JPH10340830A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH10340830A
JPH10340830A JP16523197A JP16523197A JPH10340830A JP H10340830 A JPH10340830 A JP H10340830A JP 16523197 A JP16523197 A JP 16523197A JP 16523197 A JP16523197 A JP 16523197A JP H10340830 A JPH10340830 A JP H10340830A
Authority
JP
Japan
Prior art keywords
electrode foil
capacitor element
electrolytic capacitor
oxidizing agent
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16523197A
Other languages
Japanese (ja)
Other versions
JP3978544B2 (en
Inventor
Toshiyuki Murakami
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP16523197A priority Critical patent/JP3978544B2/en
Priority to US09/445,040 priority patent/US6208503B1/en
Priority to DE69836554T priority patent/DE69836554T2/en
Priority to EP98923142A priority patent/EP1024509B1/en
Priority to PCT/JP1998/002499 priority patent/WO1998056021A1/en
Publication of JPH10340830A publication Critical patent/JPH10340830A/en
Application granted granted Critical
Publication of JP3978544B2 publication Critical patent/JP3978544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor of a large capacitance with superior electrical characteristics by generating a fine and uniform solid electro lyte layer composed of a conductive high polymer inside a wound capacitor element. SOLUTION: This capacitor element 10, for which an anode electrode foil 1 and a cathode electrode foil 2 are wound via separators 3 is impregnated with 3,4-ethylene dioxithiophene, and the oxidant of a density seceeding 40 wt.% to a solvent and polyethylene dioxithiophene generated by chemical polymerization reaction is held by the separator 3. A degree of polymerization is raised by the oxidant, and a fine and uniform solid electrolyte layer is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解コンデ
ンサおよびその製造方法にかかり、特に導電性高分子を
電解質に用いた固体電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to a solid electrolytic capacitor using a conductive polymer as an electrolyte.

【0002】[0002]

【従来の技術】電解コンデンサは、タンタル、アルミニ
ウム等の弁作用金属からなるとともに微細孔やエッチン
グピットを備える陽極電極の表面に、誘電体となる酸化
皮膜層を形成し、この酸化皮膜層から電極を引き出した
構成からなる。
2. Description of the Related Art An electrolytic capacitor is formed by forming an oxide film layer serving as a dielectric on the surface of an anode electrode made of a valve metal such as tantalum or aluminum and having fine holes and etching pits. Is drawn out.

【0003】そして、酸化皮膜層からの電極の引出し
は、導電性を有する電解質層により行っている。したが
って、電解コンデンサにおいては電解質層が真の陰極を
担うことになる。例えば、アルミニウム電解コンデンサ
では、液状の電解質を真の電極として用い、陰極電極は
この液状電解質と外部端子との電気的な接続を担ってい
るにすぎない。
[0003] The extraction of the electrode from the oxide film layer is performed by a conductive electrolyte layer. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. For example, in an aluminum electrolytic capacitor, a liquid electrolyte is used as a true electrode, and a cathode electrode only serves to electrically connect the liquid electrolyte to an external terminal.

【0004】真の陰極として機能する電解質層は、酸化
皮膜層との密着性、緻密性、均一性などが求められる。
特に、陽極電極の微細孔やエッチングピットの内部にお
ける密着性が電気的な特性に大きな影響を及ぼしてお
り、従来数々の電解質層が提案されている。
[0004] The electrolyte layer functioning as a true cathode is required to have adhesion, denseness, uniformity, etc. with the oxide film layer.
In particular, the adhesion in the fine holes of the anode electrode and the inside of the etching pits has a great effect on the electrical characteristics, and a number of electrolyte layers have been proposed.

【0005】固体電解コンデンサは、イオン伝導である
ために高周波領域でのインピーダンス特性に欠ける液状
の電解質の替わりに導電性を有する固体の電解質を用い
るもので、なかでも二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いる。
The solid electrolytic capacitor uses a solid electrolyte having conductivity instead of a liquid electrolyte which lacks impedance characteristics in a high frequency range because of ionic conduction. Among them, manganese dioxide, 7, 7, and 8 are used. , 8-
Tetracyanoquinodimethane (TCNQ) complexes are known.

【0006】二酸化マンガンからなる固体電解質層は、
硝酸マンガン水溶液に、タンタルの焼結体からなる陽極
素子を浸漬し、300℃〜400℃前後の温度で熱分解
して生成している。このような固体電解質層を用いたコ
ンデンサでは、硝酸マンガンの熱分解の際に酸化皮膜層
が破損し易く、そのため漏れ電流が大きくなる傾向が見
られ、また二酸化マンガン自体の比抵抗も高いためにイ
ンピーダンス特性において充分満足できる特性を得るこ
とは困難であった。また熱処理によるリード線の損傷も
あり、後工程として接続用の外部端子を別途設ける必要
があった。
[0006] The solid electrolyte layer made of manganese dioxide is
The anode element made of a sintered body of tantalum is immersed in an aqueous solution of manganese nitrate, and is produced by thermal decomposition at a temperature of about 300 to 400 ° C. In a capacitor using such a solid electrolyte layer, the oxide film layer is easily damaged during the thermal decomposition of manganese nitrate, which tends to increase the leakage current, and the specific resistance of manganese dioxide itself is high. It has been difficult to obtain sufficiently satisfactory impedance characteristics. In addition, the lead wire was damaged by the heat treatment, and it was necessary to separately provide an external terminal for connection as a later process.

【0007】TCNQ錯体を用いた固体電解コンデンサ
としては、特開昭58−191414号公報に記載され
たものなどが知られており、TCNQ錯体を熱溶融して
陽極電極に浸漬、塗布して固体電解質層を形成してい
る。このTCNQ錯体は、導電性が高く、周波数特性や
温度特性において良好な結果を得ることができる。
As a solid electrolytic capacitor using a TCNQ complex, one disclosed in Japanese Patent Application Laid-Open No. 58-191414 is known. An electrolyte layer is formed. This TCNQ complex has high conductivity and can obtain good results in frequency characteristics and temperature characteristics.

【0008】しかし、TCNQ錯体は溶融したのち短時
間で絶縁体に移行する性質があるため、コンデンサの製
造過程における温度管理が困難であるほか、TCNQ錯
体自体が耐熱性に欠けるため、プリント基板に実装する
際の半田熱により著しい特性変動が見られる。
However, the TCNQ complex has a property of being transferred to an insulator in a short time after being melted, which makes it difficult to control the temperature in the manufacturing process of the capacitor. A remarkable characteristic change is seen due to solder heat at the time of mounting.

【0009】これら二酸化マンガンやTCNQ錯体の持
つ不都合を解決するため、ポリピロール等の導電性高分
子を固体電解質層として用いることが試みられている。
In order to solve the disadvantages of the manganese dioxide and the TCNQ complex, attempts have been made to use a conductive polymer such as polypyrrole as the solid electrolyte layer.

【0010】ポリピロールに代表される導電性高分子
は、主に化学的酸化重合法(化学重合)や電解酸化重合
法(電解重合)により生成されるが、化学重合では、強
度の強い皮膜を緻密に生成することは困難であった。一
方、電解重合では、皮膜を生成する対象物に電圧を印加
する必要があり、そのため表面に絶縁体である酸化皮膜
層が形成された電解コンデンサ用の陽極電極に適用する
ことは困難で、酸化皮膜層の表面に、予め導電性のプレ
コート層、例えば酸化剤を用いて化学重合した導電性高
分子膜をプレコート層とし、その後このプレコート層を
電極として電解重合による電解質層を形成する方法など
が提案されている(特開昭63−173313号公報、
特開昭63−158829号公報:二酸化マンガンをプ
レコート層とする)。
[0010] The conductive polymer represented by polypyrrole is mainly produced by a chemical oxidation polymerization method (chemical polymerization) or an electrolytic oxidation polymerization method (electrolysis polymerization). Was difficult to produce. On the other hand, in the case of electrolytic polymerization, it is necessary to apply a voltage to an object on which a film is to be formed, and therefore, it is difficult to apply the method to an anode electrode for an electrolytic capacitor having an oxide film layer as an insulator formed on the surface. On the surface of the coating layer, there is a method in which a conductive precoat layer, for example, a conductive polymer film chemically polymerized using an oxidizing agent is used as a precoat layer, and then the electrolyte layer is formed by electrolytic polymerization using the precoat layer as an electrode. It has been proposed (JP-A-63-173313,
JP-A-63-158829: Manganese dioxide is used as a precoat layer).

【0011】しかし、予めプレコート層を形成するため
製造工程が煩雑となるほか、電解重合では、陽極電極の
被皮膜面に配置した重合用の外部電極の近傍から固体電
解質層が生成されるため、広範囲にわたって均一な厚さ
の導電性高分子膜を連続的に生成することは非常に困難
であった。
However, the manufacturing process becomes complicated because the pre-coat layer is formed in advance, and in the electrolytic polymerization, a solid electrolyte layer is generated from the vicinity of the external electrode for polymerization arranged on the surface of the anode electrode to be coated. It has been very difficult to continuously produce a conductive polymer film having a uniform thickness over a wide range.

【0012】そこで、箔状の陽極電極及び陰極電極を、
セパレータを介して巻き取って、いわゆる巻回型のコン
デンサ素子を形成し、このコンデンサ素子にピロール等
のモノマー溶液と酸化剤を含浸して化学重合のみにより
生成した導電性高分子膜からなる電解質層を形成するこ
とを試みた。
Therefore, a foil-like anode electrode and a cathode electrode are
An electrolyte layer consisting of a conductive polymer film formed only by chemical polymerization by impregnating a monomer solution such as pyrrole and an oxidizing agent into this capacitor element by winding it up through a separator to form a so-called winding type capacitor element Tried to form

【0013】このような巻回型のコンデンサ素子は、ア
ルミニウム電解コンデンサにおいて周知であるが、導電
性高分子層をセパレータで保持することで電解重合の煩
雑さを回避するとともに、併せて表面積の大きい箔状の
電極により容量を拡大させることが期待された。更に、
巻回型のコンデンサ素子を用いることで、両極の電極と
セパレータが一定の緊締力で保持され、両極の電極と電
解質層との密着性に貢献することが期待された。
[0013] Such a wound type capacitor element is well known for an aluminum electrolytic capacitor, but by holding a conductive polymer layer with a separator, it is possible to avoid the complication of electrolytic polymerization and also to increase the surface area. It was expected that the capacity would be expanded by the foil-like electrode. Furthermore,
It was expected that the use of a wound-type capacitor element would maintain both electrodes and the separator with a constant tightening force and contribute to the adhesion between the electrodes and the electrolyte layer.

【0014】しかし、モノマー溶液と酸化剤とを混合し
た混合溶液をコンデンサ素子に含浸したところ、コンデ
ンサ素子の内部にまで固体電解質層が形成されておら
ず、期待された電気的特性を得ることはできないことが
判明した。
However, when a capacitor element is impregnated with a mixed solution obtained by mixing a monomer solution and an oxidizing agent, the solid electrolyte layer is not formed inside the capacitor element, and the expected electrical characteristics cannot be obtained. It turned out to be impossible.

【0015】そこで、モノマー溶液と酸化剤を別々に含
浸したり、反応の際の溶液の重合温度を低くしたとこ
ろ、ある程度良好な電気的特性が得られたが、耐圧特性
だけは不充分であるという問題点があった。その原因
は、これらの手段によっても、コンデンサ素子の端面付
近に生成された固体電解質層がそれ以降の溶液の浸透を
妨害してその内部にまで充分な溶液が浸透しておらず、
結果として緻密で均一な固体電解質層を形成するには至
っていないことが原因と考えられた。また、低温で化学
重合をする場合、厳重な温度制御が必要であるほか、製
造装置が複雑になり、結果として製品コストが高くなっ
てしまう問題点もあった。
Therefore, when the monomer solution and the oxidizing agent are separately impregnated or the polymerization temperature of the solution at the time of the reaction is lowered, good electrical properties are obtained to some extent, but only the pressure resistance is insufficient. There was a problem. The cause is that even with these means, the solid electrolyte layer generated near the end face of the capacitor element hinders the subsequent permeation of the solution, and a sufficient solution has not penetrated into the inside,
As a result, it was considered that the reason was that a dense and uniform solid electrolyte layer was not formed. In addition, when chemical polymerization is carried out at a low temperature, strict temperature control is required, and the production apparatus becomes complicated, resulting in an increase in product cost.

【0016】一方で、各種の導電性高分子について検討
を重ねたところ、反応速度が緩やかで、かつ陽極電極の
酸化皮膜層との密着性に優れたポリエチレンジオキシチ
オフェン(PEDT)に着目し(特開平2−15611
号公報)、その結果、陽極電極箔と陰極電極箔とを、セ
パレータを介して巻回したコンデンサ素子に、モノマー
と酸化剤とを含浸し、その後緩やかに起きるモノマーと
酸化剤との化学重合反応で固体電解質であるポリエチレ
ンジオキシチオフェンをコンデンサ素子内部で生成させ
ることを特徴とする発明を出願した(特願平8−131
374号)。
On the other hand, various studies were conducted on various conductive polymers. As a result, attention was paid to polyethylenedioxythiophene (PEDT), which has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode ( JP-A-2-15611
As a result, a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator is impregnated with a monomer and an oxidizing agent, and a chemical polymerization reaction between the monomer and the oxidizing agent that occurs slowly thereafter. (Japanese Patent Application No. 8-131) in which a solid electrolyte, polyethylenedioxythiophene, is produced inside the capacitor element.
374).

【0017】[0017]

【発明が解決しようとする課題】この発明によれば、ポ
リエチレンジオキシチオフェンの重合反応速度が緩やか
なため、巻回型のコンデンサ素子の内部に、緻密で均一
な導電性高分子からなる固体電解質層が生成され、電気
的特性に優れかつ大容量の固体電解コンデンサを得るこ
とができる。
According to the present invention, since the polymerization reaction rate of polyethylenedioxythiophene is slow, a solid electrolyte made of a dense and uniform conductive polymer is provided inside a wound capacitor element. A layer is generated, and a solid electrolytic capacitor having excellent electric characteristics and a large capacity can be obtained.

【0018】しかし、このようなポリエチレンジオキシ
チオフェンを固体電解質に用いた固体電解コンデンサで
あっても、なおESR特性において満足できるものでは
なかった。また、静電容量や寿命特性のバラツキもなお
大きいことから、その原因としては、ポリマーの重合度
がなお十分ではなく、コンデンサ素子内での固体電解質
が十分に緻密かつ均一に生成されていないことが考えら
れた。
However, even with such a solid electrolytic capacitor using polyethylene dioxythiophene as a solid electrolyte, the ESR characteristics have not been satisfactory. In addition, since the variation in capacitance and life characteristics is still large, the cause is that the degree of polymerization of the polymer is still insufficient, and the solid electrolyte in the capacitor element is not sufficiently dense and uniform. Was thought.

【0019】この発明は、コンデンサ素子内でのポリエ
チレンジオキシチオフェンからなる固体電解質を緻密で
均一に生成することによりESR特性を向上させること
を目的としている。
An object of the present invention is to improve the ESR characteristics by forming a solid electrolyte composed of polyethylene dioxythiophene in a capacitor element densely and uniformly.

【0020】[0020]

【課題を解決するための手段】この発明は、陽極電極箔
と陰極電極箔とをセパレータを介して巻回したコンデン
サ素子に、3,4−エチレンジオキシチオフェンと溶媒
に対して40重量%を超える濃度の酸化剤とを含浸して
化学重合反応により生成したポリエチレンジオキシチオ
フェンをセパレータで保持したことを特徴としている。
また、ここで用いる溶媒は、ブタノールであり、酸化剤
はp−トルエンスルホン酸第二鉄、ドデシルベンゼンス
ルホン酸第二鉄、塩化第二鉄から選択されたことを特徴
としている。
According to the present invention, a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator contains 40% by weight of 3,4-ethylenedioxythiophene and a solvent. It is characterized in that polyethylenedioxythiophene produced by a chemical polymerization reaction by impregnating with an oxidizing agent having a concentration higher than that is held by a separator.
The solvent used herein is butanol, and the oxidizing agent is selected from ferric p-toluenesulfonate, ferric dodecylbenzenesulfonate, and ferric chloride.

【0021】[0021]

【発明の実施の形態】次いで、本発明の実施の形態を図
面を用いて説明する。図1は、本発明の固体電解コンデ
ンサで、アルミニウム等の弁作用金属からなり表面に酸
化皮膜層が形成された陽極電極箔1と、陰極電極箔2と
を、ビニロン繊維を主体とする不織布からなるセパレー
タ3を介して巻回してコンデンサ素子10を形成する。
そして、このコンデンサ素子10に3,4−エチレンジ
オキシチオフェンと溶媒中の酸化剤とを含浸し、コンデ
ンサ素子10中での化学重合反応により生成したポリエ
チレンジオキシチオフェンを固体電解質層5としてセパ
レータ3で保持している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a solid electrolytic capacitor of the present invention, in which an anode electrode foil 1 made of a valve metal such as aluminum and having an oxide film layer formed on its surface, and a cathode electrode foil 2 are made of a nonwoven fabric mainly composed of vinylon fibers. The capacitor element 10 is formed by being wound with the separator 3 interposed therebetween.
Then, the capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent in a solvent, and the polyethylenedioxythiophene generated by the chemical polymerization reaction in the capacitor element 10 is used as the solid electrolyte layer 5 as the separator 3. Holding in.

【0022】陽極電極箔1は、アルミニウム等の弁作用
金属からなり、図2に示すように、その表面を、塩化物
水溶液中での電気化学的なエッチング処理により粗面化
して多数のエッチングピット8を形成している。更にこ
の陽極電極箔1の表面には、ホウ酸アンモニウム等の水
溶液中で電圧を印加して誘電体となる酸化皮膜層4を形
成している。
The anode electrode foil 1 is made of a valve metal such as aluminum. As shown in FIG. 2, the surface of the anode electrode foil 1 is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits. 8 are formed. Further, on the surface of the anode electrode foil 1, a voltage is applied in an aqueous solution of ammonium borate or the like to form an oxide film layer 4 serving as a dielectric.

【0023】陰極電極箔2は、陽極電極箔1と同様にア
ルミニウム等からなり、表面にエッチング処理のみが施
されているものを用いる。
The cathode electrode foil 2 is made of aluminum or the like, similarly to the anode electrode foil 1, and has a surface subjected to only etching treatment.

【0024】陽極電極箔1及び陰極電極箔2にはそれぞ
れの電極を外部に接続するためのリード線6、7が、ス
テッチ、超音波溶接等の公知の手段により接続されてい
る。このリード線6、7は、アルミニウム等からなり、
陽極電極箔1、陰極電極箔2との接続部と外部との電気
的な接続を担う外部接続部からなり、巻回したコンデン
サ素子10の端面から導出される。
Lead wires 6 and 7 for connecting the respective electrodes to the outside are connected to the anode electrode foil 1 and the cathode electrode foil 2 by known means such as stitching and ultrasonic welding. The lead wires 6 and 7 are made of aluminum or the like,
It comprises an external connection portion for electrically connecting the connection portion between the anode electrode foil 1 and the cathode electrode foil 2 and the outside, and is led out from the end face of the wound capacitor element 10.

【0025】セパレータ3は、ビニロン繊維を主体とす
る不織布で、この他にビニロン繊維と、ガラス繊維、ポ
リエステル繊維、ナイロン繊維、レーヨン繊維、マニラ
紙等の紙繊維などとを混抄した不織布を用いることもで
きる。なお、上記不織布は、坪量が6〜36g/m2
繊維径5〜30μm、厚さ30〜150μm、密度0.
2〜0.5g/cm3 のものを用いている。
The separator 3 is a non-woven fabric mainly composed of vinylon fibers. In addition, a non-woven fabric obtained by mixing vinylon fibers with paper fibers such as glass fibers, polyester fibers, nylon fibers, rayon fibers, and manila paper is used. Can also. The nonwoven fabric has a basis weight of 6 to 36 g / m 2 ,
Fiber diameter 5-30 μm, thickness 30-150 μm, density 0.
Those having a density of 2 to 0.5 g / cm 3 are used.

【0026】コンデンサ素子10は、上記の陽極電極箔
1と陰極電極箔2とを、セパレータ3を間に挟むように
して巻き取って形成している。両極電極箔1、2の寸法
は、製造する固体電解コンデンサの仕様に応じて任意で
あり、セパレータ3も両極電極箔1、2の寸法に応じて
これよりやや大きい幅寸法のものを用いればよい。
The capacitor element 10 is formed by winding the above-mentioned anode electrode foil 1 and cathode electrode foil 2 with the separator 3 interposed therebetween. The dimensions of the bipolar electrode foils 1 and 2 are arbitrary according to the specifications of the solid electrolytic capacitor to be manufactured, and the separator 3 may have a width slightly larger than this according to the dimensions of the bipolar electrode foils 1 and 2. .

【0027】モノマーである3,4−エチレンジオキシ
チオフェンは、特開平2−15611号公報等により開
示された公知の製法により得ることができる。また、酸
化剤は、溶媒であるブタノールに溶解したp−トルエン
スルホン酸第二鉄を用いており、酸化剤はブタノールに
対して40重量%を超える濃度であると良好な結果が得
られた。その理由は明らかではないが、高濃度の酸化剤
が化学重合反応を促進して重合度を高め、結果として固
体電解質層の導電性が改善されるためと思われる。
The monomer, 3,4-ethylenedioxythiophene, can be obtained by a known production method disclosed in Japanese Patent Application Laid-Open No. 2-15611. As the oxidizing agent, ferric p-toluenesulfonate dissolved in butanol as a solvent was used, and good results were obtained when the concentration of the oxidizing agent exceeded 40% by weight based on butanol. Although the reason is not clear, it is considered that a high concentration of the oxidizing agent promotes the chemical polymerization reaction to increase the degree of polymerization, and as a result, the conductivity of the solid electrolyte layer is improved.

【0028】ブタノールに対する酸化剤の配分は、40
重量%を超える濃度としたが、40重量%以下では十分
な静電容量特性やESR特性が得られない。また実質的
な上限は60重量%程度で、これを超える酸化剤は合成
が著しく困難になる。所望の特性が得られ、かつ合成も
容易な範囲としては50重量%ないし55重量%の配分
が望ましい。なお、この酸化剤におけるブタノールとp
−トルエンスルホン酸第二鉄の比率は任意でよいが、配
合比は1:3ないし1:15の範囲が好適である。
The distribution of oxidant to butanol is 40
Although the concentration is more than 40% by weight, sufficient capacitance characteristics and ESR characteristics cannot be obtained if the concentration is less than 40% by weight. Further, the substantial upper limit is about 60% by weight, and the oxidizing agent exceeding the upper limit makes the synthesis extremely difficult. A range of 50% by weight to 55% by weight is desirable as a range in which desired characteristics can be obtained and synthesis is easy. In addition, butanol and p in this oxidizing agent
The ratio of ferric toluenesulfonate may be arbitrary, but the compounding ratio is preferably in the range of 1: 3 to 1:15.

【0029】[0029]

【実施例】次に、発明における固体電解コンデンサの製
造方法と、それによって得られる固体電解コンデンサに
ついて具体的に説明する。陽極電極箔1及び陰極電極箔
2は、弁作用金属、例えばアルミニウム、タンタルから
なり、その表面には予めエッチング処理が施されて表面
積が拡大されている。陽極電極箔1については、更に化
成処理が施され、表面に酸化アルミニウムからなる酸化
皮膜層4が形成されている。この陽極電極箔1及び陰極
電極箔2を、ビニロン繊維を主体とする不織布からなる
セパレータ3を介して巻回し、コンデンサ素子10を得
る。
Next, a method for manufacturing a solid electrolytic capacitor according to the present invention and a solid electrolytic capacitor obtained by the method will be specifically described. The anode electrode foil 1 and the cathode electrode foil 2 are made of a valve metal, for example, aluminum or tantalum, and the surfaces thereof have been subjected to an etching treatment in advance to increase the surface area. The anode electrode foil 1 is further subjected to a chemical conversion treatment to form an oxide film layer 4 made of aluminum oxide on the surface. The anode electrode foil 1 and the cathode electrode foil 2 are wound via a separator 3 made of a non-woven fabric mainly composed of vinylon fibers to obtain a capacitor element 10.

【0030】この実施例において、コンデンサ素子10
は、径寸法が4φ、縦寸法が7mm、また定格電圧は
6.3WV、定格静電容量は33μFのものを用いてい
る。なおコンデンサ素子10の陽極電極箔1、陰極電極
箔2にはそれぞれリード線6、7が電気的に接続され、
コンデンサ素子10の端面から突出している。
In this embodiment, the capacitor element 10
Has a diameter of 4φ, a vertical dimension of 7 mm, a rated voltage of 6.3 WV, and a rated capacitance of 33 μF. Note that lead wires 6 and 7 are electrically connected to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 10, respectively.
It protrudes from the end face of the capacitor element 10.

【0031】次いで、コンデンサ素子10に、3,4−
エチレンジオキシチオフェンと酸化剤とを含浸する。酸
化剤は、ブタノールに対して52重量%の配分で溶解し
たp−トルエンスルホン酸第二鉄を用い、3,4−エチ
レンジオキシチオフェンに対して酸化剤を1:5で含浸
して固体電解質であるポリエチレンジオキシチオフェン
を生成する。
Next, 3,4-
Impregnation with ethylenedioxythiophene and oxidizing agent. As the oxidizing agent, ferric p-toluenesulfonate dissolved in butanol in a proportion of 52% by weight was used, and 3,4-ethylenedioxythiophene was impregnated with the oxidizing agent at a ratio of 1: 5 to obtain solid electrolyte. To produce polyethylenedioxythiophene.

【0032】このようにして陽極電極箔1と陰極電極箔
2との間に介在したセパレータ3に固体電解質層5が形
成されたコンデンサ素子10は、例えばその外周に外装
樹脂を被覆して固体電解コンデンサを形成する。
The capacitor element 10 in which the solid electrolyte layer 5 is formed on the separator 3 interposed between the anode electrode foil 1 and the cathode electrode foil 2 as described above, for example, by coating the outer periphery with an exterior resin, Form a capacitor.

【0033】次に、実施例による固体電解コンデンサに
おいて、溶媒中の酸化剤の配合による特性の変化を示
す。ここでは、実施例によるコンデンサ素子に、酸化剤
としてブタノールに40重量%〜60重量%の配分で溶
解したp−トルエンスルホン酸第二鉄を用いた。その結
果を以下に示す。
Next, in the solid electrolytic capacitor according to the embodiment, changes in characteristics due to the blending of the oxidizing agent in the solvent will be described. Here, ferric p-toluenesulfonate dissolved in butanol at a distribution of 40% by weight to 60% by weight was used as the oxidizing agent for the capacitor element according to the example. The results are shown below.

【0034】 [0034]

【0035】表1から明らかなように、溶媒に対してp
−トルエンスルホン酸第二鉄を40重量%溶解した酸化
剤では十分なESR特性が得られず、また静電容量特性
においても、定格静電容量に対して93%程度の出現率
しかない。一方、40重量%を超える濃度の酸化剤で
は、ESR特性が飛躍的に向上しており、コンデンサ素
子内の固体電解質が緻密で均一に生成されていることが
理解される。
As is evident from Table 1, the solvent is p
-An oxidizing agent in which ferric toluenesulfonate is dissolved in an amount of 40% by weight does not provide sufficient ESR characteristics, and has only about 93% of the rated capacitance with respect to the capacitance. On the other hand, when the concentration of the oxidizing agent exceeds 40% by weight, the ESR characteristics are remarkably improved, and it is understood that the solid electrolyte in the capacitor element is dense and uniform.

【0036】[0036]

【発明の効果】この発明は、固体電解質として、3,4
−エチレンジオキシチオフェンと、溶媒に対して40重
量%を超える濃度の酸化剤とによる化学重合反応により
生成したポリエチレンジオキシチオフェンをセパレータ
で保持しているので、コンデンサ素子の内部における固
体電解質層が緻密かつ均一であり、その結果としてES
R特性に優れた固体電解コンデンサを得ることができ
る。
The present invention provides a solid electrolyte comprising 3, 4
-Since the polyethylenedioxythiophene produced by the chemical polymerization reaction of ethylenedioxythiophene and the oxidizing agent having a concentration exceeding 40% by weight with respect to the solvent is held by the separator, the solid electrolyte layer inside the capacitor element is Dense and uniform, resulting in an ES
A solid electrolytic capacitor having excellent R characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いるコンデンサ素子の分解斜視図で
ある。
FIG. 1 is an exploded perspective view of a capacitor element used in the present invention.

【図2】本発明で用いる陽極電極箔の概念図である。FIG. 2 is a conceptual diagram of an anode electrode foil used in the present invention.

【符号の説明】[Explanation of symbols]

1 陽極電極箔 2 陰極電極箔 3 セパレータ 4 酸化皮膜層 5 固体電解質層 6、7 リード線 8 エッチングピット 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4 Oxide film layer 5 Solid electrolyte layer 6, 7 Lead wire 8 Etching pit 10 Capacitor element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に、3,4−エチレン
ジオキシチオフェンと、溶媒に対して40重量%を超え
る濃度の酸化剤とを含浸して化学重合反応により生成し
たポリエチレンジオキシチオフェンをセパレータで保持
した固体電解コンデンサ。
1. A capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is provided with 3,4-ethylenedioxythiophene and an oxidizing agent having a concentration exceeding 40% by weight based on the solvent. A solid electrolytic capacitor in which polyethylene dioxythiophene generated by a chemical polymerization reaction by impregnation is held by a separator.
【請求項2】 前記溶媒がブタノールである請求項1記
載の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein said solvent is butanol.
【請求項3】 酸化剤がp−トルエンスルホン酸第二
鉄、ドデシルベンゼンスルホン酸第二鉄、塩化第二鉄か
ら選択された請求項1記載の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein the oxidizing agent is selected from ferric p-toluenesulfonate, ferric dodecylbenzenesulfonate, and ferric chloride.
JP16523197A 1997-06-06 1997-06-06 Solid electrolytic capacitor Expired - Lifetime JP3978544B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16523197A JP3978544B2 (en) 1997-06-06 1997-06-06 Solid electrolytic capacitor
US09/445,040 US6208503B1 (en) 1997-06-06 1998-05-06 Solid electrolytic capacitor and process for producing the same
DE69836554T DE69836554T2 (en) 1997-06-06 1998-06-05 FIXED ELECTROLYTE CONDENSER AND ITS MANUFACTURING METHOD
EP98923142A EP1024509B1 (en) 1997-06-06 1998-06-05 Solid electrolytic capacitor and process for producing the same
PCT/JP1998/002499 WO1998056021A1 (en) 1997-06-06 1998-06-05 Solid electrolytic capacitor and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16523197A JP3978544B2 (en) 1997-06-06 1997-06-06 Solid electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001066627A Division JP4642257B2 (en) 2001-03-09 2001-03-09 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH10340830A true JPH10340830A (en) 1998-12-22
JP3978544B2 JP3978544B2 (en) 2007-09-19

Family

ID=15808358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16523197A Expired - Lifetime JP3978544B2 (en) 1997-06-06 1997-06-06 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3978544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110466A (en) * 2000-09-29 2002-04-12 Nippon Chemicon Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2002110467A (en) * 2000-09-29 2002-04-12 Nippon Chemicon Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2002260965A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2007031488A (en) * 2005-07-22 2007-02-08 Showa Denko Kk Method for producing composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110466A (en) * 2000-09-29 2002-04-12 Nippon Chemicon Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2002110467A (en) * 2000-09-29 2002-04-12 Nippon Chemicon Corp Solid-state electrolytic capacitor and method of manufacturing the same
JP2002260965A (en) * 2000-12-28 2002-09-13 Nippon Chemicon Corp Solid electrolytic capacitor and manufacturing method therefor
JP2007031488A (en) * 2005-07-22 2007-02-08 Showa Denko Kk Method for producing composite material
JP4720338B2 (en) * 2005-07-22 2011-07-13 株式会社村田製作所 Manufacturing method of composite material

Also Published As

Publication number Publication date
JP3978544B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
JP2009267385A (en) Method of manufacturing solid-state electrolytic capacitor
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP2000269070A (en) Manufacturing of capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP4642257B2 (en) Solid electrolytic capacitor
JP3911785B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP4513043B2 (en) Solid electrolytic capacitor having through-hole in cathode foil and method for producing the same
JP3800829B2 (en) Capacitor manufacturing method
JP4513044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JP2001230155A (en) Solid electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term