重合
反応でポリエチレンジオキシチオフェンを生成する固体
電解コンデンサの製造方法。
2. A capacitor element in which an anode electrode foil and a cathode electrode foil are wound with a separator interposed therebetween is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent at least twice at different temperatures. A method for producing a solid electrolytic capacitor that produces polyethylene dioxythiophene by a chemical polymerization reaction by the above heat treatment.
【請求項3】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に3,4−エチレンジ
オキシチオフェンと溶媒中の酸化剤とを含浸した後、異
なる温度であって順次高温となる少なくとも2回以上の
熱処理による化学重合反応でポリエチレンジオキシチオ
フェンを生成する固体電解コンデンサの製造方法。
3. A capacitor element in which an anode electrode foil and a cathode electrode foil are wound with a separator interposed therebetween is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent. A method for producing a solid electrolytic capacitor that produces polyethylene dioxythiophene by a chemical polymerization reaction by at least two or more heat treatments at a high temperature.
【請求項4】 化学重合反応での1回目の熱処理の温度
が、少なくとも前記溶媒の沸点よりも低く、かつ2回目
以降の熱処理の温度が前記溶媒の沸点よりも高いことを
特徴とする請求項1ないし請求項3記載の固体電解コン
デンサの製造方法。
4. The method according to claim 1, wherein the temperature of the first heat treatment in the chemical polymerization reaction is at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is higher than the boiling point of the solvent. The method for manufacturing a solid electrolytic capacitor according to any one of claims 1 to 3.
【請求項5】 溶媒がブタノールであるとともに、化学
重合反応での1回目の熱処理の温度が20℃ないし90
℃、2回目以降の熱処理の温度が120℃ないし180
℃である請求項1ないし請求項3記載の固体電解コンデ
ンサの製造方法。
5. The method according to claim 1, wherein the solvent is butanol and the temperature of the first heat treatment in the chemical polymerization reaction is from 20.degree.
℃, the temperature of the second and subsequent heat treatment is 120 ℃ to 180 ℃
4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the temperature is ℃.
【請求項6】 それぞれの熱処理を少なくとも30分以
上施す請求項1ないし請求項3記載の固体電解コンデン
サの製造方法。
6. The method for producing a solid electrolytic capacitor according to claim 1, wherein each heat treatment is performed for at least 30 minutes.
JP16523297A 1997-06-06 1997-06-06 Manufacture of solid electrolytic capacitor Pending JPH10340831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16523297A JPH10340831A (en) 1997-06-06 1997-06-06 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16523297A JPH10340831A (en) 1997-06-06 1997-06-06 Manufacture of solid electrolytic capacitor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001065013A Division JP2001237145A (en) 2001-03-08 2001-03-08 Manufacturing method of solid-state electrolytic capacitor
JP2008010073A Division JP2008135776A (en) 2008-01-21 2008-01-21 Method of manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH10340831A true JPH10340831A (en) 1998-12-22

Family

ID=15808377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16523297A Pending JPH10340831A (en) 1997-06-06 1997-06-06 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH10340831A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195758A (en) * 1998-12-25 2000-07-14 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
WO2002015208A1 (en) * 2000-08-10 2002-02-21 Showa Denko K.K. Niobium powder, sinter thereof, and capacitor employing the same
JP2002299173A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2003109852A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
US6652619B2 (en) 2000-08-10 2003-11-25 Showa Denko K.K. Niobium powder, sintered body thereof, and capacitor using the same
JP2007031488A (en) * 2005-07-22 2007-02-08 Showa Denko Kk Method for producing composite material
JP2008172277A (en) * 2008-03-31 2008-07-24 Nippon Chemicon Corp Solid-state electrolytic capacitor
JP2009130256A (en) * 2007-11-27 2009-06-11 Nichicon Corp Method of manufacturing solid electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0266923A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH02159714A (en) * 1988-12-14 1990-06-19 Elna Co Ltd Solid electrolytic capacitor
JPH0346214A (en) * 1989-07-14 1991-02-27 Kao Corp Manufacture of solid electrolytic capacitor
JPH05175082A (en) * 1991-12-20 1993-07-13 Asahi Glass Co Ltd Manufacture of solid electrolytic capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0266923A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH02159714A (en) * 1988-12-14 1990-06-19 Elna Co Ltd Solid electrolytic capacitor
JPH0346214A (en) * 1989-07-14 1991-02-27 Kao Corp Manufacture of solid electrolytic capacitor
JPH05175082A (en) * 1991-12-20 1993-07-13 Asahi Glass Co Ltd Manufacture of solid electrolytic capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195758A (en) * 1998-12-25 2000-07-14 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
WO2002015208A1 (en) * 2000-08-10 2002-02-21 Showa Denko K.K. Niobium powder, sinter thereof, and capacitor employing the same
US6652619B2 (en) 2000-08-10 2003-11-25 Showa Denko K.K. Niobium powder, sintered body thereof, and capacitor using the same
US7594947B2 (en) 2000-08-10 2009-09-29 Showa Denko K.K. Niobium powder, sintered body thereof, and capacitor using the same
JP2002299173A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2003109852A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2007031488A (en) * 2005-07-22 2007-02-08 Showa Denko Kk Method for producing composite material
JP4720338B2 (en) * 2005-07-22 2011-07-13 株式会社村田製作所 Manufacturing method of composite material
JP2009130256A (en) * 2007-11-27 2009-06-11 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2008172277A (en) * 2008-03-31 2008-07-24 Nippon Chemicon Corp Solid-state electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4486636B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10284351A (en) Solid-state electrolytic capacitor and manufacture of the same
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JP4642257B2 (en) Solid electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH0423411B2 (en)
JPH1187178A (en) Manufacture of solid electrolytic capacitor
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JP2008135776A (en) Method of manufacturing solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19970825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080428

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080530