JP2001237145A - Manufacturing method of solid-state electrolytic capacitor - Google Patents

Manufacturing method of solid-state electrolytic capacitor

Info

Publication number
JP2001237145A
JP2001237145A JP2001065013A JP2001065013A JP2001237145A JP 2001237145 A JP2001237145 A JP 2001237145A JP 2001065013 A JP2001065013 A JP 2001065013A JP 2001065013 A JP2001065013 A JP 2001065013A JP 2001237145 A JP2001237145 A JP 2001237145A
Authority
JP
Japan
Prior art keywords
electrode foil
solvent
capacitor element
polymerization reaction
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001065013A
Other languages
Japanese (ja)
Inventor
Atsuko Kaneko
敦子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001065013A priority Critical patent/JP2001237145A/en
Publication of JP2001237145A publication Critical patent/JP2001237145A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state electrolytic capacitor by which a solid-state electrolytic layer composed of fine uniform conductive molecules is formed into a winding type capacitor element and which has excellent electrical characteristics and large capacitance. SOLUTION: The capacitor element 10 in which an anode electrode foil 1 and a cathode electrode foil 2 are wound through separators 3 is impregnated with a polymerizable monomer and an oxidizing agent in a solvent, and the conductive high molecules are formed by a chemical polymerization reaction by at least twice or more of heat treatment. The chemical polymerization reaction can be promoted by stages by executing at least twice or more of heat treatment for a fixed time, the solid-state electrolytic layer is formed into the etching pit 8 of the anode electrode foil 1, and the residue of the solvent can also be removed effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解コンデ
ンサの製造方法にかかり、特に導電性高分子を電解質に
用いた固体電解コンデンサに関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly, to a solid electrolytic capacitor using a conductive polymer as an electrolyte.

【0002】[0002]

【従来の技術】固体電解コンデンサに用いる固体電解質
としては、二酸化マンガンや7、7、8、8−テトラシ
アノキノジメタン(TCNQ)錯体が知られている。
2. Description of the Related Art Manganese dioxide and a complex of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are known as solid electrolytes used for solid electrolytic capacitors.

【0003】二酸化マンガンからなる固体電解質層は、
硝酸マンガン水溶液に、タンタルの焼結体からなる陽極
素子を浸漬し、300℃〜400℃前後の温度で熱分解
して生成している。このような固体電解質層を用いたコ
ンデンサでは、硝酸マンガンの熱分解の際に酸化皮膜層
が破損し易く、そのため漏れ電流が大きくなる傾向が見
られ、また二酸化マンガン自体の比抵抗も高いためにイ
ンピーダンス特性において充分満足できる特性を得るこ
とは困難であった。また熱処理によるリード線の損傷も
あり、後工程として接続用の外部端子を別途設ける必要
があった。
A solid electrolyte layer made of manganese dioxide is
The anode element made of a sintered body of tantalum is immersed in an aqueous solution of manganese nitrate, and is produced by thermal decomposition at a temperature of about 300 to 400 ° C. In such a capacitor using a solid electrolyte layer, the oxide film layer is easily damaged during the thermal decomposition of manganese nitrate, which tends to increase the leakage current, and the specific resistance of manganese dioxide itself is high. It has been difficult to obtain sufficiently satisfactory impedance characteristics. In addition, the lead wire was damaged by the heat treatment, and it was necessary to separately provide an external terminal for connection as a later process.

【0004】TCNQ錯体を用いた固体電解コンデンサ
としては、特開昭58−191414号公報に記載され
たものなどが知られており、TCNQ錯体を熱溶融して
陽極電極に浸漬、塗布して固体電解質層を形成してい
る。このTCNQ錯体は、導電性が高く、周波数特性や
温度特性において良好な結果を得ることができる。しか
し、TCNQ錯体は溶融したのち短時間で絶縁体に移行
する性質があるため、コンデンサの製造過程における温
度管理が困難であるほか、TCNQ錯体自体が耐熱性に
欠けるため、プリント基板に実装する際の半田熱により
著しい特性変動が見られる。
As a solid electrolytic capacitor using a TCNQ complex, one described in Japanese Patent Application Laid-Open No. 58-191414 is known. An electrolyte layer is formed. This TCNQ complex has high conductivity and can obtain good results in frequency characteristics and temperature characteristics. However, since the TCNQ complex has the property of transferring to an insulator in a short time after being melted, it is difficult to control the temperature during the manufacturing process of the capacitor. In addition, the TCNQ complex itself lacks heat resistance, so it is difficult to mount it on a printed circuit board. A remarkable characteristic change is seen by the solder heat.

