JPH0423411B2 - - Google Patents

Info

Publication number
JPH0423411B2
JPH0423411B2 JP62230996A JP23099687A JPH0423411B2 JP H0423411 B2 JPH0423411 B2 JP H0423411B2 JP 62230996 A JP62230996 A JP 62230996A JP 23099687 A JP23099687 A JP 23099687A JP H0423411 B2 JPH0423411 B2 JP H0423411B2
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer film
film
solid electrolytic
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62230996A
Other languages
Japanese (ja)
Other versions
JPS6474713A (en
Inventor
Michuki Kono
Minoru Fukuda
Isao Isa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP62230996A priority Critical patent/JPS6474713A/en
Publication of JPS6474713A publication Critical patent/JPS6474713A/en
Publication of JPH0423411B2 publication Critical patent/JPH0423411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は導電性高分子を固体電解質として用い
たコンデンサの製造方法に関するものであり、特
に低漏れ電流特性を有する固体電解コンデンサを
提供せんとするものである。 (従来の技術) 先に、本発明者らは皮膜形成性金属に誘電体酸
化皮膜を形成い、この誘電体酸化皮膜上に化学酸
化重合導電性高分子膜を形成し、更にこの上に導
電性高分子の電解重合膜を形成せしめた構造の固
体電解コンデンサを提案した(特願昭62−4053
号)。更に上記固体電解コンデンサの製造におい
て電解重合の効率化を計るための方法として、化
学酸化重合導電性高分子膜に導電体を接触あるい
は1mm以内の距離に配置して電解重合を行なう方
法を提案した(特願昭62−187739)。これらの方
法により得られたコンデンサは、静電容量が大き
く、かつ電気的特性、温度特性の優れた固体電解
コンデンサである。 (発明が解決しようとする問題点) しかし、例えば粗面化して誘電体酸化皮膜を表
面に形成したアルミニウム箔を所望の大きさに切
断して陽極箔とし、セパレータ紙・陰極箔と捲回
した構造のコンデンサ素子を用いる場合、該陽極
箔の切断面はアルミニウム金属が露出しているた
め誘電体酸化皮膜上に積層した導電性高分子膜と
切断面とが接触し漏れ電流が大きくなるような事
態が生じる場合がある。 (問題点を解決するための手段) 本発明者らは、上記の点に鑑み鋭意検討した結
果、誘電体酸化皮膜上に化学酸化導電性高分子膜
を形成した後に、該誘電体酸化皮膜を化成修復す
ることにより上記の問題を解決できることを見出
した。この方法を適用することにより、例えばア
ルミニウム箔の誘電体酸化皮膜上に化学酸化導電
性高分子膜を形成した後、所望の大きさに切断
し、未化成の切断面が露出している部分はこれを
化成修復した後、化学酸化導電性高分子膜に導電
体を接触あるいは1mm以内に配置して陽極とな
し、電解酸化重合により該化学酸化重合導電性高
分子膜上に電解酸化導電性高分子膜を形成するこ
とが可能となり、低漏れ電流特性を有する固体電
解コンデンサ、特に捲回型構造を有するコンデン
の製造に有用である。 更に、理由は不明であるが、焼結体型の素子を
用いたコンデンサの製造の場合、誘電体酸化皮膜
を形成せしめ、化学酸化重合導電性高分子膜を該
酸化皮膜上に形成した後に化成修復の工程を入れ
ることにより、化成修復の工程を入れないで製造
したコンデンサと比較して著しく漏れ電流が小さ
くなることが判明した。 本発明では電解酸化導電性高分子膜を形成する
前に化成修復を行なう。その理由は、化学重合導
電性高分子膜と電解重合導電性高分子膜の2層よ
りなる導電性高分子膜の誘電体酸化皮膜化成修復
性が従来型の電解液型コンデンサの電解液に比べ
て小さいため、前記した漏れ電流を低減するため
の陽極箔切断面の化成修復に時間がかかることが
あり、工業生産的な見地から好ましくない。 又、化学酸化導電性高分子膜と電解酸化導電性
高分子膜の2層を誘電体酸化皮膜上に形成させた
後、所望の電圧で化成修復すると、一般に固体電
解コンデンサの化成電圧にもよるが、導電性高分
子膜の電解酸化重合時の電圧よりもはるかに高く
(5〜300V)、化成修復液中でこのような電圧を
印加することは、導電性高分子の破壊を引き起こ
すことになり好ましくない。 本発明の化学酸化重合導電性高分子の単量体と
してはピロール、チオフエン、アニリン、または
フランを用いるが、好ましくはピロールである。 本発明の電解酸化重合導電性高分子の単量体と
してはピロール、チオフエン、アニリン、または
フランを用いるが、好ましくはピロールである。 化学酸化重合の酸化剤としては過硫酸カリウ
ム、過硫酸アンモニウム、過酸化水素等の過酸化
物、ヨウ素、塩素などのハロゲン、硫酸、硝酸な
どのプロトン酸など種々のものが用いられる。本
発明の電解酸化重合はLiBF4、LiPF6、HClO4
LiClO4、パラトルエンスルホン酸アンモニウム
塩など種々の電解質を含む溶媒中で行なわれる。
該溶媒はこれわ電解質を溶解するもので、導電性
高分子単量体が導電性高分子を生成する際の電位
以下で電気化学的な反応を生じないものであれば
支障なく使用でき水系、有機系を問わない。 本発明において、誘電体酸化皮膜上に化学酸化
導電性高分子膜を形成した後行なう化成修復の工
程はアジピン酸アンモニウム、ホウ酸などを含む
溶液中で電気化学的に酸化する方法が好ましい。
又、電気化学的酸化方法で用いる化成修復用溶液
の溶媒としては水、またはエチレングリコール等
の有機溶媒が考えられるが、本発明の方法にはい
ずれの溶媒についても適用可能である。 以下、実施例により本発明を具体的に説明する
が、本発明はこれらの実施例に限定されるもので
はない。 実施例 1 電気化学的方法により粗面化したアルミニウム
箔(厚さ60μm、長さ10m、巾50cm)をアジピン
酸アンモニウム水溶液(0.11mol/)に浸漬
し、アルミニウム箔を陽極とし別のアルミニウム
板を陰極として70Vの電圧を印加して電解酸化を
行ない、該アルミニウム箔の表面に誘電体酸化皮
膜を形成した。次いで、該アルミニウム箔を過硫
酸アンモニウム水溶液(0.02mol/)に浸漬し
た後、ピロールのエタノール溶液(0.07mol/
)に浸漬して、化学酸化重合導電性ポリピロー
ル膜を該アルミニウム箔の誘電体酸化皮膜上に形
成せしめた。ついで上記処理を行なつたアルミニ
ウム陽極箔を巾5mmに切断しリボン状として、5
cm間隔でかしめ付により陽極リードを取り付け
た。この箔とセパレータ(マニラ紙、60μm)、
アルミニウム陰極箔(厚さ60μm、5間隔でリー
ドを取り付けてあるもの)を自動捲取機で捲回
し、コンデンサ素子を作成した(液中容量
47μF)。コンデンサ素子をアジピン酸アンモニウ
ム水溶液((0.11mol/)に浸漬し、アルミニ
ウム陽極箔を陽極とし外部のステンレス板を陰極
として50Vの電圧を印加して10分間化成修復を行
なつた。化成修復終了後、該素子を水洗・乾燥し
た。 次いで、上記処理を行なつた素子をピロール単
量体(0.1mol/)、および支持電解質としてパ
ラトルエンスルホン酸テトラエチルアンモニウム
(0.05mol/)を含むアセトニトリル溶液に浸
漬した。素子の陰極箔を陽極とし、外部のステン
レス板を陰極とし電流密度0.5mA/cm2の電流で
定電流電解を行ない電解酸化重合を開始した。60
分間通電後、均一な濃緑色のポリピロールが素子
内部を生め尽くした。この素子を水洗・乾燥後、
アルミニウムケースに入れエポキシ樹脂で封口し
てコンデンサを完成した。このコンデンサに40V
の電圧を20分間印加してエージングを行なつた後
の電気的特性を調べた。結果を第1表に示す。
又、電圧(20V)印加時間と漏れ電流値の関係を
第1図に示した。 比較例 1 捲回素子作成後の化成修復の工程を省略した以
外は実施例1と全く同様にしてコンデンサを作成
した。得られたコンデンサに40Vの電圧を20分間
印加してエージングを行なつた後の電気的性能を
調べた結果を第1表に示す。又、電圧(20V)印
加時間と漏れ電流値の関係を第1図に示した。
(Industrial Field of Application) The present invention relates to a method for manufacturing a capacitor using a conductive polymer as a solid electrolyte, and particularly to provide a solid electrolytic capacitor having low leakage current characteristics. (Prior Art) First, the present inventors formed a dielectric oxide film on a film-forming metal, formed a chemically oxidized conductive polymer film on the dielectric oxide film, and further formed a conductive polymer film on this dielectric oxide film. We proposed a solid electrolytic capacitor with a structure in which an electrolytic polymer film was formed (patent application 1986-4053).
issue). Furthermore, in order to improve the efficiency of electrolytic polymerization in the production of the solid electrolytic capacitors mentioned above, we proposed a method in which electrolytic polymerization is performed by placing a conductor in contact with or within 1 mm of a chemically oxidized conductive polymer film. (Special application 1987-187739). Capacitors obtained by these methods are solid electrolytic capacitors with large capacitance and excellent electrical and temperature characteristics. (Problem to be solved by the invention) However, for example, an aluminum foil with a roughened surface and a dielectric oxide film formed on the surface is cut into a desired size to make an anode foil, and then wrapped with separator paper and a cathode foil. When using a capacitor element with a structure of Situations may occur. (Means for Solving the Problems) As a result of intensive studies in view of the above points, the present inventors formed a chemically oxidized conductive polymer film on a dielectric oxide film, and then removed the dielectric oxide film. It has been found that the above problems can be solved by chemical conversion repair. By applying this method, for example, a chemically oxidized conductive polymer film is formed on a dielectric oxide film of an aluminum foil, and then cut into a desired size, and the exposed unformed cut surface is After chemical restoration of this, a conductor is placed in contact with or within 1 mm of the chemically oxidized conductive polymer film to serve as an anode, and electrolytically oxidized conductive polymer is placed on the chemically oxidized conductive polymer film by electrolytic oxidation polymerization. It becomes possible to form a molecular film and is useful for producing solid electrolytic capacitors with low leakage current characteristics, particularly capacitors having a wound structure. Furthermore, for unknown reasons, when manufacturing capacitors using sintered elements, a dielectric oxide film is formed, a chemically oxidized conductive polymer film is formed on the oxide film, and then chemical repair is performed. It has been found that by adding this process, the leakage current is significantly smaller than that of capacitors manufactured without the chemical conversion repair process. In the present invention, chemical conversion repair is performed before forming an electrolytically oxidized conductive polymer film. The reason for this is that the chemical repair properties of the dielectric oxide film of the conductive polymer film, which is made up of two layers: a chemically polymerized conductive polymer film and an electrolytically polymerized conductive polymer film, are higher than that of the electrolyte in conventional electrolyte type capacitors. Therefore, it may take time to chemically repair the cut surface of the anode foil in order to reduce the leakage current described above, which is undesirable from an industrial production point of view. In addition, after forming two layers, a chemically oxidized conductive polymer film and an electrolytically oxidized conductive polymer film, on a dielectric oxide film, chemical conversion repair is performed at a desired voltage, which generally depends on the chemical formation voltage of the solid electrolytic capacitor. However, the voltage is much higher (5 to 300 V) than the voltage during electrolytic oxidative polymerization of conductive polymer membranes, and applying such a voltage in a chemical repair solution may cause destruction of the conductive polymer. I don't like it. Pyrrole, thiophene, aniline, or furan is used as the monomer for the chemically oxidized conductive polymer of the present invention, and pyrrole is preferred. Pyrrole, thiophene, aniline, or furan is used as the monomer for the electrolytically oxidized conductive polymer of the present invention, and pyrrole is preferred. Various oxidizing agents for chemical oxidative polymerization include peroxides such as potassium persulfate, ammonium persulfate, and hydrogen peroxide, halogens such as iodine and chlorine, and protonic acids such as sulfuric acid and nitric acid. The electrolytic oxidation polymerization of the present invention is performed using LiBF 4 , LiPF 6 , HClO 4 ,
It is carried out in a solvent containing various electrolytes such as LiClO 4 and ammonium paratoluenesulfonate.
The solvent can be used without any problem as long as it dissolves the electrolyte and does not cause an electrochemical reaction at a potential lower than the potential at which the conductive polymer monomer produces the conductive polymer. Doesn't matter if it's organic. In the present invention, the chemical conversion repair step performed after forming the chemically oxidized conductive polymer film on the dielectric oxide film is preferably performed by electrochemical oxidation in a solution containing ammonium adipate, boric acid, or the like.
Further, water or an organic solvent such as ethylene glycol can be considered as the solvent for the chemical remediation solution used in the electrochemical oxidation method, but any solvent can be applied to the method of the present invention. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Example 1 An aluminum foil (thickness 60 μm, length 10 m, width 50 cm) roughened by an electrochemical method was immersed in an aqueous ammonium adipate solution (0.11 mol/), and the aluminum foil was used as an anode and another aluminum plate was Electrolytic oxidation was performed by applying a voltage of 70 V as a cathode to form a dielectric oxide film on the surface of the aluminum foil. Next, the aluminum foil was immersed in an aqueous ammonium persulfate solution (0.02 mol/), and then immersed in an ethanol solution of pyrrole (0.07 mol/
) to form a chemically oxidized and polymerized conductive polypyrrole film on the dielectric oxide film of the aluminum foil. Next, the aluminum anode foil subjected to the above treatment was cut into a ribbon shape with a width of 5 mm.
Anode leads were attached by caulking at cm intervals. This foil and separator (manila paper, 60 μm),
A capacitor element was created by winding aluminum cathode foil (60 μm thick, with leads attached at 5 intervals) using an automatic winding machine (liquid capacity
47μF). The capacitor element was immersed in an aqueous solution of ammonium adipate ((0.11 mol/), and a voltage of 50 V was applied with the aluminum anode foil as the anode and the external stainless steel plate as the cathode to perform chemical conversion repair for 10 minutes. After completion of chemical conversion repair. The device was washed with water and dried. Next, the device subjected to the above treatment was immersed in an acetonitrile solution containing pyrrole monomer (0.1 mol/) and tetraethylammonium paratoluenesulfonate (0.05 mol/) as a supporting electrolyte. Electrolytic oxidative polymerization was started by performing constant current electrolysis with a current density of 0.5 mA/cm 2 using the cathode foil of the device as an anode and the external stainless steel plate as a cathode.60
After electricity was applied for a minute, uniform dark green polypyrrole filled the inside of the device. After washing and drying this element,
The capacitor was completed by placing it in an aluminum case and sealing it with epoxy resin. 40V to this capacitor
The electrical characteristics were investigated after aging by applying a voltage of 20 minutes. The results are shown in Table 1.
Furthermore, the relationship between the voltage (20V) application time and the leakage current value is shown in Figure 1. Comparative Example 1 A capacitor was produced in exactly the same manner as in Example 1, except that the process of chemical repair after producing the wound element was omitted. Table 1 shows the results of examining the electrical performance of the obtained capacitor after aging by applying a voltage of 40 V for 20 minutes. Moreover, the relationship between the voltage (20V) application time and the leakage current value is shown in FIG.

【表】 実施例 2 タンタル粉体の焼結体中心部からタンタル線で
陽極リードを引き出した構造のタンタル焼結素子
をアジピン酸アンモニウム水溶液(0.11mol/
)に浸漬し、タンタル焼結素子を陽極とし、外
部のステンレス板を陰極として120Vの電圧を印
加することによりタンタル焼結体表面に誘電体酸
化皮膜を形成せしめ、液中容量4.7μFのタンタル
焼結素子を作成した。次いで該素子をピロールの
エタノール溶液(0.5mol/)に浸漬した後、
過硫酸アンモニウム水溶液(1.5mol/)に浸
漬することにより化学酸化重合導電性ポリピロー
ル膜を該素子の誘電体酸化皮膜状に形成した。こ
の素子をアジピン酸アンモニウム水溶液
(0.08mol/)に浸漬し、タンタル焼結素子を
陽極とし外部のステンレス板を陰極として80Vの
電圧を印加して15分間化成修復を行なつた。化成
修復終了後、該素子を水洗・乾燥した。 次いで、上記処理を行なつた素子をピロール単
量体(0.1mol/)、および支持電解質としてパ
ラトルエンスルホン酸テトラエチルアンモニウム
(0.5mol/)を含むアセトニトリル溶液に浸漬
した。白金線を科学酸化導電性ポリピロール膜に
接触させ、該白金線を陽極とし、ステンレス板を
陰極として電流密度0.5mA/cm2の電流で定電流
電解を行ない電化酸化重合を開始した。30分間通
電後、均一な濃緑色のポリピロール膜が素子表面
に形成された。この素子を水洗し、次いでアセト
ンで洗浄後よく乾燥した後、銀ペーストで陰極リ
ードを該電解回酸化重合ポリピロール膜上に取り
付け、エポキシ樹脂でモールドしてコンデンサを
完成した。このコンデンサの初期性能を第2表に
示した。 比較例 2 焼結体素子完成後の化成修復の工程を省略した
以外は実施例2と全く同様にしてコンデンサを完
成させた。このコンデンサの初期性能を第2表に
示した。
[Table] Example 2 A tantalum sintered element having a structure in which an anode lead is drawn out from the center of a sintered body of tantalum powder with a tantalum wire was soaked in an ammonium adipate aqueous solution (0.11 mol/
), and by applying a voltage of 120V using the tantalum sintered element as an anode and the external stainless steel plate as a cathode, a dielectric oxide film is formed on the surface of the tantalum sintered body. A connecting element was created. Next, after immersing the device in an ethanol solution of pyrrole (0.5 mol/),
A chemically oxidized and polymerized conductive polypyrrole film was formed on the dielectric oxide film of the device by immersing it in an aqueous ammonium persulfate solution (1.5 mol/). This element was immersed in an ammonium adipate aqueous solution (0.08 mol/), and a voltage of 80 V was applied using the tantalum sintered element as an anode and the external stainless steel plate as a cathode, and chemical conversion repair was performed for 15 minutes. After completion of chemical repair, the element was washed with water and dried. Next, the device subjected to the above treatment was immersed in an acetonitrile solution containing pyrrole monomer (0.1 mol/) and tetraethylammonium paratoluenesulfonate (0.5 mol/) as a supporting electrolyte. A platinum wire was brought into contact with a chemically oxidized conductive polypyrrole membrane, and constant current electrolysis was carried out with a current density of 0.5 mA/cm 2 using the platinum wire as an anode and a stainless steel plate as a cathode to initiate electrolytic oxidative polymerization. After 30 minutes of electricity, a uniform dark green polypyrrole film was formed on the device surface. After washing this element with water, then washing with acetone and drying thoroughly, a cathode lead was attached to the electrolytic reoxidation polymerized polypyrrole film using silver paste, and molded with epoxy resin to complete a capacitor. The initial performance of this capacitor is shown in Table 2. Comparative Example 2 A capacitor was completed in exactly the same manner as in Example 2, except that the process of chemical conversion repair after completion of the sintered body element was omitted. The initial performance of this capacitor is shown in Table 2.

【表】 (発明の効果) 本発明の方法により、導電性高分子を電解質と
して用いた固体電解コンデンサの漏れ電流を効果
的に低減でき、特に捲回素子構造のコンデンサを
作成するのに有効である。又、焼結体型素子構造
のコンデンサを作成する場合にも本発明の方法を
適用することにより著しい低漏れ特性を有するコ
ンデンサを作成することが可能となつた。
[Table] (Effects of the invention) The method of the present invention can effectively reduce the leakage current of a solid electrolytic capacitor using a conductive polymer as an electrolyte, and is particularly effective for creating a capacitor with a wound element structure. be. Further, by applying the method of the present invention to the production of a capacitor having a sintered element structure, it has become possible to produce a capacitor with extremely low leakage characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電圧(20V)印加時間と漏れ電流値の
関係を示したものである。図中、実線は実施例1
を、破線は比較例1を示す。
FIG. 1 shows the relationship between voltage (20V) application time and leakage current value. In the figure, the solid line is Example 1
The broken line indicates Comparative Example 1.

Claims (1)

【特許請求の範囲】 1 皮膜形成性金属箔に誘電体酸化皮膜を形成せ
しめ、該誘電体酸化皮膜上に酸化剤を用いてピロ
ール、チオフエン、アニリンまたはフランの化学
酸化重合導電性高分子膜を形成せしめた後、該化
学酸化重合導電性高分子膜に導電体を接触または
1mm以内の距離に配置して陽極となし、電解重合
により該化学酸化重合導電性高分子膜上にピロー
ル、チオフエン、アニリンまたはフランの電解重
合導電性高分子膜を積層せしめる固体電解コンデ
ンサの製造方法において、化学酸化導電性高分子
膜を形成せしめた後、前記誘電体酸化皮膜の化成
修復の工程を入れることを特徴とする固体電解コ
ンデンサの製造方法。 2 皮膜形成性金属がアルミニウムまたはタンタ
ルである特許請求の範囲第1項記載の固体電解コ
ンデンサの製造方法。 3 酸化剤を用いて化学酸化重合せしめた導電性
高分子膜がポリピロールである特許請求の範囲第
1項記載の固体電解コンデンサの製造方法。 4 化学酸化重合導電性高分子膜上に積層せしめ
る電解重合導電性高分子膜がポリピロールである
特許請求の範囲第1項記載の固体電解コンデンサ
の製造方法。
[Claims] 1. A dielectric oxide film is formed on a film-forming metal foil, and a chemically oxidized and polymerized conductive polymer film of pyrrole, thiophene, aniline, or furan is formed on the dielectric oxide film using an oxidizing agent. After the formation, a conductor is placed in contact with the chemically oxidatively polymerized conductive polymer film or within a distance of 1 mm to serve as an anode, and pyrrole, thiophene, A method for manufacturing a solid electrolytic capacitor in which an electrolytically polymerized conductive polymer film of aniline or furan is laminated, characterized in that after forming a chemically oxidized conductive polymer film, a step of chemical conversion repair of the dielectric oxide film is performed. A method for manufacturing a solid electrolytic capacitor. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the film-forming metal is aluminum or tantalum. 3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive polymer film subjected to chemical oxidative polymerization using an oxidizing agent is polypyrrole. 4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the electrolytically polymerized conductive polymer film laminated on the chemically oxidized conductive polymer film is polypyrrole.
JP62230996A 1987-09-17 1987-09-17 Manufacture of solid electrolytic capacitor Granted JPS6474713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62230996A JPS6474713A (en) 1987-09-17 1987-09-17 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62230996A JPS6474713A (en) 1987-09-17 1987-09-17 Manufacture of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6474713A JPS6474713A (en) 1989-03-20
JPH0423411B2 true JPH0423411B2 (en) 1992-04-22

Family

ID=16916600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62230996A Granted JPS6474713A (en) 1987-09-17 1987-09-17 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6474713A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336299B1 (en) * 1988-03-31 1994-09-28 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
KR100775023B1 (en) * 2006-08-02 2007-11-09 주식회사 디지털텍 Method for manufacturing stacked type polymer-condenser
KR100775029B1 (en) * 2006-08-07 2007-11-08 주식회사 디지털텍 Stacking method of unit electrode for the stacked type of polymer-condenser
JP7142269B2 (en) * 2016-03-25 2022-09-27 パナソニックIpマネジメント株式会社 Manufacturing method of electrolytic capacitor

Also Published As

Publication number Publication date
JPS6474713A (en) 1989-03-20

Similar Documents

Publication Publication Date Title
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2571941B2 (en) Electrolytic capacitor
JPH0458165B2 (en)
JPH0423411B2 (en)
JPH0362298B2 (en)
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JPH06196371A (en) Manufacture of solid electrolytic capacitor
JPH0365007B2 (en)
JP3488260B2 (en) Method for manufacturing solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP2810679B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0365008B2 (en)
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2531589B2 (en) Solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JPH0645197A (en) Manufacture of solid-state electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 16