JPH06204097A - Layered solid-state electrolytic capacitor and its manufacture - Google Patents

Layered solid-state electrolytic capacitor and its manufacture

Info

Publication number
JPH06204097A
JPH06204097A JP35977492A JP35977492A JPH06204097A JP H06204097 A JPH06204097 A JP H06204097A JP 35977492 A JP35977492 A JP 35977492A JP 35977492 A JP35977492 A JP 35977492A JP H06204097 A JPH06204097 A JP H06204097A
Authority
JP
Japan
Prior art keywords
fold
oxide film
dielectric oxide
anode
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35977492A
Other languages
Japanese (ja)
Inventor
Kazuhiro Higuchi
和浩 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP35977492A priority Critical patent/JPH06204097A/en
Publication of JPH06204097A publication Critical patent/JPH06204097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a solid-state electrolytic capacitor by using a conductive high-molecular layer excelling in leakage current characteristic, ESR characteristic and impedance characteristic and having a high volume-to-capacitance factor for its solid-state electrolyte. CONSTITUTION:A dielectric oxide film 1 is formed on the surface of an anode plate 1 which comprises a valve action metal foil having four leaves 6, 7, 8, and 9 which are concatenated to an overlapped weld part to which an anode line 10 is fixed, and which protrude approximately perpendicular to the overlapped weld part 5, while mutually maintaining a spacing, in the same direction. Over the dielectric oxide film 1, a conductive high-molecular layer 12 comprising a chemical polymer film and an electrolytic polymer film is formed. A cathode layer 13 which is formed on the external surface of the conductive high- molecular layer 12 is formed to provide an element laminate 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子層を固体
電解質とする固体電解コンデンサ及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having a conductive polymer layer as a solid electrolyte and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、固体電解コンデンサとしては、
アルミニウム、タンタル、ニオブなどの弁作用金属を陽
極体し、この陽極体に形成した誘電体酸化皮膜上に、固
体電解質としての二酸化マンガンやTCNQ錯体からな
る有機半導体を形成し、これらの固体電解質上に陰極層
を形成して構成したものであり、コンデンサの小形高性
能化の一翼を担っている。
2. Description of the Related Art Generally, as a solid electrolytic capacitor,
A valve metal such as aluminum, tantalum, or niobium is used as an anode body, and an organic semiconductor composed of manganese dioxide or TCNQ complex as a solid electrolyte is formed on the dielectric oxide film formed on the anode body. It is formed by forming a cathode layer on the cathode and plays a part in miniaturization and high performance of the capacitor.

【0003】また、近年、コンデンサの小形高性能化の
さらなる要請に応え得たものとして、ポリピロール,ポ
リチオフェン,ポリフランなどの導電性高分子を固体電
解質として用いた固体電解コンデンサが注目を集めてい
る。
Further, in recent years, solid electrolytic capacitors using a conductive polymer such as polypyrrole, polythiophene and polyfuran as a solid electrolyte have been attracting attention in order to meet further demands for miniaturization and high performance of capacitors.

【0004】この導電性高分子は、その電導度が約10
2 S/cmと、二酸化マンガン(10-2S/cm)や、
TCNQ錯体(10S/cm)に比べ非常に高く、ま
た、熱安定性に優れるなどの特長を有しているため、こ
の導電性高分子を固体電解質として用いることにより、
インピーダンスの周波数特性、漏れ電流特性などの電気
的諸特性に優れ、広い範囲での温度特性に優れた固体電
解コンデンサを得ることが可能である。
This conductive polymer has an electric conductivity of about 10
2 S / cm and manganese dioxide (10 -2 S / cm),
Compared with TCNQ complex (10 S / cm), it is very high and has excellent thermal stability. Therefore, by using this conductive polymer as a solid electrolyte,
It is possible to obtain a solid electrolytic capacitor having excellent electrical characteristics such as impedance frequency characteristics and leakage current characteristics and excellent temperature characteristics in a wide range.