【0005】これら二酸化マンガンやTCNQ錯体の持
つ不都合を解決するため、ポリピロール等の導電性高分
子を固体電解質層として用いることが試みられている。
ポリピロール、ポリチオフェンに代表される導電性高分
子は、主に化学的酸化重合法(化学重合)や電解酸化重
合法(電解重合)により生成される。
[0005] In order to solve the disadvantages of these manganese dioxide and TCNQ complexes, attempts have been made to use a conductive polymer such as polypyrrole as a solid electrolyte layer.
A conductive polymer represented by polypyrrole and polythiophene is mainly produced by a chemical oxidation polymerization method (chemical polymerization) or an electrolytic oxidation polymerization method (electrolytic polymerization).

【0006】電解重合により固体電解質を生成する場
合、電圧の印加が必要であり、そのため表面に絶縁体で
ある酸化皮膜層が形成された電解コンデンサ用の陽極電
極に適用することは困難で、酸化皮膜層の表面に、予め
導電性のプレコート層、例えば酸化剤を用いて化学重合
した導電性高分子膜をプレコート層とし、その後このプ
レコート層を電極として電解重合による電解質層を形成
する方法などが提案されている(特開昭63−1733
13号公報、特開昭63−158829号公報:二酸化
マンガンをプレコート層とする)。しかし、予めプレコ
ート層を形成するため製造工程が煩雑となるほか、電解
重合では、陽極電極の被皮膜面に配置した重合用の外部
電極の近傍から固体電解質層が生成されるため、広範囲
にわたって均一な厚さの導電性高分子膜を連続的に生成
することは非常に困難であった。
When a solid electrolyte is produced by electrolytic polymerization, it is necessary to apply a voltage. Therefore, it is difficult to apply the solid electrolyte to an anode electrode for an electrolytic capacitor having an oxide film layer as an insulator formed on the surface. On the surface of the coating layer, there is a method in which a conductive precoat layer, for example, a conductive polymer film chemically polymerized using an oxidizing agent is used as a precoat layer, and then the electrolyte layer is formed by electrolytic polymerization using the precoat layer as an electrode. It has been proposed (JP-A-63-1733).
No. 13, JP-A-63-158829: manganese dioxide is used as a precoat layer). However, the manufacturing process is complicated because the pre-coat layer is formed in advance, and in the electrolytic polymerization, a solid electrolyte layer is generated from the vicinity of the polymerization external electrode arranged on the coating surface of the anode electrode, so that it is uniform over a wide range. It has been very difficult to continuously form a conductive polymer film having a large thickness.

【0007】そこで、箔状の陽極電極及び陰極電極を、
セパレータを介して巻き取って、いわゆる巻回型のコン
デンサ素子を形成し、このコンデンサ素子にピロール等
のモノマー溶液と酸化剤を浸漬して化学重合のみにより
生成した導電性高分子膜からなる電解質層を形成するこ
とを試みた。このような巻回型のコンデンサ素子は、ア
ルミニウム電解コンデンサにおいて周知であるが、導電
性高分子層をセパレータで保持することで電解重合の煩
雑さを回避するとともに、併せて表面積の大きい箔状の
電極により容量を拡大させることが期待された。更に、
巻回型のコンデンサ素子を用いることで、両極の電極と
セパレータが一定の緊締力で保持され、両極の電極と電
解質層との密着性に貢献することが期待された。
Therefore, a foil-shaped anode electrode and a cathode electrode are
An electrolyte layer made of a conductive polymer film formed only by chemical polymerization by immersing a monomer solution such as pyrrole and an oxidizing agent into this capacitor element by winding it up through a separator to form a so-called winding type capacitor element Tried to form Such a wound-type capacitor element is well known in an aluminum electrolytic capacitor, but by avoiding the complexity of electrolytic polymerization by holding a conductive polymer layer with a separator, a foil-shaped capacitor having a large surface area. It was expected that the capacity would be expanded by the electrodes. Furthermore,
It was expected that the use of a wound-type capacitor element would maintain both electrodes and the separator with a constant tightening force and contribute to the adhesion between the electrodes and the electrolyte layer.

【0008】[0008]

【発明が解決しようとする課題】しかし、モノマー溶液
と酸化剤とを混合した混合溶液をコンデンサ素子に含浸
したところ、コンデンサ素子の内部にまで固体電解質層
が形成されておらず、期待された電気的特性を得ること
はできないことが判明した。
However, when a capacitor element is impregnated with a mixed solution obtained by mixing a monomer solution and an oxidizing agent, a solid electrolyte layer is not formed even inside the capacitor element, and the expected electric power is not obtained. It turned out that the characteristic could not be obtained.

【0009】そこで、モノマー溶液と酸化剤を別々に含
浸したり、反応の際の溶液の重合温度を低くしたりする
と、ある程度良好な電気的特性が得られたが、耐圧特性
だけは不充分であり、またESR特性も満足できるもの
ではないという問題点があった。その原因は、これらの
手段によっても、コンデンサ素子の端面付近に生成され
た固体電解質層がそれ以降の溶液の浸透を妨害してその
内部にまで充分な溶液が浸透しておらず、結果として緻
密で均一な固体電解質層を形成するには至っていないこ
とが原因と考えられた。また、低温で化学重合をする場
合、厳重な温度制御が必要であるほか、製造装置が複雑
になり、結果として製品コストが高くなってしまう問題
点もあった。
Therefore, when the monomer solution and the oxidizing agent are separately impregnated or the polymerization temperature of the solution at the time of the reaction is lowered, good electrical properties are obtained to some extent, but only the pressure resistance is insufficient. And the ESR characteristics are not satisfactory. The cause is that even with these means, the solid electrolyte layer formed near the end face of the capacitor element hinders the subsequent penetration of the solution, so that a sufficient solution has not penetrated into the inside, and as a result, It was considered that the reason was that a uniform solid electrolyte layer was not formed. In addition, when chemical polymerization is carried out at a low temperature, strict temperature control is required, and the production apparatus becomes complicated, resulting in an increase in product cost.

【0010】そこで、巻回型のコンデンサ素子の内部に
緻密で均一な導電性高分子からなる固体電解質層を生成
し、電気的特性に優れかつ大容量の固体電解コンデンサ
を製造する方法を検討した結果、重合性モノマーと酸化
剤とをコンデンサ素子に含浸した後、熱処理により重合
反応を促進させることによって以上の問題点を解決する
方法を見いだした。
Therefore, a method of producing a solid electrolyte layer made of a dense and uniform conductive polymer inside a wound-type capacitor element and manufacturing a solid electrolytic capacitor having excellent electric characteristics and a large capacity was studied. As a result, the inventors have found a method for solving the above problems by impregnating the capacitor element with a polymerizable monomer and an oxidizing agent and then promoting the polymerization reaction by heat treatment.

【0011】[0011]

【課題を解決するための手段】この発明は、固体電解コ
ンデンサの製造方法において、陽極電極箔と陰極電極箔
とをセパレータを介して巻回したコンデンサ素子に重合
性モノマーと溶媒中の酸化剤とを含浸した後、少なくと
も2回以上の熱処理による化学重合反応で導電性高分子
を生成することを特徴としている。
According to the present invention, there is provided a method for manufacturing a solid electrolytic capacitor, comprising: a polymerizable monomer and an oxidizing agent in a solvent formed on a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator. Is characterized in that a conductive polymer is generated by a chemical polymerization reaction by at least two or more heat treatments after impregnation.

【0012】この熱処理による2回以上の化学重合反応
は、必要に応じて異なる温度に設定してもよく、また異
なる温度であって順次高温となるよう設定してもよい。
また、化学重合反応での1回目の熱処理の温度が、少な
くとも前記溶媒の沸点よりも低く、かつ2回目以降の熱
処理の温度が前記溶媒の沸点よりも高く設定するとより
好適である。
The two or more chemical polymerization reactions by this heat treatment may be set at different temperatures as necessary, or may be set at different temperatures and successively higher temperatures.
Further, it is more preferable that the temperature of the first heat treatment in the chemical polymerization reaction is set at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is set higher than the boiling point of the solvent.

【0013】また、それぞれの化学重合反応において
は、少なくとも30分以上熱処理を施すとよい。
[0013] In each chemical polymerization reaction, it is preferable to perform heat treatment for at least 30 minutes or more.

【0014】[0014]

【発明の実施の形態】次いで、本発明の実施の形態を図
面を用いて説明する。図1は、本発明の固体電解コンデ
ンサの製造方法では、アルミニウム等の弁作用金属から
なり表面に酸化皮膜層が形成された陽極電極箔1と、陰
極電極箔2とを、ビニロン繊維等を主体とする不織布か
らなるセパレータ3を介して巻回してコンデンサ素子1
0を形成している。そして、このコンデンサ素子10に
重合性モノマーである3,4−エチレンジオキシチオフ
ェンと溶媒中の酸化剤とを含浸し、コンデンサ素子10
中での化学重合反応により生成した導電性高分子である
ポリエチレンジオキシチオフェンを固体電解質層5とし
てセパレータ3で保持している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows that in the method for manufacturing a solid electrolytic capacitor of the present invention, an anode electrode foil 1 made of a valve metal such as aluminum and having an oxide film layer formed on its surface and a cathode electrode foil 2 are mainly made of vinylon fiber or the like. Wound around a separator 3 made of non-woven fabric
0 is formed. Then, the capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene, which is a polymerizable monomer, and an oxidizing agent in a solvent.
Polyethylene dioxythiophene, which is a conductive polymer produced by a chemical polymerization reaction in the inside, is held as a solid electrolyte layer 5 by a separator 3.

【0015】陽極電極箔1は、アルミニウム等の弁作用
金属からなり、図2に示すように、その表面を、塩化物
水溶液中での電気化学的なエッチング処理により粗面化
して多数のエッチングピット8を形成している。更にこ
の陽極電極箔1の表面には、ホウ酸アンモニウム等の水
溶液中で電圧を印加して誘電体となる酸化皮膜層4を形
成している。陰極電極箔2は、陽極電極箔1と同様にア
ルミニウム等からなり、表面にエッチング処理のみが施
されているものを用いる。
The anode electrode foil 1 is made of a valve metal such as aluminum. As shown in FIG. 2, the surface of the anode electrode foil 1 is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits. 8 are formed. Further, on the surface of the anode electrode foil 1, a voltage is applied in an aqueous solution of ammonium borate or the like to form an oxide film layer 4 serving as a dielectric. The cathode electrode foil 2 is made of aluminum or the like, similarly to the anode electrode foil 1, and has a surface subjected to only etching treatment.

【0016】陽極電極箔1及び陰極電極箔2にはそれぞ
れの電極を外部に接続するためのリード線6、7が、ス
テッチ、超音波溶接等の公知の手段により接続されてい
る。このリード線6、7は、アルミニウム等からなり、
陽極電極箔1、陰極電極箔2との接続部と外部との電気
的な接続を担う外部接続部からなり、巻回したコンデン
サ素子10の端面から導出される。
Lead wires 6 and 7 for connecting the respective electrodes to the outside are connected to the anode electrode foil 1 and the cathode electrode foil 2 by known means such as stitching and ultrasonic welding. The lead wires 6 and 7 are made of aluminum or the like,
It comprises an external connection portion for electrically connecting the connection portion between the anode electrode foil 1 and the cathode electrode foil 2 and the outside, and is led out from the end face of the wound capacitor element 10.

【0017】セパレータ3は、ビニロン繊維を主体とす
る不織布で、この他にビニロン繊維と、ガラス繊維、ポ
リエステル繊維、ナイロン繊維、レーヨン繊維、マニラ
紙等の紙繊維などとを混抄した不織布を用いることもで
きる。なお、上記不織布は、坪量が6〜36g/m2
繊維径5〜30μm、厚さ30〜150μm、密度0.
2〜0.5g/m3 のものを用いている。
The separator 3 is a non-woven fabric mainly composed of vinylon fibers, and a non-woven fabric obtained by mixing vinylon fibers with paper fibers such as glass fibers, polyester fibers, nylon fibers, rayon fibers, and manila paper. Can also. The nonwoven fabric has a basis weight of 6 to 36 g / m 2 ,
Fiber diameter 5-30 μm, thickness 30-150 μm, density 0.
Those having a density of 2 to 0.5 g / m 3 are used.

【0018】コンデンサ素子10は、上記の陽極電極箔
1と陰極電極箔2とを、セパレータ3を間に挟むように
して巻き取って形成している。両極電極箔1、2の寸法
は、製造する固体電解コンデンサの仕様に応じて任意で
あり、セパレータ3も両極電極箔1、2の寸法に応じて
これよりやや大きい幅寸法のものを用いればよい。
The capacitor element 10 is formed by winding the above-mentioned anode electrode foil 1 and cathode electrode foil 2 with the separator 3 interposed therebetween. The dimensions of the bipolar electrode foils 1 and 2 are arbitrary according to the specifications of the solid electrolytic capacitor to be manufactured, and the separator 3 may have a width slightly larger than this according to the dimensions of the bipolar electrode foils 1 and 2. .

【0019】重合性モノマーである3,4−エチレンジ
オキシチオフェンは、特開平2−15611号公報等に
より開示された公知の製法により得ることができる。ま
た、酸化剤は、溶媒に溶解したp−トルエンスルホン酸
第二鉄を用いており、酸化剤は溶媒に対して40重量%
を超える濃度であると良好な結果が得られる。また、こ
の酸化剤における溶媒とp−トルエンスルホン酸第二鉄
の比率は任意でよいが、配合比は1:3ないし1:15
の範囲が好適である。
3,4-ethylenedioxythiophene as a polymerizable monomer can be obtained by a known production method disclosed in Japanese Patent Application Laid-Open No. 2-15611. As the oxidizing agent, ferric p-toluenesulfonate dissolved in a solvent was used, and the oxidizing agent was 40% by weight based on the solvent.
If the concentration exceeds the above range, good results can be obtained. The ratio of the solvent to the ferric p-toluenesulfonate in this oxidizing agent may be arbitrary, but the mixing ratio is from 1: 3 to 1:15.
Is suitable.

【0020】そして、コンデンサ素子10に、重合性モ
ノマーの3,4−エチレンジオキシチオフェンと溶媒中
の酸化剤とを含浸し、このコンデンサ素子10に少なく
とも2回以上の熱処理を施してコンデンサ素子10中で
の化学重合反応によるポリエチレンジオキシチオフェン
を生成する。
Then, the capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene as a polymerizable monomer and an oxidizing agent in a solvent, and the capacitor element 10 is subjected to heat treatment at least twice or more. Produces polyethylenedioxythiophene by a chemical polymerization reaction in water.

【0021】通常、3,4−エチレンジオキシチオフェ
ンと溶媒中の酸化剤とを混合した場合、室温中において
も化学重合反応は進行してポリエチレンジオキシチオフ
ェンが生成される。しかし、化学重合反応が長時間に及
んで溶媒が除去されてしまうと重合反応は進行しなくな
り、十分な重合度を得ることができなくなるばかりか、
コンデンサ素子10内の溶媒の残留物が多くなり、各種
の電気特性に悪影響を及ぼしてしまう。一方、熱処理を
施すことで化学重合反応を促進することはできるもの
の、反応速度が速くなるために陽極電極箔1に形成され
たエッチングピット8内部への重合が進行する前に溶媒
が除去されてしまい、結果として緻密で均一な固体電解
質を生成することができなくなる。
Usually, when 3,4-ethylenedioxythiophene is mixed with an oxidizing agent in a solvent, the chemical polymerization reaction proceeds even at room temperature to produce polyethylenedioxythiophene. However, when the solvent is removed for a long time in the chemical polymerization reaction, the polymerization reaction does not proceed, and not only can not obtain a sufficient degree of polymerization,
Residue of the solvent in the capacitor element 10 increases and adversely affects various electric characteristics. On the other hand, although the chemical polymerization reaction can be promoted by performing the heat treatment, the solvent is removed before the polymerization proceeds into the etching pits 8 formed on the anode electrode foil 1 because the reaction speed is increased. As a result, a dense and uniform solid electrolyte cannot be produced.

【0022】そこで、この発明のように、少なくとも2
回以上の熱処理を一定時間施して化学重合反応を段階的
に促進させることで、陽極電極箔1のエッチングピット
8内部にまで固体電解質層を生成するとともに、溶媒の
残留物を効率的に除去することができるようになる。
Therefore, as in the present invention, at least 2
By performing heat treatment more than once for a certain period of time to promote the chemical polymerization reaction in a stepwise manner, a solid electrolyte layer is formed even inside the etching pit 8 of the anode electrode foil 1 and the solvent residue is efficiently removed. Will be able to do it.

【0023】なお、熱処理の温度および時間は、溶媒の
種類、工程時間等により任意だが、必要に応じて異なる
温度に設定してもよく、また順次高温となるよう設定し
てもよい。この場合、順次段階的に温度を上げることに
なるが、暫時温度を上げてもよい。また、化学重合反応
での1回目の熱処理の温度が、少なくとも前記溶媒の沸
点よりも低く、かつ2回目以降の熱処理の温度が前記溶
媒の沸点よりも高く設定するとより好適である。
The temperature and time of the heat treatment are optional depending on the type of the solvent, the process time, and the like, but may be set to different temperatures as needed, or may be set so as to become higher sequentially. In this case, the temperature is increased step by step, but the temperature may be increased temporarily. Further, it is more preferable that the temperature of the first heat treatment in the chemical polymerization reaction is set at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is set higher than the boiling point of the solvent.

【0024】[0024]

【実施例】次に、発明における固体電解コンデンサの製
造方法を具体的に説明する。陽極電極箔1及び陰極電極
箔2は、弁作用金属、例えばアルミニウム、タンタルか
らなり、その表面には予めエッチング処理が施されて表
面積が拡大されている。陽極電極箔1については、更に
化成処理が施され、表面に酸化アルミニウムからなる酸
化皮膜層4が形成されている。この陽極電極箔1及び陰
極電極箔2を、ビニロン繊維を主体とする不織布からな
るセパレータ3を介して巻回し、コンデンサ素子10を
得る。
Next, a method for manufacturing a solid electrolytic capacitor according to the present invention will be specifically described. The anode electrode foil 1 and the cathode electrode foil 2 are made of a valve metal, for example, aluminum or tantalum, and their surfaces are subjected to an etching process in advance to increase the surface area. The anode electrode foil 1 is further subjected to a chemical conversion treatment to form an oxide film layer 4 made of aluminum oxide on the surface. The anode electrode foil 1 and the cathode electrode foil 2 are wound via a separator 3 made of a non-woven fabric mainly composed of vinylon fibers to obtain a capacitor element 10.

【0025】この実施例において、コンデンサ素子10
は、径寸法が4φ、縦寸法が7mm、また定格電圧20
WV、定格静電容量10μFのものを用いている。なお
コンデンサ素子10の陽極電極箔1、陰極電極箔2には
それぞれリード線6、7が電気的に接続され、コンデン
サ素子10の端面から突出している。
In this embodiment, the capacitor element 10
Has a diameter of 4φ, a vertical dimension of 7 mm, and a rated voltage of 20
It has a WV and a rated capacitance of 10 μF. Lead wires 6 and 7 are electrically connected to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 10, respectively, and project from the end face of the capacitor element 10.

【0026】このコンデンサ素子10に、3,4−エチ
レンジオキシチオフェンと酸化剤とを含浸する。酸化剤
は、溶媒に対して52重量%の配分で溶解したp−トル
エンスルホン酸第二鉄を用い、3,4−エチレンジオキ
シチオフェンに対して酸化剤を1:5で含浸した。
The capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent. As the oxidizing agent, ferric p-toluenesulfonate dissolved in a ratio of 52% by weight to the solvent was used, and the oxidizing agent was impregnated with 3,4-ethylenedioxythiophene at a ratio of 1: 5.

【0027】次いで、3,4−エチレンジオキシチオフ
ェンと酸化剤とを含浸したコンデンサ素子10に、60
℃で1時間の熱処理を施して化学重合反応を促進させ
る。この時の熱処理では、緩やかに化学重合反応は進
み、陽極電極箔1のエッチングピット8の内部に導電性
高分子であるポリエチレンジオキシチオフェンが生成さ
れる。一方、溶媒は完全には除去されず、したがって、
以降の熱処理でも化学重合反応は進行することになる。
次いで、150℃で1時間の熱処理を施し、化学重合反
応を更に促進させて重合度を上げるとともに、溶媒を除
去し、残留物による電気的特性への悪影響を排除する。
Next, the capacitor element 10 impregnated with 3,4-ethylenedioxythiophene and an oxidizing agent
Heat treatment at 1 ° C. for 1 hour accelerates the chemical polymerization reaction. In the heat treatment at this time, the chemical polymerization reaction proceeds slowly, and polyethylene dioxythiophene, which is a conductive polymer, is generated inside the etching pits 8 of the anode electrode foil 1. On the other hand, the solvent is not completely removed and therefore
Even in the subsequent heat treatment, the chemical polymerization reaction proceeds.
Next, heat treatment is performed at 150 ° C. for 1 hour to further promote the chemical polymerization reaction to increase the degree of polymerization, and remove the solvent to eliminate the adverse effect of the residue on the electrical characteristics.

【0028】このようにして形成された、陽極電極箔1
と陰極電極箔2との間に介在したセパレータ3が固体電
解質層5を保持したコンデンサ素子10を、通常のエー
ジング工程等の後工程を施した後、外装樹脂層で覆い、
あるいは外装ケースに収納して固体電解コンデンサを形
成する。
The anode electrode foil 1 thus formed
The capacitor element 10 in which the solid electrolyte layer 5 is held by the separator 3 interposed between the capacitor element 10 and the cathode electrode foil 2, after performing a post-process such as a normal aging process, and covering the capacitor device 10 with an exterior resin layer;
Alternatively, it is housed in an outer case to form a solid electrolytic capacitor.

【0029】次に、実施例による固体電解コンデンサに
おいて、熱処理温度の条件による特性の変化を以下に示
す。
Next, in the solid electrolytic capacitor according to the embodiment, changes in characteristics depending on the conditions of the heat treatment temperature will be described below.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなように、少なくとも2回
の熱処理により、ESR特性において良好な特性が得ら
れ、陽極電極箔のエッチングピットの内部にも緻密で均
一な固体電解質が形成されていることが理解される。
As is evident from Table 1, at least two heat treatments provide good ESR characteristics, and a dense and uniform solid electrolyte is formed inside the etching pits of the anode electrode foil. Is understood.

【0032】[0032]

【発明の効果】この発明は、固体電解コンデンサの製造
方法において、陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に重合性モノマーと溶
媒中の酸化剤とを含浸した後、少なくとも2回以上の熱
処理による段階的な化学重合反応の促進により導電性高
分子を生成するので、エッチングピット内部にまで緻密
で均一な固体電解質層を形成することができ、かつ溶媒
の残留物も少なくなるので、ESR特性等の電気的特性
が向上するとともに、工程時間を短縮することができ
る。
According to the present invention, there is provided a method for manufacturing a solid electrolytic capacitor, comprising the steps of impregnating a polymerizable monomer and an oxidizing agent in a solvent into a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator. Since a conductive polymer is generated by accelerating a stepwise chemical polymerization reaction by at least two or more heat treatments, a dense and uniform solid electrolyte layer can be formed inside the etching pit, and a residue of the solvent can be formed. Therefore, electrical characteristics such as ESR characteristics are improved, and the process time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いるコンデンサ素子の分解斜視図で
ある。
FIG. 1 is an exploded perspective view of a capacitor element used in the present invention.

【図2】本発明で用いる陽極電極箔の概念図である。FIG. 2 is a conceptual diagram of an anode electrode foil used in the present invention.

【符号の説明】[Explanation of symbols]

1 陽極電極箔 2 陰極電極箔 3 セパレータ 4 酸化皮膜層 5 固体電解質層 6、7 リード線 8 エッチングピット 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4 Oxide film layer 5 Solid electrolyte layer 6, 7 Lead wire 8 Etching pit 10 Capacitor element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に重合性モノマーと溶
媒中の酸化剤とを含浸した後、少なくとも2回以上の熱
処理による化学重合反応で導電性高分子を生成する固体
電解コンデンサの製造方法。
1. A capacitor element in which an anode electrode foil and a cathode electrode foil are wound with a separator interposed therebetween is impregnated with a polymerizable monomer and an oxidizing agent in a solvent, and then subjected to a chemical polymerization reaction by heat treatment at least twice or more. A method for producing a solid electrolytic capacitor for producing a conductive polymer.
【請求項2】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に重合性モノマーと溶
媒中の酸化剤とを含浸した後、異なる温度で少なくとも
2回以上の熱処理による化学重合反応で導電性高分子を
生成する固体電解コンデンサの製造方法。
2. A method in which a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is impregnated with a polymerizable monomer and an oxidizing agent in a solvent, and then subjected to at least two or more heat treatments at different temperatures. A method for producing a solid electrolytic capacitor that produces a conductive polymer by a polymerization reaction.
【請求項3】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に重合性モノマーと溶
媒中の酸化剤とを含浸した後、異なる温度であって順次
高温となる少なくとも2回以上の熱処理による化学重合
反応で導電性高分子を生成する固体電解コンデンサの製
造方法。
3. After impregnating a polymerizable monomer and an oxidizing agent in a solvent into a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator, at least two different temperatures and successively higher temperatures are obtained. A method for producing a solid electrolytic capacitor that produces a conductive polymer by a chemical polymerization reaction by at least one heat treatment.
【請求項4】 化学重合反応での1回目の熱処理の温度
が、少なくとも前記溶媒の沸点よりも低く、かつ2回目
以降の熱処理の温度が前記溶媒の沸点よりも高いことを
特徴とする請求項1ないし請求項3記載の固体電解コン
デンサの製造方法。
4. The method according to claim 1, wherein the temperature of the first heat treatment in the chemical polymerization reaction is at least lower than the boiling point of the solvent, and the temperature of the second and subsequent heat treatments is higher than the boiling point of the solvent. The method for manufacturing a solid electrolytic capacitor according to any one of claims 1 to 3.
【請求項5】 それぞれの熱処理を少なくとも30分以
上施す請求項1ないし請求項4記載の固体電解コンデン
サの製造方法。
5. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein each heat treatment is performed for at least 30 minutes.
JP2001065013A 2001-03-08 2001-03-08 Manufacturing method of solid-state electrolytic capacitor Pending JP2001237145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065013A JP2001237145A (en) 2001-03-08 2001-03-08 Manufacturing method of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065013A JP2001237145A (en) 2001-03-08 2001-03-08 Manufacturing method of solid-state electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16523297A Division JPH10340831A (en) 1997-06-06 1997-06-06 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2001237145A true JP2001237145A (en) 2001-08-31

Family

ID=18923742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065013A Pending JP2001237145A (en) 2001-03-08 2001-03-08 Manufacturing method of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2001237145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071950A (en) * 2006-09-14 2008-03-27 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2009130256A (en) * 2007-11-27 2009-06-11 Nichicon Corp Method of manufacturing solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071950A (en) * 2006-09-14 2008-03-27 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2009130256A (en) * 2007-11-27 2009-06-11 Nichicon Corp Method of manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP3911785B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP4642257B2 (en) Solid electrolytic capacitor
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4513044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0423411B2 (en)
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JP2008135776A (en) Method of manufacturing solid-state electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000150313A (en) Solid-state electrolytic capacitor and its manufacture
JP4899283B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071128