JP2007031488A - Method for producing composite material - Google Patents

Method for producing composite material Download PDF

Info

Publication number
JP2007031488A
JP2007031488A JP2005213104A JP2005213104A JP2007031488A JP 2007031488 A JP2007031488 A JP 2007031488A JP 2005213104 A JP2005213104 A JP 2005213104A JP 2005213104 A JP2005213104 A JP 2005213104A JP 2007031488 A JP2007031488 A JP 2007031488A
Authority
JP
Japan
Prior art keywords
composite material
immersion
monomer
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213104A
Other languages
Japanese (ja)
Other versions
JP4720338B2 (en
Inventor
Takenori Umikawa
武則 海川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005213104A priority Critical patent/JP4720338B2/en
Publication of JP2007031488A publication Critical patent/JP2007031488A/en
Application granted granted Critical
Publication of JP4720338B2 publication Critical patent/JP4720338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composite material with reduced fluctuation in thickness of a polymer layer, in particular to provide a method for producing a stacked solid electrolytic capacitor with reduced fluctuation of film thickness of elements, low in happening of fault such as element deviation in stacking and hard to produce an unsealed product in sealing. <P>SOLUTION: The invention relates to the method for producing the composite material by repeating a process attaching a liquid containing a monomer on a plurality of substrates and a process sequentially soaking the substrates in a liquid containing an oxidant, wherein the sequence of soaking the substrate attached with liquid containing the monomer is changed and repeated. The invention relates to the method for producing the stacked solid electrolytic capacitor which utilizes above method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材表面に重合体層を有する複合材料の製造方法、特に重合体層として導電性重合体を有する固体電解コンデンサ素子の製造方法及びこの方法により製造されるコンデンサ素子、それを用いたコンデンサ等に関する。   The present invention relates to a method for producing a composite material having a polymer layer on a substrate surface, in particular, a method for producing a solid electrolytic capacitor element having a conductive polymer as a polymer layer, and a capacitor element produced by this method. Related to the capacitor.

基材表面に重合体層を有する複合材料は種々の分野で用いられている。例えば、近年、電気機器のディジタル化、パーソナルコンピュータの高速化に伴い、小型で大容量のコンデンサ、高周波領域において低インピーダンスのコンデンサが要求され、電子伝導性を有する導電性重合体を固体電解質として用いた固体電解コンデンサが提案されている。   Composite materials having a polymer layer on the surface of a substrate are used in various fields. For example, in recent years, with the digitization of electrical equipment and the speeding up of personal computers, small and high-capacity capacitors and low-impedance capacitors in the high-frequency region are required, and conductive polymers having electronic conductivity are used as solid electrolytes. Solid electrolytic capacitors have been proposed.

固体電解コンデンサの基本素子(6)は、一般に、図1に示すようにエッチング処理された比表面積の大きな金属箔からなる陽極基体(1)に誘電体の酸化皮膜層(2)を形成し、この外側に対向する電極として固体の半導体層(以下、固体電解質という。)(3)を形成し、望ましくはさらに導電ペーストなどの導電体層(4)を形成して作製される。通常は固体電解質(3)(陰極部分)と陽極基体(1)との絶縁を確実とするためにさらにマスキング層(5)が設けられ、適宜、電極が付加される。   A basic element (6) of a solid electrolytic capacitor is generally formed by forming a dielectric oxide film layer (2) on an anode substrate (1) made of a metal foil having a large specific surface area that has been etched as shown in FIG. A solid semiconductor layer (hereinafter referred to as a solid electrolyte) (3) is formed as an electrode facing the outside, and a conductor layer (4) such as a conductive paste is preferably formed. Usually, in order to ensure insulation between the solid electrolyte (3) (cathode portion) and the anode substrate (1), a masking layer (5) is further provided, and electrodes are appropriately added.

一般に、誘電体酸化皮膜上に導電性重合体を形成する手法として電解酸化重合法及び化学酸化重合法が知られている。化学酸化重合法は、反応の制御あるいは重合膜形態の制御が難しいが、固体電解質の形成が容易で、短時間に大量生産が可能であるため種々の方法が提案されている。例えば、陽極基体をモノマーを含む溶液に浸漬する工程と酸化剤を含む溶液に浸漬する工程を交互に繰り返すことにより層状構造を有する固体電解質を形成する方法が開示されている(特許文献1:特許第3187380号公報)。この方法によれば、膜厚が0.01〜5μmの層状構造の固体電解質層を形成することによって、高容量、低インピーダンス、かつ耐熱性に優れた固体電解コンデンサを製造することができるが、固体電解質層を形成する層状構造部の層間の空間部分が大きいため、コンデンサ素子を複数積層する積層型コンデンサ用の素子として、固体電解質層全体のいっそうの薄膜化が求められている。   In general, an electrolytic oxidation polymerization method and a chemical oxidation polymerization method are known as methods for forming a conductive polymer on a dielectric oxide film. The chemical oxidative polymerization method is difficult to control the reaction or the form of the polymer film, but various methods have been proposed because it is easy to form a solid electrolyte and enables mass production in a short time. For example, there is disclosed a method of forming a solid electrolyte having a layered structure by alternately repeating a step of immersing an anode substrate in a solution containing a monomer and a step of immersing in a solution containing an oxidizing agent (Patent Document 1: Patent) No. 3187380). According to this method, it is possible to produce a solid electrolytic capacitor having a high capacity, low impedance, and excellent heat resistance by forming a solid electrolyte layer having a layered structure with a film thickness of 0.01 to 5 μm. Since the space between the layers of the layered structure portion forming the layer is large, further reduction in the thickness of the entire solid electrolyte layer is required as an element for a multilayer capacitor in which a plurality of capacitor elements are stacked.

また、層状構造の固体電解質層を形成することなく、コンデンサ素子の細孔内及び外表面に固体電解質を形成する方法として、モノマー化合物を含む溶液に陽極基体を浸漬した後、酸化剤溶液中で重合し、酸化剤を洗浄した後に乾燥するサイクルを繰り返す方法が開示されている(特許文献2:特開平9-306788号公報)。   Further, as a method of forming a solid electrolyte in the pores and the outer surface of the capacitor element without forming a solid electrolyte layer having a layered structure, the anode substrate is immersed in a solution containing a monomer compound, and then in an oxidant solution. A method of repeating a cycle of polymerizing and washing an oxidant and then drying is disclosed (Patent Document 2: JP-A-9-306788).

このように、いずれの製造方法でも固体電解コンデンサ素子用導体(陽極基体)をモノマー含有溶液及び酸化剤含有溶液に浸漬し引き上げる操作を含むため、浸漬及び引き上げ操作を効率的に行なう必要がある。このため、通常、固体電解コンデンサ素子の製造においてはテンポラリーバーと称される支持板とこの支持板を複数本保持できるハンドリングフレームと称される枠を用いて複数の素子を同時に処理している。また、一般的に浸漬操作に係る時間より、重合反応に係る時間の方が長いため、複数のハンドリングフレームを準備し、順番に浸漬操作を行い、順次反応炉に投入することで同一時間内に多数の固体コンデンサ素子を得られるように工夫されている。   Thus, since any manufacturing method includes the operation of immersing and pulling up the solid electrolytic capacitor element conductor (anode substrate) in the monomer-containing solution and the oxidant-containing solution, it is necessary to efficiently perform the dipping and lifting operations. For this reason, normally, in the manufacture of a solid electrolytic capacitor element, a plurality of elements are simultaneously processed using a support plate called a temporary bar and a frame called a handling frame capable of holding a plurality of support plates. In addition, since the time related to the polymerization reaction is generally longer than the time related to the immersion operation, a plurality of handling frames are prepared, the immersion operation is performed in order, and sequentially put into the reaction furnace within the same time. It is devised to obtain a large number of solid capacitor elements.

特許第3187380号公報Japanese Patent No. 3187380 特開平9-306788号公報JP-A-9-306788

得られた素子から所定の容量の固体電解コンデンサを得るためには、図2に示すように、通常、コンデンサ素子(6)を複数個積層して陽極端子に陽極リード線(7)を接合し、固体電解質層を含む導電体層には陰極リード線(8)を接続し、さらに全体をエポキシ樹脂(9)等で完全に封止してコンデンサ部品とする。このため、個々のコンデンサ素子の固体電解質層(3)の厚さが不均一であると、積層時に素子ずれなどの不具合を生じたり、積層後の厚さが厚くなり過ぎて封止の際の未封止につながるという問題がある。従って、コンデンサ素子の陰極部分の固体電解質の重合条件を綿密にコントロールして固体電解質層の厚さを調節する必要がある。しかし、テンポラリーバーとハンドリングフレームを用いた方法で製造されるコンデンサ用素子では、同一バッチで製造しているにも拘わらず、ハンドリングフレーム間で、固体電解質層(4)の厚さが十分に均一にならない場合があり、その解決策が求められていた。   In order to obtain a solid electrolytic capacitor having a predetermined capacity from the obtained element, normally, as shown in FIG. 2, a plurality of capacitor elements (6) are laminated and an anode lead wire (7) is joined to an anode terminal. The cathode lead wire (8) is connected to the conductor layer including the solid electrolyte layer, and the whole is completely sealed with an epoxy resin (9) or the like to obtain a capacitor component. For this reason, if the thickness of the solid electrolyte layer (3) of each capacitor element is non-uniform, problems such as element displacement occur at the time of stacking, or the thickness after stacking becomes too thick. There is a problem that it leads to unsealing. Therefore, it is necessary to control the thickness of the solid electrolyte layer by closely controlling the polymerization conditions of the solid electrolyte in the cathode portion of the capacitor element. However, in the capacitor element manufactured by the method using the temporary bar and the handling frame, the thickness of the solid electrolyte layer (4) is sufficiently uniform between the handling frames even though it is manufactured in the same batch. In some cases, there was a need for a solution.

このように、基材表面に重合体層を有する複合材料では、重合体層を均一かつ効率的に形成することが求められる。特に低背化の要求の強い積層型固体電解コンデンサでは、コンデンサ素子の効率的生産を図りつつ素子表面に重合体層を均一に形成する必要がある。従って、本発明の課題は、上記の問題点を解決し、厚さのバラツキが小さい重合体層を有する複合材料、特に積層型固体電解コンデンサ等に適したコンデンサ素子及びその製造方法を提供することにある。   Thus, in a composite material having a polymer layer on the substrate surface, it is required to form the polymer layer uniformly and efficiently. In particular, in a multilayer solid electrolytic capacitor that is strongly demanded to have a low profile, it is necessary to uniformly form a polymer layer on the surface of the element while efficiently producing the capacitor element. Accordingly, an object of the present invention is to solve the above-described problems and provide a capacitor element suitable for a composite material having a polymer layer having a small thickness variation, particularly a multilayer solid electrolytic capacitor, and a method for manufacturing the capacitor element. It is in.

本発明者らは、上記課題に鑑み鋭意検討した結果、複数の基材にモノマー含有液を付着させ、次いで酸化剤含有液に順次浸漬させる工程を繰り返し行なうことにより基材表面上に重合体層を形成する複合材料の製造方法において、モノマー含有液を付着させた基材の浸漬順序を変えて繰り返しを行なうことで厚さのバラツキが小さい重合体層を有する複合材料が得られること、特にこの方法は積層型等の固体電解コンデンサ用素子の製造方法に適していること、なかでも、ハンドリングフレームにセットした複数の固体コンデンサ素子用導体を、モノマーを含む溶液と酸化剤を含む溶液に順次浸漬して引き上げる工程を有する固体電解コンデンサの製造方法において有用であることを見出し、本発明に至った。   As a result of intensive studies in view of the above problems, the present inventors have repeatedly conducted a process of adhering a monomer-containing liquid to a plurality of base materials and then sequentially immersing them in an oxidizing agent-containing liquid. In the method for producing a composite material for forming a composite material, it is possible to obtain a composite material having a polymer layer with a small variation in thickness by repeating the immersion sequence of the substrate to which the monomer-containing liquid is adhered, The method is suitable for a method of manufacturing a solid electrolytic capacitor element such as a multilayer type, and in particular, a plurality of solid capacitor element conductors set on a handling frame are sequentially immersed in a solution containing a monomer and a solution containing an oxidizing agent. The present invention has been found to be useful in a method for producing a solid electrolytic capacitor having a step of pulling up.

すなわち、本発明は以下に示す複合材料の製造方法、固体電解コンデンサ素子の製造方法、その製造方法により製造される固体電解コンデンサ素子及び固体電解コンデンサ並びに前記製造方法を採用する製造装置に関する。
1.複数の基材にモノマー含有液を付着させ、次いで酸化剤含有液に順次浸漬させる工程を繰り返し行なうことにより基材表面上に重合体層を形成する複合材料の製造方法において、モノマー含有液を付着させた基材の浸漬順序を変えて繰り返しを行なうことを特徴とする複合材料の製造方法。
2.前記工程の繰り返しごとに基材の浸漬順序の変更を行なう前記1に記載の複合材料の製造方法。
3.浸漬順序をランダムに並べ替えることで浸漬順序の変更を行なう前記1または2に記載の複合材料の製造方法。
4.浸漬順序をずらすことで浸漬順序の変更を行なう前記1または2に記載の複合材料の製造方法。
5.前記繰り返し工程のいずれかの途中で酸化剤含有液の一部又は全部を新液に交換する前記1〜4のいずれかに記載の複合材料の製造方法。
6.前記繰り返し工程のいずれかの終了後、次の繰り返し工程の前に酸化剤含有液の一部又は全部を新液に交換する前記1〜4のいずれかに記載の複合材料の製造方法。
7.モノマー含有液を付着させた複数の基材を複数の支持部材に保持し、前記浸漬操作を支持部材ごとに行なう請求項1〜6のいずれかに記載の複合材料の製造方法。
8.基材が表面に多孔質層を有する弁作用金属であり、モノマーが導電性重合体のモノマーである前記1〜7のいずれかに記載の複合材料の製造方法。
9.製造される複合材料が固体電解コンデンサ素子である前記8に記載の固体電解コンデンサ素子の製造方法。
10.前記9に記載の方法により製造される固体電解コンデンサ素子。
11.前記10に記載の固体電解コンデンサ素子を用いることを特徴とする固体電解コンデンサ。
12.前記10に記載のコンデンサ素子を複数積層してなる積層型固体電解コンデンサ。
13.前記9に記載の製造方法を採用する固体電解コンデンサ製造装置。
That is, the present invention relates to the following composite material manufacturing method, solid electrolytic capacitor element manufacturing method, solid electrolytic capacitor element and solid electrolytic capacitor manufactured by the manufacturing method, and a manufacturing apparatus employing the manufacturing method.
1. In a method for manufacturing a composite material in which a polymer layer is formed on a substrate surface by repeatedly attaching a monomer-containing solution to a plurality of substrates and then sequentially immersing the substrate in an oxidizing agent-containing solution, the monomer-containing solution is attached. A method for producing a composite material, characterized in that the immersion is repeated by changing the immersion order of the base material.
2. 2. The method for producing a composite material according to 1 above, wherein the immersion order of the base material is changed every time the process is repeated.
3. 3. The method for producing a composite material according to 1 or 2, wherein the immersion order is changed by randomly rearranging the immersion order.
4). 3. The method for producing a composite material according to 1 or 2, wherein the immersion order is changed by shifting the immersion order.
5. 5. The method for producing a composite material according to any one of 1 to 4, wherein a part or all of the oxidant-containing liquid is exchanged with a new liquid in the middle of any of the repeating steps.
6). The manufacturing method of the composite material in any one of said 1-4 which replace | exchanges part or all of an oxidizing agent containing liquid for a new liquid after completion | finish of one of the said repeating processes before the next repeating process.
7). The manufacturing method of the composite material in any one of Claims 1-6 which hold | maintain the some base material to which the monomer containing liquid was made to adhere to several support members, and perform the said immersion operation for every support member.
8). 8. The method for producing a composite material according to any one of 1 to 7, wherein the base material is a valve metal having a porous layer on the surface, and the monomer is a monomer of a conductive polymer.
9. 9. The method for producing a solid electrolytic capacitor element as described in 8 above, wherein the composite material to be produced is a solid electrolytic capacitor element.
10. 10. A solid electrolytic capacitor element produced by the method described in 9 above.
11. 11. A solid electrolytic capacitor using the solid electrolytic capacitor element as described in 10 above.
12 11. A multilayer solid electrolytic capacitor obtained by laminating a plurality of capacitor elements as described in 10 above.
13. A solid electrolytic capacitor manufacturing apparatus that employs the manufacturing method according to 9 above.

本発明によれば、重合体層厚のバラツキの少ない複合材料、特に固体電解質層厚のバラツキが少ないコンデンサ素子を安定して効率的に作製でき、積層時の箔ずれ等の不具合が発生しにくく、封止時の未封止が発生しにくい積層型固体電解コンデンサに適した固体電解コンデンサ素子を提供することができる。   According to the present invention, it is possible to stably and efficiently produce a composite material having a small variation in the thickness of the polymer layer, particularly a capacitor element having a small variation in the thickness of the solid electrolyte layer. Therefore, it is possible to provide a solid electrolytic capacitor element suitable for a multilayer solid electrolytic capacitor that is less likely to be unsealed during sealing.

本発明は、複数の基材にモノマー含有液を付着させ、次いで酸化剤含有液に順次浸漬させる工程を繰り返し行なうことにより基材表面上に重合体層を形成する複合材料の製造方法において、モノマー含有液を付着させた基材の浸漬順序を変えて繰り返しを行なうことを特徴とする。すなわち、従来法では、図3に模式的に示すように各基材11は一定の順序(図ではa=>b=>c=>d=>e=>f)で処理施設内を搬送され(図では左から右に搬送されている。)、その途中で酸化剤含有液12に浸漬される。この工程は循環的であり、各基材11は固定された順序で繰り返し酸化剤含有液12に浸漬される(図3の2段目)。ここでは2巡目まで図示するが、以下も同様にa=>b=>c=>d=>e=>fの順で浸漬が行なわれる。   The present invention relates to a method for producing a composite material in which a monomer layer is adhered to a plurality of substrates and then sequentially immersed in an oxidizing agent-containing solution to form a polymer layer on the substrate surface. It repeats by changing the immersion order of the base material to which the containing liquid is adhered. That is, in the conventional method, as shown schematically in FIG. 3, the base materials 11 are transported in the processing facility in a fixed order (a => b => c => d => e => f in the figure). (It is conveyed from the left to the right in the figure), and is immersed in the oxidant-containing liquid 12 in the middle thereof. This process is cyclic, and each base material 11 is repeatedly immersed in the oxidant-containing liquid 12 in a fixed order (second stage in FIG. 3). Although up to the second round is shown here, the following immersion is similarly performed in the order of a => b => c => d => e => f.

これに対し、本発明では、基材の浸漬順序を変えて前記繰り返しを行なう。すなわち、図4に例示するように、1巡目の基材の浸漬順序(図ではa=>b=>c=>d=>e=>fの順)とは異なる順序(図ではc=>f=>a=>e=>b=>d)で、2巡目の浸漬を行なう。ここでは2巡目まで図示するが、以下も同様である。   On the other hand, in this invention, the said repetition is performed changing the immersion order of a base material. That is, as illustrated in FIG. 4, a different order (c = in the figure) from the immersion order of the substrate in the first round (in the figure, a => b => c => d => e => f). > f => a => e => b => d) and the second round of immersion is performed. Although up to the second round is shown here, the same applies to the following.

基材の浸漬順序の変更は、工程を繰り返す都度、すなわち、所定数の基材(図4ではa〜f)の処理を一回行なう度に変更してもよいし、適当な回数、同じ順序での処理を繰り返した後、順序を変更してもよい。例えば、図4の例では、1巡目と2巡目と同様に以後も各工程サイクルで浸漬順序を変更してもよい。あるいは、1巡目と2巡目の浸漬順序を同一とし2巡目以後の浸漬順序を変更するなど、同一の浸漬順序での繰り返しと異なる浸漬順序での繰り返しが混在してもよい。一般的には、所定数の基材の処理を1セットとする浸漬工程を複数回繰り返す場合、少なくともそのいずれか1の工程が他の工程と異なる浸漬順序であればよい。   The base material immersion sequence may be changed every time the process is repeated, that is, each time a predetermined number of base materials (a to f in FIG. 4) are processed once, or in the same number of times. The order may be changed after repeating the process in. For example, in the example of FIG. 4, the immersion order may be changed in each process cycle thereafter as in the first and second rounds. Alternatively, repetitions in the same immersion order and repetitions in different immersion orders may be mixed, such as changing the immersion order in the second and subsequent rounds by changing the immersion order in the first and second rounds. In general, when the dipping process in which a predetermined number of base materials are treated as one set is repeated a plurality of times, it is sufficient that at least one of the processes has a dipping order different from the other processes.

もっとも、好ましくは、各基材が平均して酸化剤含有液に浸漬されるように順序を設定する。すなわち、図4の例で浸漬工程をn回繰り返す場合、基材a〜fがk巡目(1≦k≦n)の繰り返し工程において浸漬される順番をそれぞれak〜fkで表わすとすると、Σak〜Σfk(ここで、Σak等はそれぞれ、a1+・・・+an等を表わす。)がなるべく等しく、すなわち、狭い範囲内に含まれるようにする。 However, preferably, the order is set so that each base material is immersed in the oxidizing agent-containing liquid on average. That is, when the dipping process is repeated n times in the example of FIG. 4, the order in which the base materials a to f are dipped in the k-th (1 ≦ k ≦ n) repeating process is represented by a k to f k , respectively. (where each? a k, etc. represent a 1 + ··· + a n, etc..) Σa k ~Σf k is possible equal, i.e., to be included within a narrow range.

このような条件は、例えば、浸漬順序をランダムに並べ替えることで満たすことができる。また、a=>b=>c=>d=>e=>fの次の工程をb=>c=>d=>e=>f=>aの順序で行なうなど、浸漬順序をずらしてもよい。なお、本願において「浸漬順序をずらす」とは、上記例のように基材の浸漬順序を全体として1ずつシフトさせることのほかにa=>b=>c=>d=>e=>fの次の工程をc=>d=>e=>f=>a=>bの順序で行なうなど、2ずつ(またはそれ以上)のシフトをも含む。もっとも、これらは例示であり、各基材が上記の意味で平均して酸化剤含有液に浸漬されるのであれば、他の並べ替え方法を採ってもよい。   Such a condition can be satisfied, for example, by rearranging the immersion order at random. In addition, the dipping order is shifted, for example, the next step after a => b => c => d => e => f is performed in the order of b => c => d => e => f => a. Also good. In the present application, “shifting the dipping order” means that the dipping order of the substrate is shifted by 1 as a whole as in the above example, and a => b => c => d => e => f This includes the shift by two (or more), such as performing the next step in the order of c => d => e => f => a => b. However, these are merely examples, and other rearrangement methods may be adopted as long as each substrate is averagely immersed in the oxidant-containing liquid in the above sense.

さらに、本発明の好ましい態様では、前記繰り返し工程のいずれかの途中で酸化剤含有液の一部又は全部を新液に交換する。あるいは、新液への交換は、前記繰り返し工程のいずれかの終了後、次の繰り返し工程の前に行なってもよい。交換は各工程について毎回行なってもよいし、数回おきに行なってもよい。部分的交換を行なう場合、その比率は特に限定されないが、例えば、浸漬液全量の5%以上、好ましくは10%以上とする。   Furthermore, in a preferred embodiment of the present invention, part or all of the oxidant-containing liquid is replaced with a new liquid during any of the above repeating steps. Or you may perform replacement | exchange to a new liquid after the completion | finish of one of the said repeating processes, and before the next repeating process. The exchange may be performed every time for each step, or may be performed every several times. In the case of performing partial exchange, the ratio is not particularly limited. For example, the ratio is 5% or more, preferably 10% or more of the total amount of the immersion liquid.

本発明においては、酸化剤含有液の一部又は全部の交換により浸漬順序の変更を生じさせることもできる。
例えば、a=>b=>c=>d=>e=>fの6個の基材を処理する場合、6個以外、例えば、5個の基材の処理が終わった時点(すなわち、基材eと基材fの間)で酸化剤含有液の交換を行なうとすれば、fから新たな工程を開始したと同視できる。つまり、以後も5個の基材の処理が終わった時点酸化剤含有液の交換を行なうと、
1巡目 a=>b=>c=>d=>e=>*=>f
2巡目 a=>b=>c=>d=>*=>e=>f
3巡目 a=>b=>c=>*=>d=>e=>f
4巡目 a=>b=>*=>c=>d=>e=>f
・・・
(上記順列中、*は新液との交換を表わす。)、液組成は新液の交換で不連続的に変化しているから、実質的には
第1回 a=>b=>c=>d=>e=>*
第2回 f=>a=>b=>c=>d=>*
第3回 e=>f=>a=>b=>c=>*
第4回 d=>e=>f=>a=>b=>*
・・・
のように、各回ごとに基材の浸漬順序を1ずつシフトさせていることになる。本願において「浸漬順序をずらす」ことには、このような態様も含まれる。なお、この場合も、新液との交換を一定回数ごとに必ず行なう必要はなく、交換する間隔は任意である。一般的には、x個の基材の処理を1サイクルとする浸漬工程を繰り返す場合、少なくともそのいずれか1の工程の途中で(すなわち、x個未満またはx個を超える数の基材の処理が済んだ時点で)液の交換を行なえばよい。なお、上述のように繰り返し工程内で実際に浸漬順序を変更する場合は、繰り返し工程のいずれかの終了後、次の繰り返し工程の前に液の交換を行なってもよい。
In the present invention, the immersion sequence can be changed by exchanging part or all of the oxidizing agent-containing liquid.
For example, when processing 6 substrates of a => b => c => d => e => f, when the processing of 5 substrates other than 6, for example, 5 substrates is completed (ie, base If the oxidant-containing liquid is exchanged between the material e and the base material f), it can be regarded that a new process is started from f. In other words, when the oxidant-containing liquid is replaced when the processing of the five substrates is finished,
1st round a => b => c => d => e => * => f
2nd round a => b => c => d => * => e => f
3rd round a => b => c => * => d => e => f
4th round a => b => * => c => d => e => f
...
(In the above permutation, * indicates replacement with a new liquid.) Since the liquid composition changes discontinuously due to the replacement of the new liquid, the first time a => b => c = > d => e => *
2nd f => a => b => c => d => *
3rd e => f => a => b => c => *
4th d => e => f => a => b => *
...
Thus, the immersion order of the base material is shifted by 1 each time. In the present application, “changing the immersion order” includes such a mode. In this case as well, it is not always necessary to exchange the new liquid every certain number of times, and the exchange interval is arbitrary. In general, when the dipping step with one cycle of treatment of x substrates is repeated, treatment of at least one of the steps (that is, treatment of less than x or more than x substrates) The liquid may be exchanged at the time of completion. In the case where the immersion order is actually changed in the repetition process as described above, the liquid may be exchanged after any of the repetition processes and before the next repetition process.

なお、図4には示していないが、繰り返し工程のいずれかの終了後、次の繰り返し工程の前に種々の処理を行なってもよい。例えば、浸漬処理の前にはモノマー含有液の付着を行なうことが好ましいし、浸漬処理の後には重合促進炉への投入を行なうことが好ましい。モノマー含有液の付着は、モノマー含有液への浸漬、モノマー含有液の塗布、モノマー含有液の噴霧等、任意の付着方法を含む。 Although not shown in FIG. 4, various processes may be performed after the end of any one of the repeating steps and before the next repeating step. For example, it is preferable to attach the monomer-containing liquid before the immersion treatment, and after the immersion treatment, it is preferable to put in a polymerization promotion furnace. The adhesion of the monomer-containing liquid includes an arbitrary adhesion method such as immersion in the monomer-containing liquid, application of the monomer-containing liquid, and spraying of the monomer-containing liquid.

本発明は、モノマー含有液を付着させた複数の基材を複数の支持部材に保持し、前記浸漬操作を支持部材ごとに行なうことも可能である。この態様は、上記の説明及び図4において基材として示したa〜fを、それぞれ支持部材に保持された基材の集合体に読み替えたものに相当する。   In the present invention, a plurality of base materials to which a monomer-containing liquid is attached can be held on a plurality of support members, and the dipping operation can be performed for each support member. This aspect corresponds to the above description and a to f shown as the base material in FIG. 4 replaced with aggregates of base materials held by the support members.

本発明で製造される複合材料は、基材上に酸化重合による高分子層を有するものであれば特に限定されず、本発明は基材やモノマーの種類を問わず適用できる。その用途も酸化重合による高分子層との複合が有利なものであれば特に限定されない。
もっとも、本発明は、特に、基材が表面に多孔質層を有する弁作用金属であり、モノマーが導電性重合体である複合材料、特に固体電解コンデンサ素子の製造方法において特に有用である。すなわち、前述したように、固体電解コンデンサ素子の製造においては、複数のコンデンサ素子製造用基材をテンポラリーバーと称される支持板に保持し、さらにこの支持板を複数本保持できるハンドリングフレームと称される枠を用いて複数の基材を同時に処理しているが、本発明は、このようにテンポラリーバーまたはハンドリングフレームを複数個用い、連続してモノマー含有の付着、酸化剤含有溶液への浸漬操作、重合促進炉への投入操作を行なう固体電解コンデンサの製造方法において、特に有用である。この態様は、上記の説明及び図4において基材として示したa〜fを、それぞれテンポラリーバーまたはハンドリングフレーム(正確にはこれらに保持された基材の集合体)に読み替えたものに相当する。
The composite material produced in the present invention is not particularly limited as long as it has a polymer layer formed by oxidative polymerization on the substrate, and the present invention can be applied regardless of the type of substrate or monomer. The use is not particularly limited as long as it is advantageous to combine with a polymer layer by oxidative polymerization.
However, the present invention is particularly useful in a method for producing a composite material, particularly a solid electrolytic capacitor element, in which the base material is a valve metal having a porous layer on the surface and the monomer is a conductive polymer. That is, as described above, in the manufacture of solid electrolytic capacitor elements, a plurality of capacitor element manufacturing substrates are held on a support plate called a temporary bar, and further called a handling frame that can hold a plurality of support plates. In this way, the present invention uses a plurality of temporary bars or handling frames as described above, and continuously attaches monomer-containing materials and immerses them in oxidant-containing solutions. This is particularly useful in a method for producing a solid electrolytic capacitor that is operated and charged into a polymerization accelerating furnace. This aspect corresponds to the above description and a to f shown as the base material in FIG. 4 replaced with a temporary bar or a handling frame (accurately, a collection of base materials held by these), respectively.

典型的には、固体電解コンデンサ素子用基材をテンポラリーバーに取り付け、さらにこのテンポラリーバーを複数保持するハンドリングフレームを複数個用い、これらのハンドリングフレームに保持された基材に順次、モノマー含有液を付着させ、酸化剤含有溶液に浸漬し、重合促進炉に投入する操作を含む工程を複数回繰り返して重合体層を形成する固体電解コンデンサの製造方法において、ハンドリングフレームの順序を変更して酸化剤含有溶液への浸漬を行なう。   Typically, a base for a solid electrolytic capacitor element is attached to a temporary bar, and a plurality of handling frames that hold a plurality of temporary bars are used, and a monomer-containing liquid is sequentially applied to the base material held by these handling frames. In a method for manufacturing a solid electrolytic capacitor in which a polymer layer is formed by repeating a plurality of steps including an operation of adhering, immersing in an oxidant-containing solution, and putting it in a polymerization accelerating furnace. Immerse in the containing solution.

順序の変更は上述した通りであり、前記工程の繰り返しごとにハンドリングフレームの順序を変更して基材の浸漬を行なってもよいし、適当な回数ごとにハンドリングフレームの順序を変更して基材の浸漬を行なってもよい。また、順序の変更はハンドリングフレームをランダムに並べ替えることで行なってもよいし、工程ごとにハンドリングフレームの順序をずらすことで行なってもよい。また、前記繰り返し工程のいずれかの途中で酸化剤含有液の一部又は全部を新液に交換することで実質的にハンドリングフレームの順序をずらしてもよい。あるいは、ハンドリングフレームの順序を実際に変更した上で、前記繰り返し工程のいずれかの終了後、次の繰り返し工程の前に酸化剤含有液の一部又は全部を新液に交換してもよい。 The change of the order is as described above, and the order of the handling frames may be changed every time the process is repeated, and the base material may be immersed, or the order of the handling frames is changed every appropriate number of times. Dipping may be performed. Further, the order may be changed by rearranging the handling frames at random, or by changing the order of the handling frames for each process. Moreover, you may substantially shift the order of a handling frame by replacing | exchanging a part or all of oxidizer containing liquid to a new liquid in the middle of either of the said repeating process. Alternatively, after actually changing the order of the handling frames, a part or all of the oxidant-containing liquid may be replaced with a new solution after the end of any one of the repeating steps and before the next repeating step.

本発明において一工程または酸化剤溶液を交換するまでに処理されるコンデンサ素子用基材(以下、単に「素子」ともいう。)の数は、各溶液の種類、処理条件に依存し特に限定されないが、概ね5000〜100000素子の間、さらに好ましくは、50000〜150000素子が望ましい。酸化剤溶液の交換・混合までに処理される素子数が少ないと、1素子あたりに使用される酸化剤量が多く必要となり、素子数が多すぎると酸化剤溶液の劣化が進みやすい。   In the present invention, the number of capacitor element substrates (hereinafter, also simply referred to as “elements”) that are processed in one step or until the oxidant solution is replaced is not particularly limited depending on the type of each solution and the processing conditions. However, it is generally between 5000 and 100000 elements, more preferably between 50000 and 150,000 elements. If the number of elements to be processed before the exchange / mixing of the oxidant solution is small, a large amount of oxidant is required per element, and if the number of elements is too large, the oxidant solution is likely to deteriorate.

本発明が固体電解コンデンサ素子の製造において特に優れた効果を奏する理由としては、(1)複数個のハンドリングフレームに保持された基材の集合体は順次、モノマー含有溶液、酸化剤含有溶液に浸漬されていくため、酸化剤浸漬槽内に不純物として混入するモノマー・オリゴマーなどの含有量が増加していくこと、(2)ハンドリングフレームの浸漬順は、従来法では毎回変更されず、このため、酸化剤溶液中の不純物の影響が累積的に増加していき、各サイクルで最初のハンドリングフレームに保持されたコンデンサ素子と最後のハンドリングフレームに保持されたコンデンサ素子とでは固体電解質の量、厚さが不均一になるなど、コンデンサ素子間での固体電解質層の量や質のバラツキが拡大すること、(3)これらは、上記の意味でハンドリングフレームの順序を変えること、及び酸化剤溶液の一部又は全量を新液と置換させることによって制御し得ること等が考えられる。   The reason why the present invention has a particularly excellent effect in the production of a solid electrolytic capacitor element is that (1) the assembly of base materials held in a plurality of handling frames is sequentially immersed in a monomer-containing solution and an oxidant-containing solution. Therefore, the content of monomers and oligomers mixed as impurities in the oxidizer immersion tank will increase. (2) The immersion order of the handling frame will not be changed every time in the conventional method. The effect of impurities in the oxidant solution increases cumulatively, and the amount and thickness of the solid electrolyte between the capacitor element held in the first handling frame and the capacitor element held in the last handling frame in each cycle. The variation in the quantity and quality of the solid electrolyte layer between capacitor elements, such as non-uniformity, (3) Changing the order of the grayed frame, and that such a portion or the total amount of the oxidizing agent solution may be controlled by replaced with new chemical is considered.

すなわち、従来法では、浸漬すべき素子数百〜数千枚を1つの支持枠にあつめ、且つこの支持枠を数10個連続で浸漬から固体電解質形成操作を行う。通常この浸漬から固体電解質形成操作は数回から数十回繰り返して行われる。数10個の支持枠による浸漬処理を実施することにより、酸化剤溶液中へのモノマー混入量が徐々に増加し、それに伴い、先頭側のハンドリングフレームに比較して、末尾側のハンドリングフレームの素子への付着量が増加することになる。このため、末尾側のハンドリングフレームで処理された素子は相対的に厚くなる。本発明は、この経時的な不均一化を解消ないし防止するものであり、ハンドリングフレームの順序を変えること、及び酸化剤溶液の一部又は全量を新液と置換させるにより時間経過にかかわらず素子へのモノマー付着量を均一化する。もっとも、本発明では、層厚が全体として抑制されており、本発明の効果は上記機構によるものには限定されない。 That is, in the conventional method, hundreds to thousands of elements to be immersed are packed in one supporting frame, and several tens of the supporting frames are continuously immersed in the solid electrolyte forming operation. Usually, the solid electrolyte forming operation is repeated several times to several tens of times from this immersion. By carrying out the immersion treatment with several tens of support frames, the amount of monomer mixed in the oxidizer solution gradually increases, and accordingly, the elements of the end handling frame compared to the start handling frame. The amount of adhesion to will increase. For this reason, the element processed with the handling frame of the tail side becomes relatively thick. The present invention eliminates or prevents this non-uniformity over time, and changes the order of the handling frames and replaces part or all of the oxidant solution with a new solution regardless of the passage of time. Uniform the amount of monomer adhering to. However, in the present invention, the layer thickness is suppressed as a whole, and the effect of the present invention is not limited to the above mechanism.

固体電解コンデンサ素子の陽極基体用導体は一般的には、弁作用を有する金属である。本発明に使用できる弁作用を有する金属は、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素などの金属単体、またはこれらの合金である。また多孔質の形態については、圧延箔のエッチング物、微粉焼結体などの多孔質成形体の形態であればいずれでもよい。さらに、この金属多孔体の表面に誘電体酸化皮膜を形成する方法は、公知の方法を用いることができる。例えば、アルミニウム箔を使用する場合には、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩などを含む水溶液中で陽極酸化して酸化皮膜を形成することができる。また、タンタル粉末の焼結体を使用する場合には、リン酸水溶液中で陽極酸化して、焼結体に酸化皮膜を形成することができる。   The conductor for the anode substrate of the solid electrolytic capacitor element is generally a metal having a valve action. The metal having a valve action that can be used in the present invention is a simple metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, silicon, or an alloy thereof. Further, the porous form may be any form as long as it is a form of a porous molded body such as an etching product of a rolled foil or a fine powder sintered body. Furthermore, a known method can be used as a method of forming a dielectric oxide film on the surface of the porous metal body. For example, when an aluminum foil is used, an oxide film can be formed by anodizing in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or a sodium salt or an ammonium salt thereof. Moreover, when using the sintered compact of a tantalum powder, it can anodize in phosphoric acid aqueous solution and can form an oxide film in a sintered compact.

固体電解質は陰極として形成される。そのためには、通常、モノマー含有溶液の付着に続けて酸化剤含有溶液への浸漬が行なわれる。モノマー含有溶液の付着及び各溶液の成分は、固定電解質の形成に適している限りにおいて得に限定されないが、典型的には以下の通りである。
モノマーを含む溶液に浸漬後乾燥し、誘電体表面上及び重合体組成物上にモノマーを供給する。さらに、誘電体表面上及び重合体組成物上にモノマーを均一に付着させるためにモノマー含有液を含浸後、一定の時間空気中で放置し溶媒を気化させる。この条件は溶媒の種類によって変わるが、概ね0℃以上から溶媒の沸点までの温度で行う。放置時間は、溶媒の種類によって変わるが、概ね5秒〜15分、例えばアルコール系溶媒では、5分以内でよい。この放置時間を設けることによりモノマーが誘電体表面上に均一に付着し、さらに次工程の酸化剤含有液への浸漬時の汚れを少なくすることができる。
The solid electrolyte is formed as a cathode. For this purpose, the immersion is usually performed following the adhesion of the monomer-containing solution to the oxidant-containing solution. The adhesion of the monomer-containing solution and the components of each solution are not particularly limited as long as they are suitable for the formation of a fixed electrolyte, but are typically as follows.
It is immersed in a solution containing the monomer and then dried, and the monomer is supplied onto the dielectric surface and the polymer composition. Further, in order to uniformly deposit the monomer on the dielectric surface and the polymer composition, after impregnating the monomer-containing liquid, the solvent is allowed to evaporate by being left in the air for a certain period of time. This condition varies depending on the type of solvent, but is generally performed at a temperature from 0 ° C. or higher to the boiling point of the solvent. The standing time varies depending on the type of the solvent, but it is generally about 5 seconds to 15 minutes, for example, within 5 minutes for alcohol solvents. By providing this standing time, the monomer can uniformly adhere to the surface of the dielectric, and contamination during immersion in the oxidizing agent-containing liquid in the next step can be reduced.

次の工程として適用される酸化剤溶液の浸漬時間は、酸化剤成分が金属箔基板の誘電体表面上に付着するに十分な時間以上であればよく、通常15分未満、好ましくは0.1秒〜10分、より好ましくは1秒〜7分とする。   The dipping time of the oxidant solution applied as the next step may be a time sufficient for the oxidant component to adhere on the dielectric surface of the metal foil substrate, usually less than 15 minutes, preferably from 0.1 seconds to 10 minutes, more preferably 1 second to 7 minutes.

酸化剤としては、水溶液系の酸化剤と有機溶剤系の酸化剤が挙げられる。水溶液系の酸化剤としては、ペルオキソ二硫酸及びそのNa塩、K塩、NH4塩、硝酸セリウム(IV)、硝酸セリウム(IV)アンモニウム、硫酸鉄(III)、硝酸鉄(III)、塩化鉄(III)等が挙げられる。また、有機溶剤系の酸化剤としては、有機スルホン酸の第二鉄塩、例えば、ドデシルベンゼンスルホン酸鉄(III)、p−トルエンスルホン酸鉄(III)等が挙げられる。 Examples of the oxidizing agent include an aqueous oxidizing agent and an organic solvent oxidizing agent. Examples of aqueous oxidizing agents include peroxodisulfuric acid and its Na salt, K salt, NH 4 salt, cerium (IV) nitrate, cerium (IV) ammonium nitrate, iron (III) sulfate, iron (III) nitrate, iron chloride (III) etc. are mentioned. Examples of the organic solvent-based oxidizing agent include ferric salts of organic sulfonic acids such as iron (III) dodecylbenzenesulfonate and iron (III) p-toluenesulfonate.

酸化剤溶液の溶媒としては、例えばテトラヒドロフラン(THF)やジオキサン、ジエチルエーテル等のエーテル類;アセトン、メチルエチルケトン等のケトン類;ジメチルホルムアミド、アセトニトリル、ベンゾニトリル、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒;メタノール、エタノール、プロパノール等のアルコール類、または水あるいはこれらの混合溶媒を用いることができる。好ましくは、水、アルコール類またはケトン類あるいはそれらの混合系が望ましい。   Examples of the solvent for the oxidant solution include ethers such as tetrahydrofuran (THF), dioxane, and diethyl ether; ketones such as acetone and methyl ethyl ketone; dimethylformamide, acetonitrile, benzonitrile, N-methylpyrrolidone (NMP), dimethyl sulfoxide ( DMSO) and other aprotic polar solvents; alcohols such as methanol, ethanol and propanol; water or a mixed solvent thereof can be used. Preferably, water, alcohols or ketones or a mixed system thereof is desirable.

なお、酸化剤溶液の濃度は特に限定されないが5〜50質量%が好ましく、また酸化剤溶液の温度は−15〜60℃が好ましい。   In addition, the density | concentration of an oxidizing agent solution is although it does not specifically limit, 5-50 mass% is preferable, and the temperature of an oxidizing agent solution has preferable -15-60 degreeC.

固体電解質を形成する導電性重合体はπ電子共役構造を有する有機重合体モノマーの重合体であり、重合度2以上2000以下、より好ましくは3以上1000以下、さらに好ましくは5以上200以下である。具体例としては、チオフェン骨格を有する化合物、多環状スルフィド骨格を有する化合物、ピロール骨格を有する化合物、フラン骨格を有する化合物、アニリン骨格を有する化合物等で示される構造を繰り返し単位として含む導電性重合体が挙げられる。   The conductive polymer forming the solid electrolyte is a polymer of an organic polymer monomer having a π-electron conjugated structure, and the degree of polymerization is 2 or more and 2000 or less, more preferably 3 or more and 1000 or less, and further preferably 5 or more and 200 or less. . As specific examples, a conductive polymer containing a structure represented by a compound having a thiophene skeleton, a compound having a polycyclic sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, a compound having an aniline skeleton, or the like as a repeating unit. Is mentioned.

モノマーとしては、チオフェン骨格または多環状スルフィド骨格を有する化合物が好ましい。これら化合物の重合条件等には特に制限はなく、簡単な実験により予め好ましい条件を確認した上で容易に実施することができる。   As the monomer, a compound having a thiophene skeleton or a polycyclic sulfide skeleton is preferable. The polymerization conditions and the like of these compounds are not particularly limited, and can be easily carried out after confirming preferable conditions in advance by simple experiments.

また、上記モノマー群から選ばれる化合物を併用し、共重合体として固体電解質を形成させても良い。その時の重合性単量体の組成比などは重合条件等に依存するものであり、好ましい組成比、重合条件は簡単なテストにより確認できる。   In addition, a compound selected from the above monomer group may be used in combination to form a solid electrolyte as a copolymer. The composition ratio of the polymerizable monomer at that time depends on the polymerization conditions and the like, and the preferred composition ratio and polymerization conditions can be confirmed by a simple test.

こうして形成された導電性重合体組成物層の上に、陰極リード端子との電気的接触を良くするために導電体層を設けることが好ましい。導電体層は例えば導電ペースト、メッキや蒸着、導電樹脂フィルムの貼付等により形成される。   On the conductive polymer composition layer thus formed, it is preferable to provide a conductor layer in order to improve electrical contact with the cathode lead terminal. The conductor layer is formed by, for example, a conductive paste, plating, vapor deposition, or a conductive resin film.

かくして得られる固体電解コンデンサ素子は、通常、単独でまたは(例えば、図2に示すように)積層し(但し、この形態に限定されない)、リード端子を接続して、例えば樹脂モールド、樹脂ケース、金属製の外装ケース、樹脂ディッピング等による外装を施すことにより、各種用途のコンデンサ製品とする。   The solid electrolytic capacitor element thus obtained is usually laminated alone (for example, as shown in FIG. 2) (but not limited to this form), and connected to a lead terminal, for example, a resin mold, a resin case, Capacitor products for various applications can be made by applying a metal outer case or resin dipping.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described in more detail below with typical examples. Note that these are illustrative examples, and the present invention is not limited to these.

実施例1
(a)支持板への導体の取り付け
アルミニウム箔表面に慣用の方法により化成処理を施して形成したアルミニウム化成箔(厚み100μm)を1片が3mm×10mmの矩形状となるように切り出した。この化成箔30枚を短辺(3mm)側の端部から2mm迄がステンレス鋼製支持板(224mm×15mm×1.0mm(SUS304製)。以下、テンポラリーバーという。)に重なるように4mm間隔で1列に溶接した。次いで、各化成箔について、長軸方向を4mmと5mmの部分に区切るように、両面に幅1mmのフッ素樹脂を周状に塗布、乾燥させマスキングを作成した。このテンポラリーバー100本を一つの支持枠(以下ハンドリングフレームという)にセットし、同様にテンポラリーバー入りのハンドリングフレームを25セット(No.1〜No.25)準備した。
Example 1
(a) Attachment of conductor to support plate An aluminum conversion foil (thickness: 100 μm) formed by subjecting the surface of the aluminum foil to chemical conversion treatment by a conventional method was cut out so that one piece had a rectangular shape of 3 mm × 10 mm. The 30 sheets of the formed foil are spaced from each other by 4 mm so that the length from the end on the short side (3 mm) side to 2 mm overlaps the stainless steel support plate (224 mm × 15 mm × 1.0 mm (made by SUS304), hereinafter referred to as temporary bar). And welded in a row. Next, with respect to each chemical conversion foil, a fluororesin having a width of 1 mm was applied to both sides in a circumferential shape so as to divide the major axis direction into 4 mm and 5 mm portions, and then masked. 100 temporary bars were set on one support frame (hereinafter referred to as a handling frame), and 25 sets (No. 1 to No. 25) of handling frames containing temporary bars were similarly prepared.

(b)導体表面への皮膜形成
上記のハンドリングフレームNo.1〜No.25を、順次、5質量%アジピン酸アンモニウム水溶液上に移動させ、前記溶液に向けて垂直に降下させることにより、各化成箔の3mm×4mmの部分を溶液に浸漬させ、そのまま、4Vの電圧を印加して切り口部分に化成し、誘電体酸化皮膜を形成した。
(b) Film formation on the conductor surface 1-No. 25 is sequentially transferred onto a 5% by mass ammonium adipate aqueous solution and vertically lowered toward the solution to immerse a 3 mm × 4 mm portion of each conversion foil in the solution, and a voltage of 4 V is applied as it is. This was applied to form a cut portion, and a dielectric oxide film was formed.

(c)モノマー溶液への浸漬と引き上げ
次に、これらのハンドリングフレームNo.1〜No.25を、順次、3,4−エチレンジオキシチオフェンを溶解させた2.0mol/Lのイソプロピルアルコール(IPA)溶液(モノマー溶液)上に移動させ、前記溶液に向けて垂直に降下させることにより、各化成箔の3mm×4mmの部分を溶液に3秒間浸漬させた。引き続き次々に25個のハンドリングフレームを連続処理し、室温で2分間乾燥した。
(c) Immersion and pulling in monomer solution Next, these handling frame Nos. 1-No. 25 is sequentially transferred onto a 2.0 mol / L isopropyl alcohol (IPA) solution (monomer solution) in which 3,4-ethylenedioxythiophene is dissolved, and vertically dropped toward the solution, A 3 mm × 4 mm portion of the conversion foil was immersed in the solution for 3 seconds. Subsequently, 25 handling frames were successively treated and dried at room temperature for 2 minutes.

(d)酸化剤溶液への浸漬とその後の処理
一方、20質量%の過硫酸アンモニウム水溶液(酸化剤溶液)を調整し、酸化剤槽に所定量を張り込み、前記のハンドリングフレームNo.1(先頭HF)をこの溶液上に移動し、各化成箔の3mm×4mmの部分を前記溶液に5秒間浸漬させた。その後、10分間重合促進槽に保持し、重合膜を形成させた。引き続き、No.2〜No.24までのハンドリングフレームを処理した。その後、酸化剤槽から酸化剤溶液を全量抜き出し、新液を補給したのち最終ハンドリングフレーム(No.25)を浸漬させ、重合促進槽に投入した。
(d) Immersion in oxidant solution and subsequent treatment On the other hand, a 20% by mass ammonium persulfate aqueous solution (oxidant solution) was prepared, and a predetermined amount was put in the oxidant tank. 1 (lead HF) was moved onto this solution, and a 3 mm × 4 mm portion of each chemical conversion foil was immersed in the solution for 5 seconds. Then, it hold | maintained in the polymerization promotion tank for 10 minutes, and formed the polymer film. No. 2-No. Up to 24 handling frames were processed. Thereafter, the entire amount of the oxidant solution was extracted from the oxidant tank, and after the new liquid was replenished, the final handling frame (No. 25) was immersed and charged into the polymerization promotion tank.

(e)繰り返し操作
次に、重合促進処理が完了した先頭ハンドリングフレーム以降をモノマー溶液に浸漬し、室温で2分間乾燥後、酸化剤溶液に浸漬させた。この2巡目の浸漬では、No.23のハンドリングフレーム処理後に酸化剤溶液を全量交換し、その後、No.24、No.25のハンドリングフレームの処理を実施した。酸化剤溶液への浸漬後、いずれも、再度重合促進槽に投入した
同様に、以下、酸化剤溶液の交換後、24個のハンドリングフレームを処理するごとに酸化剤溶液を新液と交換しながら、20巡目まで重合を終了した。最終的に生成したポリ(3,4−エチレンジオキシチオフェン)を50℃温水中で洗浄し、その後、110℃で10分乾燥を行い、固体電解質層を形成した。
(e) Repeated operation Next, the first handling frame after the completion of the polymerization promotion treatment was immersed in the monomer solution, dried at room temperature for 2 minutes, and then immersed in the oxidant solution. In this second immersion, no. After the handling frame processing of No. 23, the entire amount of the oxidant solution was changed. 24, no. 25 handling frames were processed. After immersion in the oxidant solution, both were put into the polymerization accelerating tank again. Similarly, after replacing the oxidant solution, the oxidant solution was replaced with a new solution every time 24 handling frames were processed. The polymerization was completed up to the 20th round. The finally produced poly (3,4-ethylenedioxythiophene) was washed in warm water at 50 ° C. and then dried at 110 ° C. for 10 minutes to form a solid electrolyte layer.

上記の重合後の各ハンドリングフレームからテンポラリーバー20本をサンプリングし600個の素子の平均厚みを算出、25ハンドリングフレーム分のデータを採取した。素子厚の結果を表1に、またハンドリングフレームの順番と平均素子厚の推移を図5にまとめて示す。   Twenty temporary bars were sampled from each handling frame after the above polymerization, the average thickness of 600 elements was calculated, and data for 25 handling frames were collected. The results of the element thickness are shown in Table 1, and the order of the handling frames and the transition of the average element thickness are shown together in FIG.

(f)コンデンサの製造
次に、固体電解質層を形成した3mm×4mmの部分を、5質量%アジピン酸アンモニウム溶液中に浸漬し、再化成を行なった。
さらに、上記アルミニウム箔の導電性重合体組成物層を形成した部分にカーボンペーストと銀ペーストを付着させて上記アルミニウム箔を4枚積層し、陰極リード端子を接続した。また、導電性重合体組成物層の形成されていない部分には陽極リード端子を溶接により接続した。この素子をエポキシ樹脂で封止した後、125℃で定格電圧(2V)を印加して2時間エージングを行い、コンデンサを完成させた。
(f) Manufacture of Capacitor Next, a 3 mm × 4 mm portion where the solid electrolyte layer was formed was immersed in a 5 mass% ammonium adipate solution for re-chemical conversion.
Further, a carbon paste and a silver paste were adhered to the portion of the aluminum foil where the conductive polymer composition layer was formed, and the four aluminum foils were laminated, and the cathode lead terminals were connected. Moreover, the anode lead terminal was connected to the part in which the conductive polymer composition layer was not formed by welding. After sealing this element with an epoxy resin, a rated voltage (2 V) was applied at 125 ° C. and aging was performed for 2 hours to complete a capacitor.

実施例2
実施例1の酸化剤溶液の置換量を全体の15%(使用後の酸化剤溶液のうち15%を廃棄し、新液を補給した)にした以外は、実施例1と同様にして、固体電解質層を形成した。実施例1と同様にして測定した結果を表1、図5にまとめて示す。
Example 2
In the same manner as in Example 1, except that the replacement amount of the oxidant solution of Example 1 was 15% of the total (15% of the used oxidant solution was discarded and a new solution was replenished). An electrolyte layer was formed. The results measured in the same manner as in Example 1 are summarized in Table 1 and FIG.

比較例1
25個のハンドリングフレームを処理するごとに、実施例1と同様に酸化剤溶液全量交換を実施して、固体電解質層を形成した。同様にして測定した結果を表1、図5に示す。
Comparative Example 1
Every time 25 handling frames were processed, the entire amount of the oxidant solution was changed in the same manner as in Example 1 to form a solid electrolyte layer. The results measured in the same manner are shown in Table 1 and FIG.

比較例2
25個のハンドリングフレームを処理するごとに、実施例2と同様に酸化剤溶液の15%を新液と交換して、固体電解質層を形成した。同様にして測定した結果を表1、図5に示す。
Comparative Example 2
Each time 25 handling frames were processed, 15% of the oxidant solution was replaced with a new solution in the same manner as in Example 2 to form a solid electrolyte layer. The results measured in the same manner are shown in Table 1 and FIG.

Figure 2007031488
Figure 2007031488

上記表及び図5に示すように、ハンドリングフレームを実質的に1個ずつずらして酸化剤浸漬処理を行なった実施例では、ずらさないで浸漬させた比較例と比べそれぞれ固体電解質層の膜厚が全体として平均化される。比較例では、全体として先頭HFから最終HFまで素子厚みが増加する傾向が見られるが、本発明では、ハンドリングフレームの順序を実質的に変更することによる厚みの増加を防止できる。また、異常に層厚が厚い素子が生じる問題が解消され、全体としての歩留まり向上につながる。さらに、これらの実施例ではハンドリングフレームの搬送順は変えなくてよいため、設備や機器制御に大きな変更が必要ない。   As shown in the above table and FIG. 5, in the examples in which the handling frames were substantially shifted one by one and the oxidant immersion treatment was performed, the film thickness of the solid electrolyte layer was respectively compared with the comparative example immersed without shifting. Averaged as a whole. In the comparative example, the element thickness tends to increase from the first HF to the final HF as a whole, but in the present invention, an increase in thickness due to substantially changing the order of the handling frames can be prevented. In addition, the problem that an element having an abnormally thick layer is eliminated is solved, and the overall yield is improved. Furthermore, in these embodiments, since the handling frame transport order does not have to be changed, no major changes are required in equipment and device control.

実施例3
ハンドリングフレームの処理順序を各サイクルでランダムに変更し、25個のハンドリングフレームを処理するごとに酸化剤溶液全量交換を実施した以外は実施例1と同様にして固体電解質層を形成した。各サイクルの処理順序はコンピュータで適宜生成した乱数により決定した。実施例1と同様に素子のサンプリングを行ない、素子厚を測定した。同様の実験を3回繰り返した。ハンドリングフレーム間の平均素子厚のバラツキ(σ)は2.21であり、平均素子厚は210.5μmであった。
Example 3
A solid electrolyte layer was formed in the same manner as in Example 1 except that the processing order of the handling frames was changed randomly in each cycle, and the entire amount of the oxidant solution was changed every time 25 handling frames were processed. The processing order of each cycle was determined by random numbers generated appropriately by a computer. The element was sampled in the same manner as in Example 1 and the element thickness was measured. The same experiment was repeated three times. The variation (σ) in the average element thickness between the handling frames was 2.21, and the average element thickness was 210.5 μm.

実施例4
ハンドリングフレームの処理順序を各サイクルでランダムに変更し、25個のハンドリングフレームを処理するごとに酸化剤溶液を交換を実施した以外は実施例2と同様にして固体電解質層を形成した。各サイクルの処理順序はコンピュータで適宜生成した乱数により決定した。実施例2と同様に素子のサンプリングを行ない、素子厚を測定した。同様の実験を3回繰り返した。ハンドリングフレーム間の平均素子厚のバラツキ(σ)は2.83であり、平均素子厚は216.2μmであった。
Example 4
A solid electrolyte layer was formed in the same manner as in Example 2 except that the processing order of the handling frames was changed randomly in each cycle, and the oxidant solution was changed every time 25 handling frames were processed. The processing order of each cycle was determined by random numbers generated appropriately by a computer. The element was sampled in the same manner as in Example 2 and the element thickness was measured. The same experiment was repeated three times. The variation (σ) in the average element thickness between the handling frames was 2.83, and the average element thickness was 216.2 μm.

さらに、上記各実施例及び比較例について、完成したコンデンサ(素子4枚積層)を任意に抽出し、初期特性として120Hzにおける容量と損失係数(tanδ×100(%))、等価直列抵抗(ESR)及び漏れ電流を測定した。なお、漏れ電流は定格電圧を印加して1分後に測定した。その結果、いずれの場合も、本発明の製品(実施例製品)は比較例製品に対して優っていた。   Further, for each of the above examples and comparative examples, a completed capacitor (stacked with four elements) is arbitrarily extracted, and the initial characteristics are 120 Hz capacity and loss factor (tan δ × 100 (%)), equivalent series resistance (ESR) And the leakage current was measured. The leakage current was measured 1 minute after applying the rated voltage. As a result, in all cases, the product of the present invention (Example product) was superior to the Comparative product.

本発明の方法によれば、固体電解質層の層厚の制御、特に層厚の平均化が可能になるため、電気特性の均一化された固体電解コンデンサを得ることができる。特に積層時に素子ずれ等の不具合発生が少なく、封止時に未封止製品の生じにくい積層型固体電解コンデンサの製造方法が提供される。なお、本発明の方法は、酸化重合を用いる複合材料全般においても有用である。   According to the method of the present invention, it is possible to control the thickness of the solid electrolyte layer, in particular, to average the layer thickness, so that a solid electrolytic capacitor with uniform electrical characteristics can be obtained. In particular, there is provided a method for manufacturing a multilayer solid electrolytic capacitor that is less likely to cause problems such as device misalignment during stacking and that is less likely to cause unsealed products during sealing. Note that the method of the present invention is also useful in general composite materials using oxidative polymerization.

固体電解コンデンサ用コンデンサ素子の典型的な構造を示す断面図。Sectional drawing which shows the typical structure of the capacitor | condenser element for solid electrolytic capacitors. コンデンサ素子を積層して得られる固体電解コンデンサの典型的な構造を示す断面図。Sectional drawing which shows the typical structure of the solid electrolytic capacitor obtained by laminating | stacking a capacitor | condenser element. 従来法による基材の酸化剤浸漬工程を模式的に示す説明図。Explanatory drawing which shows typically the oxidizing agent immersion process of the base material by a conventional method. 本発明の一態様による基材の酸化剤浸漬工程を模式的に示す説明図。Explanatory drawing which shows typically the oxidizing agent immersion process of the base material by 1 aspect of this invention. 実施例及び比較例におけるハンドリングフレーム(HF)No.1〜N.25の素子厚みの変化を示すグラフ。Handling frame (HF) No. in Examples and Comparative Examples. 1-N. The graph which shows the change of 25 element thickness.

符号の説明Explanation of symbols

1 陽極基体
2 酸化皮膜層
3 固体電解質層
4 導電体層
5 マスキング層
6 コンデンサ素子
7 陽極
8 陰極
9 封止剤
11 基材
12 酸化剤

DESCRIPTION OF SYMBOLS 1 Anode base | substrate 2 Oxide film layer 3 Solid electrolyte layer 4 Conductor layer 5 Masking layer 6 Capacitor element 7 Anode 8 Cathode 9 Sealant 11 Base material 12 Oxidizing agent

Claims (13)

複数の基材にモノマー含有液を付着させ、次いで酸化剤含有液に順次浸漬させる工程を繰り返し行なうことにより基材表面上に重合体層を形成する複合材料の製造方法において、モノマー含有液を付着させた基材の浸漬順序を変えて繰り返しを行なうことを特徴とする複合材料の製造方法。   In a method for manufacturing a composite material in which a polymer layer is formed on a substrate surface by repeatedly attaching a monomer-containing solution to a plurality of substrates and then sequentially immersing the substrate in an oxidizing agent-containing solution, the monomer-containing solution is attached. A method for producing a composite material, characterized in that the immersion is repeated by changing the immersion order of the base material. 前記工程の繰り返しごとに基材の浸漬順序の変更を行なう請求項1に記載の複合材料の製造方法。   The method for producing a composite material according to claim 1, wherein the order of dipping the base material is changed every time the step is repeated. 浸漬順序をランダムに並べ替えることで浸漬順序の変更を行なう請求項1または2に記載の複合材料の製造方法。   The method for producing a composite material according to claim 1 or 2, wherein the immersion order is changed by randomly rearranging the immersion order. 浸漬順序をずらすことで浸漬順序の変更を行なう請求項1または2に記載の複合材料の製造方法。   The method for producing a composite material according to claim 1 or 2, wherein the immersion order is changed by shifting the immersion order. 前記繰り返し工程のいずれかの途中で酸化剤含有液の一部又は全部を新液に交換する請求項1〜4のいずれかに記載の複合材料の製造方法。   The method for producing a composite material according to any one of claims 1 to 4, wherein a part or all of the oxidizing agent-containing liquid is exchanged with a new liquid during any one of the repeating steps. 前記繰り返し工程のいずれかの終了後、次の繰り返し工程の前に酸化剤含有液の一部又は全部を新液に交換する請求項1〜4のいずれかに記載の複合材料の製造方法。   The method for producing a composite material according to any one of claims 1 to 4, wherein a part or all of the oxidant-containing liquid is replaced with a new liquid after completion of any one of the repetitive steps and before the next repetitive step. モノマー含有液を付着させた複数の基材を複数の支持部材に保持し、前記浸漬操作を支持部材ごとに行なう請求項1〜6のいずれかに記載の複合材料の製造方法。   The manufacturing method of the composite material in any one of Claims 1-6 which hold | maintain the some base material to which the monomer containing liquid was made to adhere to several support members, and perform the said immersion operation for every support member. 基材が表面に多孔質層を有する弁作用金属であり、モノマーが導電性重合体のモノマーである請求項1〜7のいずれかに記載の複合材料の製造方法。   The method for producing a composite material according to claim 1, wherein the base material is a valve metal having a porous layer on the surface, and the monomer is a monomer of a conductive polymer. 製造される複合材料が固体電解コンデンサ素子である請求項8に記載の固体電解コンデンサ素子の製造方法。   The method for manufacturing a solid electrolytic capacitor element according to claim 8, wherein the composite material to be manufactured is a solid electrolytic capacitor element. 請求項9に記載の方法により製造される固体電解コンデンサ素子。   A solid electrolytic capacitor element produced by the method according to claim 9. 請求項10に記載の固体電解コンデンサ素子を用いることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor using the solid electrolytic capacitor element according to claim 10. 請求項10に記載のコンデンサ素子を複数積層してなる積層型固体電解コンデンサ。   A multilayer solid electrolytic capacitor comprising a plurality of capacitor elements according to claim 10 stacked. 請求項9に記載の製造方法を採用する固体電解コンデンサ製造装置。   A solid electrolytic capacitor manufacturing apparatus that employs the manufacturing method according to claim 9.
JP2005213104A 2005-07-22 2005-07-22 Manufacturing method of composite material Active JP4720338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213104A JP4720338B2 (en) 2005-07-22 2005-07-22 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213104A JP4720338B2 (en) 2005-07-22 2005-07-22 Manufacturing method of composite material

Publications (2)

Publication Number Publication Date
JP2007031488A true JP2007031488A (en) 2007-02-08
JP4720338B2 JP4720338B2 (en) 2011-07-13

Family

ID=37791123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213104A Active JP4720338B2 (en) 2005-07-22 2005-07-22 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP4720338B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306788A (en) * 1996-05-14 1997-11-28 Matsushita Electric Ind Co Ltd Capacitor and manufacture thereof
JPH10340830A (en) * 1997-06-06 1998-12-22 Nippon Chemicon Corp Solid electrolytic capacitor
JPH10340831A (en) * 1997-06-06 1998-12-22 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH11251193A (en) * 1998-03-03 1999-09-17 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2000012394A (en) * 1997-11-28 2000-01-14 Showa Denko Kk Solid electrolytic capacitor and manufacture of the same
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306788A (en) * 1996-05-14 1997-11-28 Matsushita Electric Ind Co Ltd Capacitor and manufacture thereof
JPH10340830A (en) * 1997-06-06 1998-12-22 Nippon Chemicon Corp Solid electrolytic capacitor
JPH10340831A (en) * 1997-06-06 1998-12-22 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JP2000012394A (en) * 1997-11-28 2000-01-14 Showa Denko Kk Solid electrolytic capacitor and manufacture of the same
JPH11251193A (en) * 1998-03-03 1999-09-17 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Also Published As

Publication number Publication date
JP4720338B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3906043B2 (en) Manufacturing method of solid electrolytic capacitor
JP4899438B2 (en) Solid electrolytic capacitor and manufacturing method thereof
TWI326097B (en)
EP1683168B1 (en) Solid electrolyte capacitor
US6744621B2 (en) Edge formation process for aluminum solid electrolytic capacitor
JP4720338B2 (en) Manufacturing method of composite material
JP4826198B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JP2007103406A (en) Manufacturing method of solid electrolytic capacitor
JP5029937B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007005553A (en) Solid electrolytic capacitor and its manufacturing method
JP2006324656A (en) Solid electrolytic capacitor and its manufacturing method
JPH11238648A (en) Solid electrolytic capacitor and its manufacture
JP5496708B2 (en) Manufacturing method of solid electrolytic capacitor
KR100591401B1 (en) Manufacturing method of tantalum condenser
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH0494108A (en) Manufacture of solid electrolytic capacitor
JPH11307396A (en) Manufacture of solid electrolytic capacitor
TWI469163B (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
JPH09293638A (en) Manufacture of solid electrolytic capacitor
JP2003109850A (en) Method for manufacturing solid electrolytic capacitor
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element
KR100633178B1 (en) Manufacturing method of tantalum condenser
JP2003092232A (en) Method for manufacturing solid electrolytic capacitor
JPH11251193A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150