【0005】しかして、電子部品の軽薄短小化に伴い、
導電性高分子を固体電解質として用いた固体電解コンデ
ンサにおいても、単位体積当たりの容量増大の目的で、
陽極体を積層一体化する各種の技術が提案されている
が、これらの技術は、予め粗面化された陽極基体に陽極
線を接続し、その後前記陽極基体上に誘電体酸化皮膜
層、固体電解質としての導電性高分子層、陰極層を順次
形成したコンデンサ素板を複数枚積層し積層体を構成す
るものである。
However, as electronic parts have become lighter, thinner, shorter, and smaller,
Even in a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, for the purpose of increasing the capacity per unit volume,
Various techniques for laminating and integrating anode bodies have been proposed. These techniques involve connecting an anode wire to a pre-roughened anode substrate, and then forming a dielectric oxide film layer and a solid layer on the anode substrate. A laminate is formed by laminating a plurality of capacitor base plates on which a conductive polymer layer as an electrolyte and a cathode layer are sequentially formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
技術は、導電性高分子層を形成した陽極基体を積層し一
体化する技術であるため、一体化過程で誘電体酸化皮
膜、導電性高分子層、陰極層を形成した部分への機械的
ストレスを防ぎきれず、導電性高分子層、陰極層へのク
ラックはもとより陽極酸化皮膜に損傷が生じるが、固体
電解質としての導電性高分子は皮膜修復能力がないた
め、漏れ電流特性、ESR特性、インピーダンス特性を
劣化する欠点を持っていた。
However, since the above technique is a technique for laminating and integrating the anode substrate having the conductive polymer layer formed thereon, the dielectric oxide film and the conductive polymer are formed in the integration process. Layer, it is not possible to prevent the mechanical stress to the part where the cathode layer is formed, the conductive polymer layer, the cathode layer as well as damage to the anodic oxide film, the conductive polymer as a solid electrolyte film Since it has no repair ability, it has a drawback of degrading leakage current characteristics, ESR characteristics, and impedance characteristics.

【0007】本発明は、上記の問題を解決するために成
されたもので、その目的は漏れ電流、ESR、インピー
ダンスなどの電気的特性の安定した積層形固体電解コン
デンサ及びその製造方法を提供するものである。
The present invention has been made to solve the above problems, and its object is to provide a laminated solid electrolytic capacitor having stable electric characteristics such as leakage current, ESR, and impedance, and a method for manufacturing the same. It is a thing.

【0008】[0008]

【課題を解決するための手段】本発明による積層形固体
電解コンデンサは、任意な箇所に陽極線を固着した折り
重ね溶接部と、この折り重ね溶接部と連接し折り重ね溶
接部に対してほぼ垂直に、且つ相互に間隔を有し同一方
向に突出した少なくとも4つの片部とを有する弁作用金
属箔からなる陽極基体と、この陽極基体表面に形成した
誘電体酸化皮膜と、この誘電体酸化皮膜の上に形成した
化学重合膜と電解重合膜からなる導電性高分子層と、こ
の導電性高分子層の外表面上に形成した陰極層からなる
ことを特徴とするものである。
SUMMARY OF THE INVENTION A laminated solid electrolytic capacitor according to the present invention has a fold-weld portion in which an anode wire is fixed at an arbitrary position, and is connected to the fold-welded portion and is substantially connected to the fold-welded portion. An anode base made of a valve metal foil having at least four pieces vertically and spaced from each other and protruding in the same direction, a dielectric oxide film formed on the surface of the anode base, and this dielectric oxidation. It is characterized by comprising a conductive polymer layer composed of a chemically polymerized film and an electrolytic polymerized film formed on the film, and a cathode layer formed on the outer surface of the conductive polymer layer.

【0009】また、本発明による積層形固体電解コンデ
ンサの製造方法は、1枚の弁作用金属箔の少なくとも1
カ所両端から中心に向け同じ長さに分割されることなく
切れ目を入れて、この切れ目を結ぶ線に沿って折り重ね
て、且つ折り重ね中心部を溶接し折り重ね溶接部を形成
し、この折り重ね溶接部両端を構成する各片部を折り重
ね溶接部に対してほぼ垂直に相互に間隔を有し同一方向
に突出させ、前記折り重ね溶接部の任意な箇所に陽極線
を固着して陽極基体を形成する工程と、前記片部上に誘
電体酸化皮膜を形成する工程と、この誘電体酸化皮膜上
に化学酸化重合手段を講じ化学重合膜を形成し、しかる
後、電解酸化重合手段を講じ電解重合膜を形成して化学
重合膜と電解重合膜からなる導電性高分子層を形成する
工程と、この導電性高分子層の外表面上に陰極層を形成
する工程を順次経ることを特徴とするものである。
Further, the method of manufacturing a laminated solid electrolytic capacitor according to the present invention includes at least one valve-action metal foil.
Cut from both ends toward the center without dividing into the same length, fold along the line connecting the cuts, and weld the fold center to form the fold weld. Each piece constituting both ends of the lap weld is projected perpendicularly to the fold weld with mutual spacing and protruding in the same direction, and an anode wire is fixed at an arbitrary position of the fold weld to form an anode. A step of forming a substrate, a step of forming a dielectric oxide film on the one part, a chemical oxidation polymerization means is formed on the dielectric oxide film to form a chemical polymerization film, and then an electrolytic oxidation polymerization means is formed. Take the steps of sequentially forming an electrolytically polymerized film to form a conductive polymer layer composed of a chemically polymerized film and an electrolytically polymerized film, and a step of forming a cathode layer on the outer surface of the conductive polymer layer. It is a feature.

【0010】[0010]

【作用】このような構成によれば、陽極基体に対する陽
極線の固着箇所が1カ所で陽極線も1本で済み、従来技
術のように複数の陽極線を溶接することがないため、イ
ンピーダンス特性劣化要因が解消され、また、陽極基体
形成後、再化成を行うことにより誘電体酸化皮膜の修復
が可能となり、その後陽極基体に機械的ストレスが加わ
らないので、漏れ電流特性劣化要因が解消され、さら
に、積層構造となる各片部間に陰極層を形成しない構造
であるため、各片部間を極力狭くでき、小形軽量化に大
きく寄与する。
According to this structure, the anode wire is fixed to the anode base at one place and only one anode wire is required, and unlike the prior art, a plurality of anode wires are not welded. Deterioration factors are eliminated, and the dielectric oxide film can be repaired by performing re-formation after forming the anode substrate, and since mechanical stress is not applied to the anode substrate, the leakage current characteristic deterioration factor is eliminated. Further, since the cathode layer is not formed between the respective ones of the laminated structure, the distance between the respective ones can be made as small as possible, which greatly contributes to reduction in size and weight.

【0011】[0011]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図2(A)に示すように公知の手段を講じ
粗面化後、例えばアジピン酸アンモニウム水溶液中で電
圧を印加して誘電体酸化皮膜1を生成した1枚の弁作用
金属箔2のほぼ中心部両端から中心に向け同じ長さに分
割されることなく切れ目3,4を入れて、図2(B)に
示すようにこの切れ目3,4を結ぶ線に沿って折り重ね
て、且つ折り重ね中心部を溶接し折り重ね溶接部5を形
成し、この折り重ね溶接部5両端を構成する各片部6,
7,8,9を折り重ね溶接部5に対してほぼ垂直に相互
に間隔を有し同一方向に突出させ、前記折り重ね溶接部
5の任意な箇所に陽極線10を固着して陽極基体11を
形成する。
As shown in FIG. 2 (A), a sheet of valve metal foil 2 having a dielectric oxide film 1 formed by applying a voltage in, for example, an aqueous solution of ammonium adipate after roughening the surface by using known means. Put the cuts 3 and 4 without dividing into the same length from the both ends of the substantially central part toward the center, and fold along the line connecting the cuts 3 and 4 as shown in FIG. 2B. In addition, the folding center portion is welded to form the folding welding portion 5, and each of the piece portions 6, which constitutes both ends of the folding welding portion 5,
Anode wires 10 are fixed to arbitrary portions of the fold-weld portion 5 by projecting 7, 8 and 9 in the same direction with a space therebetween, which is substantially perpendicular to the fold-welded portion 5, and an anode substrate 11 is formed. To form.

【0013】次に、この陽極基体11の形成過程で生じ
た前記誘電体酸化皮膜1の損傷を修復するため再化成を
行い、次に図1に示すように、前記陽極基体11を例え
ば2M−ピロール/エタノール溶液に5分間浸漬した
後、さらに、0.5M−過硫酸アンモニウム水溶液に5
分間浸漬して、化学酸化重合を施し、誘電体酸化皮膜1
上にポリピロールからなる化学重合膜を形成し、しかる
後、例えば支持電解質としてアルキルナフタレンスルホ
ン酸塩0.05モル/リットル及びピロールモノマー
0.2モル/リットルを含む電解酸化重合液中におい
て、前段の処理で形成した化学重合膜を陽極とし、外部
電極との間で定電流電解酸化重合(1mA/cm2 ,1
時間)を行い、ポリピロールからなる電解重合膜を形成
する。すなわち、これらの処理により、陽極基体11の
誘電体酸化皮膜1上に、化学重合膜と電解重合膜からな
る導電性高分子層12を形成し、この導電性高分子層1
2の外表面上に陰極引出用として、グラファイト層、銀
ペースト層を順次形成することで陰極層13を形成し素
子積層体14を形成する。
Next, re-formation is performed to repair the damage of the dielectric oxide film 1 generated in the process of forming the anode substrate 11, and then, as shown in FIG. After being immersed in a pyrrole / ethanol solution for 5 minutes, it was further immersed in a 0.5M-ammonium persulfate aqueous solution.
Dipping for 1 minute, chemical oxidation polymerization, dielectric oxide film 1
A chemically polymerized film made of polypyrrole is formed on the above, and thereafter, for example, in an electrolytic oxidative polymerization solution containing 0.05 mol / liter of alkylnaphthalene sulfonate and 0.2 mol / liter of pyrrole monomer as a supporting electrolyte, The chemically polymerized film formed by the treatment is used as an anode, and constant current electrolytic oxidation polymerization (1 mA / cm 2 , 1
Time) to form an electrolytically polymerized film of polypyrrole. That is, by these treatments, a conductive polymer layer 12 composed of a chemically polymerized film and an electrolytic polymerized film is formed on the dielectric oxide film 1 of the anode substrate 11, and the conductive polymer layer 1 is formed.
A graphite layer and a silver paste layer are sequentially formed on the outer surface of No. 2 for drawing out a cathode to form a cathode layer 13 and an element stack 14.

【0014】しかして、図3に示すように前記素子積層
体14の陰極層13に陰極電極端子15を接続するとと
もに、前記陽極線10に陽極電極端子16を接続し、し
かる後、図4に示すように、例えばトランスファーモー
ルドにより樹脂外装17を施しコンデンサ本体18を形
成し、このコンデンサ本体18の側面から導出された陰
極電極端子15と陽極電極端子16をコンデンサ本体1
8側面に沿ってコンデンサ本体18の底面にまで至るよ
うに折り曲げ加工し完成品としてなるものである。
Then, as shown in FIG. 3, a cathode electrode terminal 15 is connected to the cathode layer 13 of the element laminate 14 and an anode electrode terminal 16 is connected to the anode wire 10, and then, as shown in FIG. As shown, for example, transfer molding is applied to the resin exterior 17 to form the capacitor body 18, and the cathode electrode terminal 15 and the anode electrode terminal 16 led out from the side surface of the capacitor body 18 are connected to the capacitor body 1
The finished product is formed by bending along the eight side surfaces to reach the bottom surface of the capacitor body 18.

【0015】以上のような構成になる積層形固体電解コ
ンデンサによれば、素子積層体14が1枚の弁作用金属
箔2により形成されるものであり、陽極基体11に対す
る陽極線10の固着箇所が折り重ね溶接部5の1カ所で
陽極線10も1本で済むため、従来技術のように複数の
陽極線を一体化するための溶接することがなく、インピ
ーダンス特性劣化要因が解消される。
According to the laminated solid electrolytic capacitor having the above-mentioned structure, the element laminated body 14 is formed by one piece of the valve metal foil 2, and the anode wire 10 is fixed to the anode base 11. However, since only one anode wire 10 is required at one place of the lap welding portion 5, welding for integrating a plurality of anode wires as in the prior art is not necessary, and the factor of impedance characteristic deterioration is eliminated.

【0016】また、素子積層体14形成後、再化成を行
うことにより誘電体酸化皮膜の修復が可能となり、その
後に機械的ストレスが加わらないので、誘電体酸化皮膜
の破壊がなくなり、漏れ電流特性劣化要因が解消され
る。
Further, the dielectric oxide film can be repaired by performing re-formation after the element laminate 14 is formed, and mechanical stress is not applied thereafter, so that the dielectric oxide film is not destroyed and the leakage current characteristic is eliminated. The deterioration factor is eliminated.

【0017】さらに、素子積層体14形成後に導電性高
分子層12の外表面上に陰極層13を形成するもので、
積層構造となる各片部6,7,8,9間に陰極層13を
形成しない構造であるため、各片部6,7,8,9間を
極力狭くでき、従来技術のように陰極層形成後に積層す
るものに比べて余分な陰極層部分がなく、体積容量率の
優れたものとなる。
Further, the cathode layer 13 is formed on the outer surface of the conductive polymer layer 12 after the element laminate 14 is formed,
Since the cathode layer 13 is not formed between the respective piece portions 6, 7, 8, 9 having a laminated structure, the space between the respective piece portions 6, 7, 8, 9 can be made as narrow as possible, and the cathode layer can be formed as in the prior art. There is no extra cathode layer portion as compared with the case of stacking after formation, and the volume capacity ratio is excellent.

【0018】次に、本発明による実施例と従来技術の特
性比較について述べる。
Next, a characteristic comparison between the embodiment according to the present invention and the prior art will be described.

【0019】(実施例)エッチングにより粗面化後、ア
ジピン酸アンモニウム水溶液中で化成処理し誘電体酸化
皮膜を生成した6mm×7mmのアルミニウム箔を用
い、前述の手段で折り重ね溶接部の任意な箇所に陽極線
を固着して陽極基体を形成し、しかる後、再化成を行
い、且つ前述の手段で誘電体酸化皮膜上に導電性高分子
層を形成し、この導電性高分子層の外表面上に陰極引出
用として、グラファイト層、銀ペースト層を順次形成す
ることで陰極層を形成し得られた素子積層体を、陰極層
は導電性接着剤若しくははんだ付けにより、陽極線は電
気溶接により、それぞれ端子に接続した後、前述した手
段で製作したチップ構造の積層形固体電解コンデンサ。
(Example) After roughening by etching, a 6 mm × 7 mm aluminum foil on which a dielectric oxide film has been formed by chemical conversion treatment in an aqueous solution of ammonium adipate is used. An anode wire is fixed to a portion to form an anode substrate, and thereafter, re-formation is performed, and a conductive polymer layer is formed on the dielectric oxide film by the above-mentioned means. An element laminate obtained by forming a cathode layer by sequentially forming a graphite layer and a silver paste layer for drawing out the cathode on the surface, the cathode layer being a conductive adhesive or soldering, and the anode wire being electrically welded. Then, the laminated solid electrolytic capacitor having the chip structure manufactured by the above-mentioned means after being connected to the respective terminals.

【0020】(従来例)エッチングにより粗面化後、ア
ジピン酸アンモニウム水溶液中で化成処理し誘電体酸化
皮膜を生成したアルミニウム箔を用い、絶縁性樹脂で陽
極側と陰極側に区分し、陰極形成側の有効面積を3mm
×3mmとした陽極基体の陰極側に、前記本発明と同様
の方法で導電性高分子層を形成し、さらに、この導電性
高分子層上に、グラファイト層、銀ペースト層を順次形
成することで陰極層を形成したコンデンサ素板を、陽極
側と陰極側を互いに対応させて4枚積層し、陰極層を銀
接着剤を介在させて固着し、陽極側を電気溶接で一体化
した素子積層体形成し、その後、前記実施例と同様な手
段を講じて製作したチップ構造の積層形固体電解コンデ
ンサ。
(Conventional example) After roughening by etching, an aluminum foil on which a dielectric oxide film was formed by chemical conversion treatment in an aqueous solution of ammonium adipate was used, and it was divided into an anode side and a cathode side with an insulating resin to form a cathode. Side effective area 3mm
A conductive polymer layer is formed on the cathode side of an anode substrate having a size of 3 mm by the same method as that of the present invention, and a graphite layer and a silver paste layer are sequentially formed on the conductive polymer layer. The element layer is formed by stacking 4 capacitor base plates with the cathode layer formed on the anode side and the cathode side in correspondence with each other, fixing the cathode layer with a silver adhesive interposed, and integrating the anode side by electric welding. A laminated solid electrolytic capacitor having a chip structure manufactured by forming a body and then performing the same means as in the above-mentioned embodiment.

【0021】しかして、上記実施例と従来例の初期特性
を調べたところ、下記の表1に示すような結果が得られ
た。この表1において、各欄の上段の数値は平均値、下
段の数値は分布範囲を示しており、ESRは、周波数1
00kHzにおける抵抗値である。
When the initial characteristics of the above-mentioned embodiment and the conventional example were examined, the results shown in Table 1 below were obtained. In this Table 1, the numerical value in the upper row of each column shows the average value, and the numerical value in the lower row shows the distribution range, and ESR is the frequency 1
It is a resistance value at 00 kHz.

【0022】また、それぞれの周波数−インピーダンス
特性を調べたところ、図5に示すような結果が得られ
た。
Further, when the frequency-impedance characteristics of each of them were examined, the results shown in FIG. 5 were obtained.

【0023】なお、試料は、実施例、従来例とも定格1
0V−4.7μFで、数量はそれぞれ100個である。
The sample is rated 1 in both the embodiment and the conventional example.
It is 0V-4.7 μF, and the quantity is 100 pieces each.

【0024】[0024]

【表1】 [Table 1]

【0025】表1及び図5から明らかなように、従来例
のものは漏れ電流特性、ESR特性、インピーダンス特
性の劣化がみられるが、この理由は、コンデンサ素板を
積層化する際の機械的なストレスにより、陰極層及び導
電性高分子層にクラックが生じ、この部分全体として抵
抗値が上昇し、この際に、陰極層及び導電性高分子層へ
のクラック発生に止まらず陽極酸化皮膜に損傷が生じ、
漏れ電流の増大につながるものと考えられる。
As is clear from Table 1 and FIG. 5, the conventional example shows deterioration in leakage current characteristics, ESR characteristics, and impedance characteristics. The reason for this is that mechanical properties when laminating the capacitor base plates are laminated. The stress causes cracks in the cathode layer and the conductive polymer layer, and the resistance value increases as a whole in this portion.At this time, cracks in the cathode layer and the conductive polymer layer do not stop and the anodized film is formed. Damage occurs,
It is considered to lead to an increase in leakage current.

【0026】これに対して、実施例のものは機械的なス
トレスによる陰極層及び導電性高分子層のクラック発生
がなく、勿論陽極酸化皮膜の損傷要因が解消され、いず
れの特性も安定した状態を示し、この種導電性高分子層
を固体電解質としたチップ構造の積層形固体電解コンデ
ンサにおける本発明の優れた効果を実証した。
On the other hand, in the examples, no cracks are generated in the cathode layer and the conductive polymer layer due to mechanical stress, and, of course, the cause of damage to the anodic oxide film is eliminated and all the characteristics are stable. And demonstrated the excellent effect of the present invention in a laminated solid electrolytic capacitor having a chip structure in which a conductive polymer layer of this kind is used as a solid electrolyte.

【0027】なお、上記実施例では、弁作用金属箔への
切れ目を一直線状に設け、4個の片部を積層化した構造
を例示して説明したが、これに限定されるものではな
く、切れ目を二直線以上設け、片部の数を上記実施例以
上にしたものでも良いことは勿論である。
In the above embodiments, the cuts on the valve metal foil are linearly provided and four pieces are laminated, but the present invention is not limited to this. Needless to say, it is also possible to provide two or more straight cuts and to make the number of one side more than that in the above-mentioned embodiment.

【0028】また、弁作用金属箔としては、アルミニウ
ムの他に、タンタル、チタン、ニオブなども使用可能で
ある。
As the valve action metal foil, tantalum, titanium, niobium or the like can be used in addition to aluminum.

【0029】上記実施例では、チップ構造の積層形固体
電解コンデンサを例示しているが、外部端子として例え
ば錫めっきCP線を用い、例えば流動浸漬法やデップ法
などにより外装を施し、リード線構造とすることも可能
である。
In the above-mentioned embodiment, a laminated solid electrolytic capacitor having a chip structure is exemplified. However, for example, a tin-plated CP wire is used as an external terminal, and a lead wire structure is formed by applying an exterior by a fluid immersion method or a dip method. It is also possible to

【0030】さらに、導電性高分子層及び陰極層の具体
的な形成方法などは、自由に選択可能である。そしてま
た、本発明は、前記の定格に限らず、各種の定格の積層
形固体電解コンデンサに適用可能であり、優れた作用効
果を得られるものである。
Further, the specific method of forming the conductive polymer layer and the cathode layer can be freely selected. Further, the present invention is applicable not only to the above ratings but also to various types of laminated solid electrolytic capacitors having various ratings, and excellent effects can be obtained.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、1
枚の弁作用箔から積層構造を形成することが可能とな
り、よって、漏れ電流特性、ESR特性及びインピーダ
ンス特性が著しく改善され、且つ体積容量率の大きな実
用的価値の高い積層形固体電解コンデンサ及びその製造
方法を得ることができる。
As described above, according to the present invention, 1
It is possible to form a laminated structure from a single piece of valve action foil, and therefore leakage current characteristics, ESR characteristics and impedance characteristics are significantly improved, and a laminated solid electrolytic capacitor having a large volume capacitance ratio and high practical value, and the same. A manufacturing method can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る素子積層体を示す断面
図。
FIG. 1 is a cross-sectional view showing an element laminated body according to an embodiment of the present invention.

【図2】本発明の一実施例に係る陽極基体の製造過程を
示すもので、(A)は弁作用金属箔の平面図、(B)は
陽極基体の斜視図。
2A and 2B show a manufacturing process of an anode substrate according to an embodiment of the present invention, FIG. 2A is a plan view of a valve action metal foil, and FIG. 2B is a perspective view of the anode substrate.

【図3】本発明の一実施例に係る素子積層体に電極端子
を接続した状態を示す断面図。
FIG. 3 is a cross-sectional view showing a state in which electrode terminals are connected to the element stack body according to the embodiment of the present invention.

【図4】本発明の一実施例に係る積層形固体電解コンデ
ンサを示す正面図。
FIG. 4 is a front view showing a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【図5】周波数−インピーダンス特性曲線図。FIG. 5 is a frequency-impedance characteristic curve diagram.

【符号の説明】[Explanation of symbols]

1 誘電体酸化皮膜 2 弁作用金属箔 3 切れ目 4 切れ目 5 折り重ね溶接部 6 片部 7 片部 8 片部 9 片部 10 陽極線 11 陽極基体 12 導電性高分子層 13 陰極層 14 素子積層体 DESCRIPTION OF SYMBOLS 1 Dielectric oxide film 2 Valve metal foil 3 Cut 4 Cut 5 Folded welded portion 6 Single piece 7 Single piece 8 Single piece 9 Single piece 10 Anode wire 11 Anode base 12 Conductive polymer layer 13 Cathode layer 14 Element laminate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 任意な箇所に陽極線を固着した折り重ね
溶接部と、この折り重ね溶接部と連接し折り重ね溶接部
に対してほぼ垂直に、且つ相互に間隔を有し同一方向に
突出した少なくとも4つの片部とを有する弁作用金属箔
からなる陽極基体と、この陽極基体表面に形成した誘電
体酸化皮膜と、この誘電体酸化皮膜の上に形成した化学
重合膜と電解重合膜からなる導電性高分子層と、この導
電性高分子層上の外表面上に形成した陰極層からなるこ
とを特徴とする積層形固体電解コンデンサ。
1. A fold-welded portion in which an anode wire is fixed at an arbitrary position, and a fold-welded portion which is connected to the fold-welded portion and which is substantially perpendicular to the fold-welded portion and has a space therebetween and projects in the same direction. From an anode substrate made of a valve action metal foil having at least four pieces, a dielectric oxide film formed on the surface of the anode substrate, and a chemical polymerization film and an electrolytic polymerization film formed on the dielectric oxide film. And a cathode layer formed on the outer surface of the conductive polymer layer.
【請求項2】 1枚の弁作用金属箔の少なくとも1カ所
両端から中心に向け同じ長さに分割されることなく切れ
目を入れて、この切れ目を結ぶ線に沿って折り重ねて、
且つ折り重ね中心部を溶接し折り重ね溶接部を形成し、
この折り重ね溶接部両端を構成する各片部を折り重ね溶
接部に対してほぼ垂直に相互に間隔を有し同一方向に突
出させ、前記折り重ね溶接部の任意な箇所に陽極線を固
着して陽極基体を形成する工程と、前記片部上に誘電体
酸化皮膜を形成する工程と、この誘電体酸化皮膜上に化
学酸化重合手段を講じ化学重合膜を形成し、しかる後、
電解酸化重合手段を講じ電解重合膜を形成して化学重合
膜と電解重合膜からなる導電性高分子層を形成する工程
と、この導電性高分子層上の外表面上に陰極層を形成す
る工程を順次経ることを特徴とする積層形固体電解コン
デンサの製造方法。
2. A valve-acting metal foil, at least at one location, is cut from both ends toward the center without being divided into the same length and is folded along a line connecting the cuts.
In addition, the fold center is welded to form the fold weld,
Each piece constituting the both ends of the fold-welded portion is projected in the same direction with a space therebetween substantially perpendicular to the fold-welded portion, and an anode wire is fixed to any portion of the fold-welded portion. Forming a positive electrode substrate, a step of forming a dielectric oxide film on the one part, a chemical oxidation polymerization means is formed on the dielectric oxide film to form a chemical polymerization film, and thereafter,
A step of forming an electrolytic polymerization film by taking electrolytic oxidation polymerization means to form a conductive polymer layer composed of a chemical polymerization film and an electrolytic polymerization film, and forming a cathode layer on the outer surface of the conductive polymer layer. A method of manufacturing a laminated solid electrolytic capacitor, which comprises sequentially performing steps.
JP35977492A 1992-12-28 1992-12-28 Layered solid-state electrolytic capacitor and its manufacture Pending JPH06204097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35977492A JPH06204097A (en) 1992-12-28 1992-12-28 Layered solid-state electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35977492A JPH06204097A (en) 1992-12-28 1992-12-28 Layered solid-state electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH06204097A true JPH06204097A (en) 1994-07-22

Family

ID=18466229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35977492A Pending JPH06204097A (en) 1992-12-28 1992-12-28 Layered solid-state electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH06204097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004505A1 (en) * 2005-06-30 2007-01-11 Showa Denko K. K. Solid state electrolyte capacitor and manufacturing method thereof
EP2367184A3 (en) * 2000-11-03 2013-03-27 Cardiac Pacemakers, Inc. A capacitor having first, second, and third capacitor modules
US20180061583A1 (en) * 2016-08-29 2018-03-01 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367184A3 (en) * 2000-11-03 2013-03-27 Cardiac Pacemakers, Inc. A capacitor having first, second, and third capacitor modules
US10032565B2 (en) 2000-11-03 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
WO2007004505A1 (en) * 2005-06-30 2007-01-11 Showa Denko K. K. Solid state electrolyte capacitor and manufacturing method thereof
US7573699B2 (en) 2005-06-30 2009-08-11 Showa Denko K.K. Solid state electrolyte capacitor and manufacturing method thereof
JP4888788B2 (en) * 2005-06-30 2012-02-29 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
US20180061583A1 (en) * 2016-08-29 2018-03-01 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
US10304635B2 (en) * 2016-08-29 2019-05-28 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor having a directly bonded cathode layer

Similar Documents

Publication Publication Date Title
KR100356194B1 (en) Solid electrolytic capacitor and method for maunfacturing the same
JP2973499B2 (en) Chip type solid electrolytic capacitor
US6771488B2 (en) Solid electrolytic capacitor and method of manufacturing the capacitor
EP0283239B1 (en) Electrolytic capacitors including a solid electrolyte layer, and their production
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
JP2004179621A (en) Aluminum electrolytic capacitor
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
US6791822B2 (en) Solid electrolytic capacitor
US7957120B2 (en) Capacitor chip and method for manufacturing same
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP4671347B2 (en) Solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JPH06232012A (en) Laminated solid electrolytic capacitor and its manufacture
JPH05326343A (en) Monolithic solid electrolytic capacitor
JP2867514B2 (en) Chip type solid electrolytic capacitor
JP3542613B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof