JP2995109B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2995109B2
JP2995109B2 JP3195734A JP19573491A JP2995109B2 JP 2995109 B2 JP2995109 B2 JP 2995109B2 JP 3195734 A JP3195734 A JP 3195734A JP 19573491 A JP19573491 A JP 19573491A JP 2995109 B2 JP2995109 B2 JP 2995109B2
Authority
JP
Japan
Prior art keywords
film
insulating layer
anode
forming
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3195734A
Other languages
Japanese (ja)
Other versions
JPH0521296A (en
Inventor
明広 井上
聡 湯澤
豊 原島
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP3195734A priority Critical patent/JP2995109B2/en
Publication of JPH0521296A publication Critical patent/JPH0521296A/en
Application granted granted Critical
Publication of JP2995109B2 publication Critical patent/JP2995109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は陽極体に生成した誘電体
酸化皮膜上に形成した化学重合膜上に電解重合膜を形成
するための給電手段を改良した固体電解コンデンサの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor having improved power supply means for forming an electrolytic polymer film on a chemical polymer film formed on a dielectric oxide film formed on an anode body.

【0002】[0002]

【従来の技術】一般に固体電解コンデンサは、アルミニ
ウム、タンタル等の皮膜生成性金属表面に誘電体酸化皮
膜を生成し、この誘電体酸化皮膜上に二酸化マンガン又
はTCNQ錯体などの固体電解質及び陰極層を順次形成
して構成されている。二酸化マンガンを固体電解質とし
て用いたものは、製造工程中誘電体酸化皮膜を損傷し易
い欠点を持ち、また、TCNQ錯体を用いたものは、熱
安定性に乏しいなどの欠点を持っている。
2. Description of the Related Art In general, a solid electrolytic capacitor forms a dielectric oxide film on the surface of a film-forming metal such as aluminum or tantalum, and a solid electrolyte such as manganese dioxide or a TCNQ complex and a cathode layer are formed on the dielectric oxide film. It is formed by forming sequentially. Those using manganese dioxide as the solid electrolyte have the disadvantage that the dielectric oxide film is easily damaged during the manufacturing process, and those using the TCNQ complex have the disadvantage of poor thermal stability.

【0003】一方、近年は誘電体酸化皮膜上にポリピロ
−ル、ポリチオフェン、ポリフランなどの複素五員環化
合物の重合膜を電解酸化重合により形成し固体電解質と
したコンデンサが提案され注目をあつめているが、誘電
体酸化皮膜は絶縁体であるので、その表面に直接電解重
合膜を形成することはできなかった。
On the other hand, in recent years, capacitors having a polymer film of a complex five-membered ring compound such as polypyrrol, polythiophene, and polyfuran formed on a dielectric oxide film by electrolytic oxidation polymerization and using a solid electrolyte have been proposed and attracted attention. However, since the dielectric oxide film is an insulator, it was not possible to form an electrolytic polymerized film directly on the surface.

【0004】そのため、誘電体酸化皮膜上に固体電解質
としての重合膜を形成するためには、予め誘電体酸化皮
膜上に化学酸化重合手段を講じて化学重合膜を形成し、
この化学重合膜上に電解重合膜を形成するようにしてい
た。
Therefore, in order to form a polymer film as a solid electrolyte on the dielectric oxide film, a chemical polymer film is formed on the dielectric oxide film in advance by means of chemical oxidation polymerization.
An electrolytic polymer film was formed on the chemical polymer film.

【0005】従来、一般化しているこの種電解重合膜形
成手段としては、図6に示すように表面を粗面化し、そ
の上に誘電体酸化皮膜を形成した例えばアルミニウム金
属からなる陽極体11に陽極引出端子12を取着し、こ
の陽極引出端子12の前記陽極体11と隣接する部分に
例えばシリコ−ンチュ−ブを被覆し加熱収縮して絶縁層
13を形成する。
Conventionally, this type of electropolymerized film forming means is generally used as an anode body 11 made of, for example, aluminum metal having a roughened surface and a dielectric oxide film formed thereon as shown in FIG. An anode lead-out terminal 12 is attached, and a portion of the anode lead-out terminal 12 adjacent to the anode body 11 is coated with, for example, a silicon tube, and is contracted by heating to form an insulating layer 13.

【0006】次に、前記陽極体11及び前記絶縁層13
の途中までを2mol/リットルのピロ−ル/エタノ−
ル溶液に5分間浸漬し、その後0.5mol/リットル
過硫酸アンモニウム水溶液に5分間浸漬して化学酸化重
合を行い、これら溶液へ浸漬された前記誘電体酸化皮膜
上及び前記絶縁層13の一部に化学重合膜14を形成す
る。
Next, the anode body 11 and the insulating layer 13
Up to the middle of 2 mol / l of pyrrole / ethanol
Immersion in a 0.5 mol / l aqueous solution of ammonium persulfate for 5 minutes to perform chemical oxidative polymerization on the dielectric oxide film immersed in these solutions and a part of the insulating layer 13. A chemically polymerized film 14 is formed.

【0007】次に、この化学重合膜14に例えば白金線
などの給電電極15を接触させ、ピロ−ルモノマ−1m
ol/リットル及び支持電解質としてパラトルエンスル
ホン酸ナトリウム1mol/リットルを含むアセトニト
リル溶液に浸漬し、定電流電解酸化重合(1mA/cm
2 、30分間)を行い、前記化学重合膜14上に電解重
合膜16を形成した後、前記給電電極15を剥離し、し
かる後、コロイダルカ−ボン溶液に浸漬してカ−ボン層
(図示せず)を形成し、更にその上に導電性塗膜(図示
せず)を形成し、その一部から陰極を引出して、最後に
外装を施してなるものである。
Next, a power supply electrode 15 such as a platinum wire is brought into contact with the chemically polymerized film 14, and
ol / liter and an acetonitrile solution containing 1 mol / liter of sodium paratoluenesulfonate as a supporting electrolyte, and subjected to galvanostatic oxidation polymerization (1 mA / cm).
(2 , 30 minutes) to form an electrolytic polymer film 16 on the chemical polymer film 14, then peel off the power supply electrode 15, and then immerse it in a colloidal carbon solution to form a carbon layer (not shown). ), A conductive coating film (not shown) is further formed thereon, a cathode is drawn out from a part of the conductive film, and finally an exterior is applied.

【0008】以上のような構成になる導電性高分子膜を
固体電解質として用いる固体電解コンデンサの製造方法
によれば、給電電極15の接触及び剥離するときに化学
重合膜14、更には誘電体酸化皮膜が損傷し易く、これ
らの損傷によって漏れ電流並びにtanδが大きくなる
問題を有し、また、複数間で給電電極15の接触状態
(位置、面積、接触の強弱等)を均一化することは極め
て困難で接触状態が異なることから、複数間で諸特性に
バラツキを生じ実用上大きな問題を有していた。
According to the method for manufacturing a solid electrolytic capacitor using the conductive polymer film having the above structure as a solid electrolyte, when the power supply electrode 15 is brought into contact with and peeled off from the chemical polymer film 14, the dielectric polymer oxide film The coating is apt to be damaged, and there is a problem that the leakage current and tan δ increase due to the damage. Further, it is extremely difficult to make the contact state (position, area, strength of contact, etc.) of the power supply electrode 15 uniform among a plurality. Because of the difficulty and the different contact state, there were variations in various characteristics among the plurality, which had a serious problem in practical use.

【0009】更に、電解酸化重合時の給電電極15の設
定が微細箇所への接触であるため、給電作業も厄介で工
業的な手段として不適であった。
Furthermore, since the setting of the power supply electrode 15 at the time of electrolytic oxidation polymerization is a contact with a minute portion, the power supply operation is troublesome and is not suitable as an industrial means.

【0010】[0010]

【発明が解決しようとする課題】以上のように上記構成
になる電解酸化重合時の給電手段では、作業性に問題が
あることは元より、漏れ電流不良やtanδ不良となる
重大欠点を誘発すると同時に複数間での諸特性バラツキ
が顕著で、実用上解決すべき課題を抱える結果となって
いた。
As described above, the power supply means at the time of electrolytic oxidation polymerization having the above-mentioned structure has a problem in workability, but also causes serious drawbacks such as leakage current failure and tan δ failure. At the same time, variations in characteristics among the plurality were remarkable, resulting in problems to be solved practically.

【0011】本発明は、上記の欠点を解決するためにな
されたもので、電解酸化重合時の給電手段を改良するこ
とによって、作業性良好にして、かつ諸特性向上に大き
く貢献できる導電性高分子膜を固体電解質として用いる
固体電解コンデンサの製造方法を提供することを目的と
するものである。
The present invention has been made in order to solve the above-mentioned drawbacks. By improving the power supply means at the time of electrolytic oxidation polymerization, it is possible to improve the workability and greatly contribute to the improvement of various characteristics. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor using a molecular film as a solid electrolyte.

【0012】[0012]

【課題を解決するための手段】本発明による固体電解コ
ンデンサの製造方法は、誘電体酸化皮膜を形成した皮膜
生成性金属からなる陽極体に陽極引出端子を取着し、こ
の陽極引出端子の前記陽極体と隣接する部分に絶縁層を
形成する工程と、前記誘電体酸化皮膜上及び前記絶縁層
の全面及び前記陽極引出端子の一部に連続して化学重合
膜を形成する工程と、前記陽極引出端子より電流を流
し、陽極引出端子と接触する前記化学重合膜を給電手段
として前記陽極体表面上に相当する前記化学重合膜上に
電解重合膜を形成する工程と、前記絶縁層の少なくとも
前記陽極引出端子の導出部近傍部を、この絶縁層上に形
成された化学重合膜とともに除去する工程とを順次経る
ことを特徴としている。
According to a method of manufacturing a solid electrolytic capacitor according to the present invention, an anode lead-out terminal is attached to an anode body made of a film-forming metal having a dielectric oxide film formed thereon. forming an insulating layer in a portion adjacent to the anode body, forming a chemical polymerization film in succession to a part of the entire surface and the anode lead terminal of the dielectric oxide film and on said insulating layer, said anode Apply current from the extraction terminal
Forming an electrolytic polymer film on the chemical polymer film corresponding to the surface of the anode body by using the chemical polymer film in contact with the anode lead-out terminal as a power supply means , and at least the anode of the insulating layer. And removing a portion near the lead-out portion of the lead-out terminal together with the chemically polymerized film formed on the insulating layer.

【0013】また、絶縁層上に形成する化学重合膜に代
え導電層を形成し、陽極引出端子より電流を流し、陽極
引出端子と接触する導電層を給電手段として用い化学重
合膜上に電解重合膜を形成することもできる
In addition, a conductive layer is formed in place of the chemically polymerized film formed on the insulating layer, and a current is applied from an anode lead-out terminal to the anode.
An electropolymerized film can also be formed on a chemically polymerized film by using a conductive layer in contact with a lead terminal as a power supply means .

【0014】[0014]

【作用】このように構成された固体電解コンデンサの製
造方法によれば、絶縁層全体及び陽極引出端子の一部に
化学重合膜又は導電層を形成するものであるため、電
解酸化重合時、陽極引出端子より電流を流し、陽極引出
端子と接触する化学重合膜又は導電層自体を給電手段
して機能させることが可能となり、均一な電解重合膜が
効率良く形成でき、作業性は元より諸特性改善に大きく
貢献できる作用を有する。
According to the method of manufacturing a solid electrolytic capacitor configured as described above, the entire insulating layer and a part of the anode lead-out terminal are provided.
Also forms a chemically polymerized film or conductive layer, so that a current flows from the anode extraction terminal during electrolytic oxidation polymerization
The chemical polymer film or the conductive layer itself in contact with the terminal can function as the power supply means , a uniform electrolytic polymer film can be formed efficiently, and the workability greatly contributes to the improvement of various characteristics from the beginning. Has a function that can be.

【0015】[0015]

【実施例】以下、本発明の一実施例につき図面を参照し
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0016】すなわち、図2に示すように表面を粗面化
して誘電体酸化皮膜を生成した、例えば高純度アルミニ
ウム箔からなる角板状の陽極体1に陽極引出端子2を取
着した後、この陽極引出端子2の前記陽極体1と隣接す
る部分にシリコ−ンチュ−ブを被覆−加熱収縮して絶縁
層3を形成する。
That is, as shown in FIG. 2, after attaching the anode lead-out terminal 2 to a square plate-shaped anode body 1 made of, for example, high-purity aluminum foil, whose surface has been roughened to form a dielectric oxide film, A portion of the anode lead-out terminal 2 adjacent to the anode body 1 is coated with a silicon tube and shrunk by heating to form an insulating layer 3.

【0017】次に、図3に示すように前記陽極体1と絶
縁層3形成部及び前記陽極引出端子2の一部までを2m
ol/リットルのピロール/エタノール溶液に5分間浸
漬し、その後0.5mol/リットル過硫酸アンモニウ
ム水溶液に5分間浸漬して化学酸化重合を行い、前記陽
極体1,絶縁層3及び陽極引出端子2の一部に導電性高
分子膜としての化学重合膜4を形成する。
Next, as shown in FIG. 3, the distance from the anode body 1 to the portion where the insulating layer 3 is formed and a part of the anode lead-out terminal 2 is 2 m.
dipped in a pyrrole / ethanol solution of ol / liter for 5 minutes, dipped to perform chemical oxidative polymerization followed by 0.5 mol / liter aqueous solution of ammonium persulfate for 5 minutes, the positive
A chemical polymer film 4 as a conductive polymer film is formed on the polar body 1, the insulating layer 3, and a part of the anode lead-out terminal 2 .

【0018】次に、図4に示すようにこの化学重合膜4
面をピロールモノマー1mol/リットル及び支持電解
質としてパラトルエンスルホン酸ナトリウム1mol/
リットルを含むアセトニトリル溶液に浸漬し、陽極引出
端子より電流を流し、陽極引出端子と接触する前記絶縁
層3上に形成された化学重合膜4を給電手段として外部
電極(図示せず)との間に定電流電解酸化重合(1mA
/cm、1時間)を行い、前記陽極体1表面上に相当
する前記化学重合膜4上に導電性高分子膜としての電解
重合膜5を形成し、しかる後図1に示すように前記絶縁
層3の少なくとも前記陽極引出端子2の導出部近傍部を
この絶縁層3上に形成された化学重合膜4とともに除去
する。
Next, as shown in FIG.
1 mol / l of pyrrole monomer and 1 mol / mol of sodium paratoluenesulfonate as supporting electrolyte
L was immersed in an acetonitrile solution containing an anode lead
An electric current flows from the terminal, and a constant current electrolytic oxidation polymerization (1 mA) is applied between the electrode and an external electrode (not shown) by using a chemically polymerized film 4 formed on the insulating layer 3 in contact with the anode extraction terminal as a power supply means.
/ Cm 2 , 1 hour) to form an electrolytic polymer film 5 as a conductive polymer film on the chemical polymer film 4 corresponding to the surface of the anode body 1, and thereafter, as shown in FIG. At least the portion of the insulating layer 3 near the lead-out portion of the anode lead-out terminal 2 is removed together with the chemically polymerized film 4 formed on the insulating layer 3.

【0019】次に、前記電解重合膜5面をコロイダルカ
−ボン溶液に浸漬しカ−ボン層(図示せず)を電解重合
膜5上に形成し、更にこのカ−ボン層上に導電性塗膜か
らなる陰極層(図示せず)を形成し、その一部から陰極
引出端子(図示せず)を取り出して、最後に外装(図示
せず)を施してなるものである。
Next, the surface of the electrolytic polymer film 5 is immersed in a colloidal carbon solution to form a carbon layer (not shown) on the electrolytic polymer film 5, and a conductive coating is formed on the carbon layer. A cathode layer (not shown) made of a film is formed, a cathode lead-out terminal (not shown) is taken out from a part of the cathode layer, and finally, an exterior (not shown) is applied.

【0020】以上のように構成してなる固体電解コンデ
ンサの製造方法によれば、従来のように細い白金線等を
給電電極として用いる必要はなく、絶縁層3上に形成さ
れた化学重合膜4をそのまま給電手段として機能させる
ことが可能となり、給電電極の接触作業のような手間は
省け、作業性向上に大きく貢献することは元より、白金
線の接触・剥離等による化学重合膜3、更には誘電体酸
化皮膜等の損傷の危険性は解消され、よって漏れ電流並
びにtanδ特性改善に寄与する。
According to the method of manufacturing a solid electrolytic capacitor having the above-described structure, it is not necessary to use a thin platinum wire or the like as a power supply electrode as in the related art, and the chemically polymerized film 4 formed on the insulating layer 3 is not required. directly makes it possible to function as a power supply means, eliminates the trouble such as contact work feeding electrode, than it is from which contributes greatly to improving workability, chemical polymerization film 3 due to contact, peeling of the platinum wire, further Eliminates the risk of damage to the dielectric oxide film and the like, thus contributing to the improvement of leakage current and tan δ characteristics.

【0021】また、絶縁層3上に形成された化学重合膜
4をそのまま給電手段として機能させるものであるた
め、複数間での給電手段の接触状態(位置、面積、接触
の強弱等)の均一化が確保でき、複数間での諸特性バラ
ツキのない優れた利点を有する。
Further, since the chemically polymerized film 4 formed on the insulating layer 3 functions as the power supply means as it is, the contact state (position, area, strength of contact, etc.) of the power supply means among the plurality is uniform. And has an excellent advantage that there is no variation in various properties among a plurality.

【0022】なお、上記実施例では絶縁層上にも陽極体
上に形成する化学重合膜と連続して化学重合膜を形成
し、この化学重合膜を電解酸化重合時の給電手段として
用いるものを例示して説明したが、図5に示すように陽
極引出端子2の前記陽極体1と隣接する部分にシリコー
ンチューブを被覆−加熱収縮して絶縁層3を形成し、化
学重合膜4を誘電体酸化皮膜上にのみ形成し、前記絶縁
層3上に前記化学重合膜4と連接させ、例えばカーボン
ペースト塗布後硬化させ導電層6を形成し、この導電層
6を給電手段として、前記化学重合膜4上に電解重合膜
5を形成するようにしても上記実施例にて説明したと同
様の効果を得ることができる。
In the above embodiment, a chemical polymer film is formed also on the insulating layer continuously with the chemical polymer film formed on the anode body, and this chemical polymer film is used as a power supply means during electrolytic oxidation polymerization.
As shown in FIG. 5, a portion of the anode lead-out terminal 2 adjacent to the anode body 1 is covered with a silicone tube and heat-shrinked to form an insulating layer 3 as shown in FIG. Is formed only on the dielectric oxide film, is connected to the chemical polymerized film 4 on the insulating layer 3, and is cured by, for example, applying a carbon paste to form a conductive layer 6. The conductive layer 6 is used as a power supply unit . Even when the electrolytic polymer film 5 is formed on the chemical polymer film 4, the same effect as described in the above embodiment can be obtained.

【0023】また、上記各実施例では絶縁層3形成とし
て、シリコ−ンチュ−ブを被覆−加熱収縮する手段を例
示して説明したが、シリコ−ンチュ−ブに代え必要箇所
にシリコ−ン樹脂を塗布−加熱硬化するようにしても良
いことは勿論である。
In each of the above embodiments, means for coating and heating and shrinking the silicon tube has been described as an example of the formation of the insulating layer 3. However, instead of the silicon tube, a silicon resin is provided at a necessary portion. May be applied and cured by heating.

【0024】次に、実験結果に基づき本発明と従来例の
特性比較について述べる。
Next, comparison of characteristics between the present invention and the conventional example will be described based on experimental results.

【0025】以下に示す本発明と従来例との特性比較を
行った結果、下表の通りであった。 (本発明A) 陽極体として厚さ60μmで3mm×5mmのアルミニ
ウム箔を用い、図1〜図4を例示して説明した上記実施
例にて述べた手段にて得た定格10V−2.2μFの固
体電解コンデンサ。 (本発明B) 給電手段形成として、図5を例示して説明した手段を除
き、本発明Aと同一手段によって得た定格10V−2.
2μFの固体電解コンデンサ。 (従来例) 陽極体として厚さ60μmで3mm×3mmのアルミニ
ウム箔を用い、図6を例示して従来技術として説明した
手段によって得た定格10V−2.2μFの固体電解コ
ンデンサ。
The following table shows the results of comparison of characteristics between the present invention and a conventional example. (Invention A) A rating of 10 V-2.2 μF obtained by the means described in the above-described embodiment illustrated and illustrated in FIGS. 1 to 4 using an aluminum foil of 60 μm in thickness and 3 mm × 5 mm as an anode body. Solid electrolytic capacitors. (Invention B) As the power supply means , a rated voltage of 10 V-2.
2μF solid electrolytic capacitor. (Conventional Example) A 3 mm × 3 mm aluminum foil having a thickness of 60 μm was used as an anode body, and was described as a conventional technique by exemplifying FIG.
A solid electrolytic capacitor rated at 10 V-2.2 μF obtained by means .

【0026】なお、試料数は本発明、従来例ともそれぞ
れ100個で、表中の数値は平均値で、括弧内の数値は
バラツキである。
The number of samples is 100 for each of the present invention and the conventional example. The numerical values in the table are average values, and the numerical values in parentheses vary.

【0027】[0027]

【表1】 [Table 1]

【0028】上表から明らかなように、静電容量、ta
nδは本発明と従来例に大差ないが、漏れ電流と短絡不
良とも本発明のものが従来例と比較し大幅に優れている
ことが分かる。
As is clear from the above table, the capacitance, ta
Although nδ is not much different from the present invention and the conventional example, it can be seen that the present invention is significantly superior to the conventional example in both leakage current and short-circuit failure.

【0029】この結果から、電解酸化重合における給電
手段として、陽極体に取着した陽極引出端子と導通状態
で設けた、化学重合膜又は化学重合膜と連接して設けた
導電層を用い、電解重合膜形成後陽極引出端子と導通状
態にある化学重合膜又は導電層部を除去する構成とする
ことによって、従来用いられていた化学重合膜に電極線
を接触させて電解酸化重合を行う手段と比較して、漏れ
電流並びに短絡不良特性向上に大きく貢献し、実用上優
れた効果を有することが分った。
From these results, it is found that power supply in electrolytic oxidation polymerization
As a means, a conductive layer provided in connection with the anode lead-out terminal attached to the anode body and provided in connection with the chemical polymerization film is used, and is in a conductive state with the anode lead-out terminal after forming the electrolytic polymerized film. By adopting a configuration in which the chemically polymerized film or the conductive layer portion is removed, the leakage current and short-circuit failure characteristics are improved in comparison with the conventionally used method of performing electrolytic oxidation polymerization by contacting the electrode wire with the chemically polymerized film. It has been found that it greatly contributes and has an excellent effect in practical use.

【0030】[0030]

【発明の効果】本発明によれば、漏れ電流特性並びに短
絡不良特性が大幅に改善できる実用的価値の高い化学重
合膜及び電解重合膜からなる導電性高分子膜を固体電解
質として用いる固体電解コンデンサの製造方法を得るこ
とができる。
According to the present invention, a solid electrolytic capacitor using, as a solid electrolyte, a conductive polymer film composed of a chemically polymerized film and an electrolytic polymerized film having high practical value and capable of greatly improving leakage current characteristics and short-circuit failure characteristics. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る固体電解コンデンサの
素子構造を示す断面図である。
FIG. 1 is a sectional view showing an element structure of a solid electrolytic capacitor according to one embodiment of the present invention.

【図2】本発明の一実施例に係る固体電解コンデンサの
製造方法を説明するための製造途中の陽極体を示す斜視
図である。
FIG. 2 is a perspective view showing an anode body in the course of manufacture for explaining a method of manufacturing a solid electrolytic capacitor according to one embodiment of the present invention.

【図3】本発明の一実施例に係る固体電解コンデンサの
製造方法を説明するための製造途中の陽極体への化学重
合膜形成状態を示す斜視図である。
FIG. 3 is a perspective view showing a state in which a chemically polymerized film is formed on an anode body during manufacture for describing a method of manufacturing a solid electrolytic capacitor according to one embodiment of the present invention.

【図4】本発明の一実施例に係る固体電解コンデンサの
製造方法を説明するための製造途中の電解重合膜形成後
の素子構造を示す断面図である。
FIG. 4 is a cross-sectional view illustrating a device structure after an electropolymerized film is formed during manufacture for describing a method of manufacturing a solid electrolytic capacitor according to one embodiment of the present invention.

【図5】本発明の他の実施例に係る固体電解コンデンサ
の製造方法を説明するための製造途中の電解重合膜形成
後の素子構造を示す断面図である。
FIG. 5 is a cross-sectional view illustrating a device structure after formation of an electropolymerized film in the course of manufacture, for explaining a method of manufacturing a solid electrolytic capacitor according to another embodiment of the present invention.

【図6】従来例に係る固体電解コンデンサの製造方法を
説明するための製造途中の素子構成を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing an element configuration during manufacture for describing a method of manufacturing a solid electrolytic capacitor according to a conventional example.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極引出端子 3 絶縁層 4 化学重合膜 5 電解重合膜 6 導電層 DESCRIPTION OF SYMBOLS 1 Anode body 2 Anode lead-out terminal 3 Insulating layer 4 Chemical polymerization film 5 Electrolytic polymerization film 6 Conductive layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−310530(JP,A) 特開 平1−105523(JP,A) 特開 平2−303017(JP,A) 特開 平3−78222(JP,A) 特開 平3−167816(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01G 9/00 - 9/28 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-310530 (JP, A) JP-A-1-105523 (JP, A) JP-A-2-303017 (JP, A) JP-A-3-303 78222 (JP, A) JP-A-3-167816 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01G 9/00-9/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体酸化皮膜を形成した皮膜生成性金
属からなる陽極体に陽極引出端子を取着し、この陽極引
出端子の前記陽極体と隣接する部分に絶縁層を形成する
工程と、前記誘電体酸化皮膜上及び前記絶縁層の全面
び前記陽極引出端子の一部に連続して化学重合膜を形成
する工程と、前記陽極引出端子より電流を流し、陽極引
出端子と接触する前記化学重合膜を給電手段として前記
陽極体表面上に相当する前記化学重合膜上に電解重合膜
を形成する工程と、前記絶縁層の少なくとも前記陽極引
出端子の導出部近傍部をこの絶縁層上に形成された化学
重合膜とともに除去する工程とを順次経ることを特徴と
する固体電解コンデンサの製造方法。
1. A step of attaching an anode lead terminal to an anode body made of a film-forming metal having a dielectric oxide film formed thereon, and forming an insulating layer on a portion of the anode lead terminal adjacent to the anode body. entire of the dielectric oxide film and on said insulating layer
Forming a chemically polymerized film continuously on a part of the anode lead-out terminal and passing a current from the anode lead-out terminal,
Forming an electrolytic polymerized film on the chemically polymerized film corresponding to the surface of the anode body by using the chemically polymerized film in contact with the output terminal as a power supply means ; and at least a portion near the lead-out portion of the anode extraction terminal of the insulating layer. And a step of removing the same together with the chemically polymerized film formed on the insulating layer.
【請求項2】 誘電体酸化皮膜を形成した皮膜生成性金
属からなる陽極体に陽極引出端子を取着し、この陽極引
出端子の前記陽極体と隣接する部分に絶縁層を形成する
工程と、前記誘電体酸化皮膜上に化学重合膜を形成する
工程と、前記絶縁層上及び前記陽極引出端子の一部に前
記化学重合膜と連続させ導電層を形成する工程と、前記
陽極引出端子より電流を流し、陽極引出端子と接触する
前記導電層を給電手段として前記化学重合膜上に電解重
合膜を形成する工程と、前記絶縁層の少なくとも前記陽
極引出端子の導出部近傍部をこの絶縁層上に形成された
導電層とともに除去する工程とを順次経ることを特徴と
する固体電解コンデンサの製造方法。
2. A step of attaching an anode lead-out terminal to an anode body made of a film-forming metal having a dielectric oxide film formed thereon, and forming an insulating layer on a portion of the anode lead-out terminal adjacent to the anode body. wherein the step of forming a dielectric oxide film on the chemical polymerization film, and forming the conductive layer is continuous with the chemical polymerization film on a part of the upper insulating layer and the anode lead terminal, the
Apply current from the anode lead-out terminal and come into contact with the anode lead-out terminal
Forming an electrolytic polymerized film on the chemical polymerized film using the conductive layer as a power supply unit, and removing at least a portion of the insulating layer near the lead-out portion of the anode lead-out terminal together with the conductive layer formed on the insulating layer. And a method for sequentially manufacturing the solid electrolytic capacitor.
JP3195734A 1991-07-09 1991-07-09 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2995109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3195734A JP2995109B2 (en) 1991-07-09 1991-07-09 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3195734A JP2995109B2 (en) 1991-07-09 1991-07-09 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0521296A JPH0521296A (en) 1993-01-29
JP2995109B2 true JP2995109B2 (en) 1999-12-27

Family

ID=16346078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3195734A Expired - Fee Related JP2995109B2 (en) 1991-07-09 1991-07-09 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2995109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012040292A2 (en) * 2010-09-21 2012-03-29 Jeffrey Poltorak Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
JP6472388B2 (en) * 2013-02-19 2019-02-20 ケメット エレクトロニクス コーポレーション Low ESR capacitor

Also Published As

Publication number Publication date
JPH0521296A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JPH0458165B2 (en)
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2836114B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH11204377A (en) Solid-state electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP2003197471A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH06124859A (en) Solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JPH03285321A (en) Solid electrolytic capacitor
JPH02303017A (en) Manufacture of solid state electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees