JPH0521295A - Manufacture of laminated solid electrolytic capacitor - Google Patents

Manufacture of laminated solid electrolytic capacitor

Info

Publication number
JPH0521295A
JPH0521295A JP3169867A JP16986791A JPH0521295A JP H0521295 A JPH0521295 A JP H0521295A JP 3169867 A JP3169867 A JP 3169867A JP 16986791 A JP16986791 A JP 16986791A JP H0521295 A JPH0521295 A JP H0521295A
Authority
JP
Japan
Prior art keywords
valve metal
electrolytic capacitor
solid electrolytic
metal foils
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3169867A
Other languages
Japanese (ja)
Other versions
JP2768061B2 (en
Inventor
Masao Fukuyama
正雄 福山
Yasuo Kudo
康夫 工藤
Toshikuni Kojima
利邦 小島
Satonari Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16986791A priority Critical patent/JP2768061B2/en
Priority to US07/795,564 priority patent/US5223120A/en
Priority to EP19910119876 priority patent/EP0487085A3/en
Publication of JPH0521295A publication Critical patent/JPH0521295A/en
Application granted granted Critical
Publication of JP2768061B2 publication Critical patent/JP2768061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a small size and large capacity laminated solid electrolytic capacitor having excellent frequency characteristics by a method wherein electrolytically polymerized conductive polymer films are built up on manganese oxide layers formed on at least two valve metal foils to cover and fix the valve metal foils and then polymerization starting parts are cut off and removed. CONSTITUTION:Dielectric films 2 and manganese oxide films 3 are successively formed on at least two valve metal foils. The respective parts of the valve metal foils are exposed by removing the dielectric films on those parts and the valve metal foils are electrically connected to each other and laminated and fixed together. Then conductive parts which are so provided as to be brought into contact with the parts of the valve metal foils exposed by the removal of the dielectric films 2 are used as polymerization starting parts to perform electrolytic polymerization. Then electrolytically polymerized conductive polymer films 7 are built up on the manganese oxide films 3. The two or more valve metal foils are covered and fixed. After that, the polymerization starting parts are cut off and removed. With this constitution, the laminated structure is already obtained when polymerization reaction is finished, so that a laminated solid electrolytic capacitor can be manufactured easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質に導電性高
分子を用いる積層型固体電解コンデンサの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】近年、電気機器等の回路のディジタル
化、小型化に伴い、回路に使われるコンデンサには高周
波領域でのインピーダンスが低く、小型かつ大容量であ
ることが強く要望されるようになってきた。このような
状況の中で、導電性固体を電解質とした大容量固体電解
コンデンサの開発が盛んに行われている。
2. Description of the Related Art In recent years, with the digitization and miniaturization of circuits in electrical equipment and the like, it has been strongly demanded that capacitors used in circuits have low impedance in a high frequency region and be small in size and large in capacity. It's coming. Under such circumstances, a large-capacity solid electrolytic capacitor using a conductive solid as an electrolyte has been actively developed.

【0003】従来、固体電解質として二酸化マンガンを
用いたタンタル固体電解コンデンサが良く知られている
が、二酸化マンガンの抵抗が高いために高周波領域で十
分に低いインピーダンスを得ることができなかった。こ
の他、固体電解コンデンサとしては、二酸化マンガン層
の代わりに、導電性が高く陽極酸化性の優れた有機半導
体、7,7,8,8,−テトラシアノキノジメタンコン
プレックス塩(TCNQ塩)を固体電解質に使うものが
提案されているが、TCNQ塩を塗布する際に比抵抗上
昇が起こることや、陽極金属箔との接着性が弱いといっ
た問題があった。
Conventionally, a tantalum solid electrolytic capacitor using manganese dioxide as a solid electrolyte has been well known, but it has been impossible to obtain a sufficiently low impedance in a high frequency region because of the high resistance of manganese dioxide. In addition, as the solid electrolytic capacitor, an organic semiconductor having high conductivity and excellent anodizing property, 7,7,8,8, -tetracyanoquinodimethane complex salt (TCNQ salt), is used instead of the manganese dioxide layer. Although the one used for a solid electrolyte has been proposed, there have been problems that the specific resistance increases when the TCNQ salt is applied and the adhesiveness with the anode metal foil is weak.

【0004】そこで、最近、ピロール、チオフェンなど
の複素環式化合物モノマーと支持電解質を含ませた溶液
を用いて電解重合することにより、支持電解質のアニオ
ンをドーパントとして含む導電性高分子層を固体電解質
に使うものが提案されている。電解重合電導性高分子は
TCNQ塩と比較しても電気伝導度が非常に大きく、ま
た接着性の優れた皮膜が容易に作製できる。このため、
理想的なインピーダンスの周波数特性が実現でき、導電
性高分子を用いた固体電解コンデンサが特に注目されて
いる。
Therefore, recently, by conducting electropolymerization using a solution containing a heterocyclic compound monomer such as pyrrole or thiophene and a supporting electrolyte, a conductive polymer layer containing an anion of the supporting electrolyte as a dopant is solid electrolyte. Have been proposed for use. The electropolymerized conductive polymer has very high electric conductivity as compared with TCNQ salt, and a film having excellent adhesiveness can be easily prepared. For this reason,
A solid electrolytic capacitor using a conductive polymer, which can realize an ideal frequency characteristic of impedance, is particularly attracting attention.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、陽極弁
金属は絶縁物である誘電体皮膜で覆われているために、
このままの状態では電解重合により電解重合導電性高分
子を弁金属上に均一に形成することは極めて困難であ
る。さらに、コンデンサの容量を大容量化するためには
陽極箔を積層することが必要であるが、電解重合後に素
子を一つずつ積層するためには装置の大型化、歩留まり
の低下という問題がある。
However, since the anode valve metal is covered with the dielectric film which is an insulator,
In this state, it is extremely difficult to uniformly form the electropolymerized conductive polymer on the valve metal by electrolytic polymerization. Further, in order to increase the capacity of the capacitor, it is necessary to stack anode foils, but in order to stack the elements one by one after electrolytic polymerization, there is a problem that the device becomes large and the yield decreases. .

【0006】本発明は、上記の事情を鑑み、誘電体皮膜
を有する弁金属上に固体電解質である電解重合高分子層
を均一に形成し、容易に積層型固体電解コンデンサを作
製できるようにすることを目的とする。
In view of the above circumstances, the present invention makes it possible to uniformly form an electrolytically polymerized polymer layer, which is a solid electrolyte, on a valve metal having a dielectric film so that a laminated solid electrolytic capacitor can be easily manufactured. The purpose is to

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、誘電体皮膜とマンガン酸化物とを順次形
成した少なくとも2枚の弁金属箔上の一部の誘電体皮膜
を除去して弁金属同士の電気的な導通を取り、積層固定
し、誘電体皮膜を除去した弁金属と接触して設けた導電
部を重合開始部として電解重合を行い、マンガン酸化物
上に電解重合導電性高分子膜を積層させ、少なくとも2
枚の弁金属箔を覆い固定し、その後に重合開始部を切断
除去するように構成される。
To achieve the above object, the present invention removes a part of a dielectric film on at least two valve metal foils on which a dielectric film and a manganese oxide are sequentially formed. Electrical conductivity between the valve metals is fixed, laminated and fixed, and electropolymerization is performed using the conductive part provided in contact with the valve metal from which the dielectric film has been removed as the polymerization initiation part, and electropolymerized conductive on manganese oxide. At least 2 by laminating functional polymer films
It is configured to cover and fix a sheet of valve metal foil, and thereafter cut and remove the polymerization initiation portion.

【0008】[0008]

【作用】本発明は、上記構成により、陽極弁金属に電圧
を印加するだけで、弁金属に接触して設けた導電部から
電解重合物を均一に成長させることができ、成長した導
電性高分子は2枚以上の弁金属を覆い固定することがで
きる。そのため、重合反応が完了した時点ですでに積層
型になっており、容易に積層型固体電解コンデンサを作
製することができる。
According to the present invention, by virtue of the above structure, the electrolytic polymer can be uniformly grown from the conductive portion provided in contact with the valve metal only by applying a voltage to the anode valve metal, and the grown conductive high The molecule can cover and fix two or more valve metals. Therefore, when the polymerization reaction is completed, it is already a laminated type, and a laminated solid electrolytic capacitor can be easily manufactured.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】(実施例1)まず、本発明による積層型固
体電解コンデンサの製造方法の第1の実施例について説
明する。
(Embodiment 1) First, a first embodiment of a method for manufacturing a laminated solid electrolytic capacitor according to the present invention will be described.

【0011】図1には、積層する一枚のアルミニウムエ
ッチド箔1が示されている。図1(a)は平面図、図1
(b)は図1(a)のA−A’における断面図である。
このアルミニウムエッチド箔1を3%アジピン酸アンモ
ニウム水溶液を用いて、約70℃、印加電圧70Vの条
件で陽極酸化を40分間行うことにより、エッチド箔表
面に誘電体皮膜2を形成した。ついで、硝酸マンガン3
0%水溶液に浸漬し、自然乾燥させた後300℃で30
分間加熱し熱分解処理を行い、誘電体皮膜2上にマンガ
ン酸化物層3を積層形成した。
FIG. 1 shows a sheet of aluminum etched foil 1 to be laminated. FIG. 1A is a plan view and FIG.
1B is a sectional view taken along the line AA ′ in FIG.
This aluminum etched foil 1 was subjected to anodic oxidation for 40 minutes at a temperature of about 70 ° C. and an applied voltage of 70 V using a 3% aqueous solution of ammonium adipate to form a dielectric film 2 on the surface of the etched foil. Then, manganese nitrate 3
Immerse in 0% aqueous solution and let it air dry, then 300 at 300 ℃
A heating treatment was carried out by heating for a minute to form a manganese oxide layer 3 on the dielectric film 2.

【0012】次に、図2((a)は斜視図、(b)は
(a)のA−A’における断面図)のように突起部に重
合開始部であるニッケル箔片4を溶接によってアルミニ
ウムエッチド箔1上に設け、マンガン酸化物層3を設け
た2枚のエッチド箔1を固定する。電解重合の開始部で
ある弁金属に接触して設けた導電部としては、陽極酸化
されない金属が最適であるが、銀ペーストやカーボンペ
スト等でもよく、さらには化学重合導電性高分子等でも
よい。なお、重合開始部は少なくとも一箇所あればよ
く、重合時間を短縮するために複数個設けてもよく積層
させる各弁金属の間にも設けるとさらに良い。
Next, as shown in FIG. 2 ((a) is a perspective view and (b) is a cross-sectional view taken along the line AA 'of (a)), a nickel foil piece 4 as a polymerization initiation portion is welded to the protrusion. The two etched foils 1 provided on the aluminum etched foil 1 and provided with the manganese oxide layer 3 are fixed. As the conductive portion provided in contact with the valve metal that is the starting portion of electrolytic polymerization, a metal that is not anodized is most suitable, but silver paste, carbon pesto, or the like may be used, and further, chemically polymerized conductive polymer or the like may be used. . At least one polymerization initiation portion may be provided, and a plurality of polymerization initiation portions may be provided in order to shorten the polymerization time, and it is more preferable to provide it between the valve metals to be laminated.

【0013】その後、ピロール(0.5M)、トリイソ
プロピルナフタレンスルホン酸ナトリウム(0.1M)
および水からなる電解重合液中に配置した2枚積層した
エッチド箔1に2.5Vの定電圧を30分間印加して電
解重合反応を行い、固体電解質用の電解重合ポリピロー
ル7を図3のように形成した。マンガン酸化物層3の上
に積層される電解重合導電性高分子膜としては、ピロー
ル、または、その誘導体(例えば、N−メチルピロー
ル)の少なくとも一つが挙げられるが、他に、例えば
「チオフェン」「フラン」等でもよい。
Then, pyrrole (0.5M) and sodium triisopropylnaphthalenesulfonate (0.1M)
A constant voltage of 2.5 V is applied for 30 minutes to the two-layered etched foils 1 arranged in an electrolytic polymerization solution consisting of water and water to perform an electrolytic polymerization reaction, and an electrolytic polymerization polypyrrole 7 for solid electrolyte is formed as shown in FIG. Formed. Examples of the electropolymerized conductive polymer film laminated on the manganese oxide layer 3 include at least one of pyrrole and a derivative thereof (for example, N-methylpyrrole), but other examples include “thiophene”. It may be "franc" or the like.

【0014】また、電解重合の際に用いる支持電解質と
しては過塩素酸塩、スルホン酸塩、カルボン酸塩、リン
酸塩等の他一般に用いられるものであればどのようなも
のでもよいが、アルキル置換基を有するナフタレンスル
ホン酸塩もしくはアルキルリン酸エステルが好適であ
る。さらに具体的には、モノメチルナフタレンスルホン
酸ナトリウム、トリイソプロピルナフタレンスルホン酸
ナトリウム、モノイソプロピルナフタレンスルホン酸ナ
トリウム、ジブチルナフタレンスルホン酸ナトリウム、
プロピルリン酸エステル、ブチルリン酸エステル、ヘキ
シルリン酸エステル等が挙げられる。
The supporting electrolyte used in the electropolymerization may be any one commonly used other than perchlorates, sulfonates, carboxylates, phosphates and the like. A naphthalene sulfonate or an alkyl phosphate having a substituent is preferable. More specifically, sodium monomethylnaphthalenesulfonate, sodium triisopropylnaphthalenesulfonate, sodium monoisopropylnaphthalenesulfonate, sodium dibutylnaphthalenesulfonate,
Examples thereof include propyl phosphate ester, butyl phosphate ester, hexyl phosphate ester and the like.

【0015】なお、上記モノマーや支持電解質をそれぞ
れ単独で用いず、支持電解質を複数種混合して用いた
り、ピロール、チオフェンをそれぞれの誘導体と混合し
て用いるなど上記モノマーも複数種併用するようにして
もよい。さらに、固体電解質を複合化するために、電解
液に適当な添加剤を入れるようにしてもよい。
It is to be noted that a plurality of types of the above-mentioned monomers may be used in combination such that the above-mentioned monomers and supporting electrolytes are not used alone, but a plurality of types of supporting electrolytes are mixed, or pyrrole and thiophene are mixed with their respective derivatives. May be. Further, in order to form a composite with the solid electrolyte, an appropriate additive may be added to the electrolytic solution.

【0016】固体電解質を形成の後、水洗し乾燥してか
ら電解重合ポリピロール7の上にカーボン層5と銀ペー
スト層6を順次設けた後、重合開始部のニッケル箔片4
を設けた突起部分を折り曲げて除去した。その後エポキ
シ樹脂で外装し積層型固体電解コンデンサを得た。作製
個数は10個である。得られた固体電解コンデンサを2
0Vで1時間エージングをした後、120Hzでの容
量、損失係数及び漏れ電流を測定した。さらに、500
kHzでのインピーダンスを測定し平均値を(表1)に
示す。なお、測定された容量値はアルミニウムエッチド
箔約2枚分の容量であった。
After the solid electrolyte is formed, it is washed with water and dried, and then the carbon layer 5 and the silver paste layer 6 are sequentially provided on the electrolytically polymerized polypyrrole 7, and then the nickel foil piece 4 at the polymerization initiation portion is formed.
The protruding portion provided with was bent and removed. Then, it was packaged with an epoxy resin to obtain a laminated solid electrolytic capacitor. The number of manufactured pieces is 10. The obtained solid electrolytic capacitor is 2
After aging at 0 V for 1 hour, the capacity, loss factor and leakage current at 120 Hz were measured. In addition, 500
The impedance at kHz was measured and the average value is shown in (Table 1). The measured capacitance value was the capacitance of about two aluminum etched foils.

【0017】[0017]

【表1】 [Table 1]

【0018】(比較例1)比較のために、重合開始点で
あるニッケル箔片を設ける代わりに誘電体皮膜を一部取
り除いた部分から重合を開始させる以外は上記と同じ条
件でコンデンサを10個作製し同様な測定を行った。測
定値の平均値を比較例1として(表1)に示す。両者を
比べれば、この発明による固体電解コンデンサの方が遥
かに優れていることがよくわかる。
(Comparative Example 1) For comparison, 10 capacitors were used under the same conditions as above except that the polymerization was started from the part where the dielectric film was partially removed instead of providing the nickel foil piece as the polymerization starting point. It was produced and the same measurement was performed. The average value of the measured values is shown in Table 1 as Comparative Example 1. Comparing the two, it can be clearly seen that the solid electrolytic capacitor according to the present invention is far superior.

【0019】(実施例2)次に、本発明による積層型固
体電解コンデンサの製造方法の第2の実施例について説
明する。
(Embodiment 2) Next, a second embodiment of the method of manufacturing a laminated solid electrolytic capacitor according to the present invention will be described.

【0020】この実施例では、2枚のアルミニウムエッ
チド箔を積層する際に、エッチド箔の間に電解コンデン
サ用隔離紙をセパレータとして入れる。セパレータとし
ては電解重合に用いる電解重合液がしみこむものであれ
ばよく、通常の電解コンデンサ用隔離紙として用いられ
るクラフト、マニラ麻といった植物繊維の他、合成繊
維、ガラスファイバ等が利用できる。それ以外は第1の
実施例と同様にしてコンデンサを10個作製した。得ら
れた固体電解コンデンサの120Hzでの容量、損失係
数及び漏れ電流を測定した。さらに、500kHzでの
インピーダンスを測定し平均値を(表1)に示す。これ
より、本発明によるコンデンサは非常に優れた特性を有
していることがわかる。
In this embodiment, when two aluminum etched foils are laminated, a separator for electrolytic capacitors is inserted as a separator between the etched foils. Any separator may be used as long as it can be impregnated with an electrolytic polymerization solution used for electrolytic polymerization, and synthetic fibers, glass fibers, and the like can be used in addition to plant fibers such as kraft and Manila hemp, which are commonly used as separator paper for electrolytic capacitors. Except for this, ten capacitors were manufactured in the same manner as in the first embodiment. The capacity, loss factor and leakage current at 120 Hz of the obtained solid electrolytic capacitor were measured. Furthermore, the impedance at 500 kHz was measured and the average value is shown in (Table 1). From this, it can be seen that the capacitor according to the present invention has very excellent characteristics.

【0021】(実施例3)次に、本発明による積層型固
体電解コンデンサの製造方法の第3の実施例について説
明する。
(Embodiment 3) Next, a third embodiment of the method of manufacturing a laminated solid electrolytic capacitor according to the present invention will be described.

【0022】この実施例では、電解重合ポリピロールを
重合形成した後に直ちに重合開始部のニッケル箔片を設
けた突起部分を折り曲げて除去し、その後コンデンサ素
子の切断面を紫外線硬化樹脂で被覆する。コンデンサ素
子の切断面を被覆する絶縁物としては絶縁被覆可能なも
のであればどのようなものでもよいが、その一例として
紫外線硬化樹脂、エポキシ樹脂、ポリイミド、ポリイミ
ドアミド、シリコンゴム等が挙げられる。それ以外は第
1の実施例と同様にしてコンデンサを10個作製した。
得られた固体電解コンデンサの120Hzでの容量、損
失係数及び漏れ電流を測定した。さらに、500kHz
でのインピーダンスを測定し平均値を(表1)に示す。
これより、本発明によるコンデンサは非常に優れた特性
を有していることがわかる。
In this embodiment, immediately after the electrolytically polymerized polypyrrole is polymerized and formed, the projection portion provided with the nickel foil piece at the polymerization initiation portion is bent and removed, and then the cut surface of the capacitor element is covered with an ultraviolet curable resin. The insulating material for covering the cut surface of the capacitor element may be any material as long as it can be insulation-coated, and examples thereof include an ultraviolet curable resin, an epoxy resin, a polyimide, a polyimide amide, and a silicone rubber. Except for this, ten capacitors were manufactured in the same manner as in the first embodiment.
The capacity, loss factor and leakage current at 120 Hz of the obtained solid electrolytic capacitor were measured. Furthermore, 500 kHz
The impedance was measured and the average value is shown in (Table 1).
From this, it can be seen that the capacitor according to the present invention has very excellent characteristics.

【0023】(実施例4)次に、本発明による積層型固
体電解コンデンサの製造方法の第4の実施例について説
明する。
(Embodiment 4) Next, a fourth embodiment of the method of manufacturing a laminated solid electrolytic capacitor according to the present invention will be described.

【0024】この実施例では、トリイソプロピルナフタ
レンスルホン酸ナトリウムに代えてn−ブチルリン酸エ
ステルを用いた。それ以外は第1の実施例と同様にして
コンデンサを10個作製した。得られた固体電解コンデ
ンサの120Hzでの容量、損失係数及び漏れ電流を測
定した。さらに、500kHzでのインピーダンスを測
定し平均値を(表1)に示す。これより、本発明による
コンデンサは非常に優れた特性を有していることがわか
る。
In this example, n-butyl phosphate was used in place of sodium triisopropylnaphthalene sulfonate. Except for this, ten capacitors were manufactured in the same manner as in the first embodiment. The capacity, loss factor and leakage current at 120 Hz of the obtained solid electrolytic capacitor were measured. Furthermore, the impedance at 500 kHz was measured and the average value is shown in (Table 1). From this, it can be seen that the capacitor according to the present invention has very excellent characteristics.

【0025】(実施例5)次に、本発明による積層型固
体電解コンデンサの製造方法の第5の実施例について説
明する。
(Fifth Embodiment) Next, a fifth embodiment of the method for manufacturing a laminated solid electrolytic capacitor according to the present invention will be described.

【0026】この実施例では、ピロール(0.5M)、
トリイソプロピルナフタレンスルホン酸ナトリウム
(0.1M)と水からなる重合用電解液に代えて、チオ
フェン(0.5M)、テトラブチルアンモニウムパラト
ルエンスルホン酸ナトリウム(0.1M)とアセトニト
リルとからなる電解液を用いた。それ以外は(第1)の
実施例と同様にしてコンデンサを10個作製した。得ら
れた固体電解コンデンサの120Hzでの容量、損失係
数及び漏れ電流を測定した。さらに、500kHzでの
インピーダンスを測定し平均値を表1に示す。これよ
り、本発明によるコンデンサは非常に優れた特性を有し
ているとがわかる。
In this example, pyrrole (0.5M),
An electrolytic solution containing thiophene (0.5M), sodium tetrabutylammonium paratoluenesulfonate (0.1M) and acetonitrile in place of the electrolytic solution for polymerization containing sodium triisopropylnaphthalenesulfonate (0.1M) and water. Was used. Other than that, 10 capacitors were manufactured in the same manner as in the (first) embodiment. The capacity, loss factor and leakage current at 120 Hz of the obtained solid electrolytic capacitor were measured. Further, the impedance at 500 kHz was measured and the average value is shown in Table 1. From this, it can be seen that the capacitor according to the present invention has very excellent characteristics.

【0027】なお、この発明は上記実施例の化合物や処
理工程に限定されない。例示以外の代替え可能な化合物
や処理工程を用いてもよいことはいうまでもない。
The present invention is not limited to the compounds and processing steps of the above-mentioned examples. It goes without saying that substitutable compounds and treatment steps other than the exemplified ones may be used.

【0028】[0028]

【発明の効果】以上に述べたように、本発明による積層
型固体電解コンデンサの製造方法では、誘電体皮膜とマ
ンガン酸化物とを順次形成した2枚以上の弁金属箔上の
一部の誘電体皮膜を除去して弁金属同士の電気的な導通
を取り、積層固定し、誘電体皮膜を除去した弁金属と接
触して設けた導電部を重合開始部として電解重合を行
い、マンガン酸化物上に電解重合導電性高分子膜を積層
させて2枚以上の弁金属箔を覆い固定し、その後に重合
開始部を切断除去するようにしたので、陽極弁金属に電
圧を印加するだけで、弁金属に接触して設けた導電部か
ら電解重合物を均一に成長させることができ、成長した
導電性高分子は少なくとも2枚以上の弁金属を覆い固定
することができる。そのため、重合反応が完了した時点
ですでに積層型になっており、容易に積層型固体電解コ
ンデンサを作製することができる。
As described above, in the method of manufacturing a laminated solid electrolytic capacitor according to the present invention, a part of dielectrics on two or more valve metal foils in which a dielectric film and manganese oxide are sequentially formed. By removing the body film to establish electrical continuity between the valve metals, stacking and fixing, electrolysis is carried out using the conductive part provided in contact with the valve metal with the dielectric film removed as the polymerization initiation part, and manganese oxide. Electrolytically polymerized conductive polymer film is laminated on top to cover and fix two or more valve metal foils, and then the polymerization initiation part is cut and removed, so by simply applying a voltage to the anode valve metal, The electrolytic polymer can be uniformly grown from the conductive portion provided in contact with the valve metal, and the grown conductive polymer can cover and fix at least two or more valve metals. Therefore, when the polymerization reaction is completed, it is already a laminated type, and a laminated solid electrolytic capacitor can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における積層型固体電解コン
デンサの製造方法を説明する工程図
FIG. 1 is a process diagram illustrating a method for manufacturing a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の一実施例における積層型固体電解コン
デンサの製造方法を説明する工程図
FIG. 2 is a process diagram illustrating a method of manufacturing a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【図3】本発明の一実施例における積層型固体電解コン
デンサの製造方法を説明する工程断面図
FIG. 3 is a process sectional view illustrating a method for manufacturing a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミニウムエッチド箔 2 誘電体皮膜 3 マンガン酸化物層 4 ニッケル箔片 5 カーボン層 6 銀ペースト層 7 電解重合ポリピロール 1 Aluminum Etched Foil 2 Dielectric film 3 Manganese oxide layer 4 Nickel foil pieces 5 carbon layer 6 Silver paste layer 7 Electropolymerized polypyrrole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigenari Nanai             3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture             No. Matsushita Giken Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 誘電体皮膜とマンガン酸化物とを順次形
成した少なくとも2枚の弁金属箔上の一部の誘電体皮膜
を除去して弁金属同士の電気的な導通を取り積層固定
し、前記誘電体皮膜を除去した弁金属と接触して設けた
導電部を重合開始部として電解重合を行い、前記マンガ
ン酸化物上に電解重合導電性高分子膜を積層させ前記2
枚以上の弁金属箔を覆い固定し、その後に前記重合開始
部を切断除去する積層型固体電解コンデンサの製造方
法。
1. A part of the dielectric film on at least two valve metal foils on which a dielectric film and a manganese oxide are sequentially formed is removed to establish electrical continuity between valve metals and to fix them in layers. Electrolytic polymerization is performed by using a conductive portion provided in contact with the valve metal from which the dielectric film is removed as a polymerization initiation portion, and an electrolytically polymerized conductive polymer film is laminated on the manganese oxide.
A method for producing a laminated solid electrolytic capacitor, which comprises covering and fixing one or more valve metal foils, and thereafter cutting and removing the polymerization initiation portion.
【請求項2】 誘電体皮膜とマンガン酸化物とを順次形
成した少なくとも2枚の弁金属箔上の一部の誘電体皮膜
を除去して弁金属同士の電気的な導通を取り、積層固定
する際に前記弁金属の間にセパレータを入れることを特
徴とする請求項1記載の積層型固体電解コンデンサの製
造方法。
2. A part of the dielectric film on at least two valve metal foils on which a dielectric film and a manganese oxide are sequentially formed is removed to establish electrical continuity between the valve metals and to laminate and fix them. The method of manufacturing a laminated solid electrolytic capacitor according to claim 1, wherein a separator is inserted between the valve metals.
【請求項3】 重合開始部となる導電部が、陽極酸化さ
れない金属であることを特徴とする請求項1または2記
載の積層型固体電解コンデンサの製造方法。
3. The method for producing a laminated solid electrolytic capacitor according to claim 1, wherein the conductive portion serving as a polymerization initiation portion is a metal that is not anodized.
【請求項4】 重合開始部を切断除去した後、コンデン
サ素子の切断面を絶縁物で被覆することを特徴とする請
求項1乃至3のいずれかに記載の積層型固体電解コンデ
ンサの製造方法。
4. The method for producing a laminated solid electrolytic capacitor according to claim 1, wherein the cut surface of the capacitor element is covered with an insulating material after cutting and removing the polymerization initiation portion.
【請求項5】 電解重合導電性高分子が、ピロール、チ
オフェンまたはそれらの誘導体から選ばれる少なくとも
一つのモノマーを電解重合して得られるものであること
を特徴とする請求項1乃至4のいずれかに記載の積層型
固体電解コンデンサの製造方法。
5. The electrolytically polymerized conductive polymer is obtained by electrolytically polymerizing at least one monomer selected from pyrrole, thiophene and derivatives thereof. A method of manufacturing the laminated solid electrolytic capacitor as described in.
【請求項6】 弁金属が、アルミニウムまたはタンタル
であることを特徴とする請求項1乃至5のいずれかに記
載の積層型固体電解コンデンサの製造方法。
6. The method for producing a laminated solid electrolytic capacitor according to claim 1, wherein the valve metal is aluminum or tantalum.
JP16986791A 1990-11-22 1991-07-10 Manufacturing method of multilayer solid electrolytic capacitor Expired - Fee Related JP2768061B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16986791A JP2768061B2 (en) 1991-07-10 1991-07-10 Manufacturing method of multilayer solid electrolytic capacitor
US07/795,564 US5223120A (en) 1990-11-22 1991-11-21 Method for fabricating solid electrolytic capacitors using an organic conductive layer
EP19910119876 EP0487085A3 (en) 1990-11-22 1991-11-21 Method for fabricating solid electrolytic capacitors using an organic conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16986791A JP2768061B2 (en) 1991-07-10 1991-07-10 Manufacturing method of multilayer solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0521295A true JPH0521295A (en) 1993-01-29
JP2768061B2 JP2768061B2 (en) 1998-06-25

Family

ID=15894421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16986791A Expired - Fee Related JP2768061B2 (en) 1990-11-22 1991-07-10 Manufacturing method of multilayer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2768061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184554A (en) * 2005-12-06 2007-07-19 Canon Inc Capacitor and circuit device employing it
JP2007200950A (en) * 2006-01-23 2007-08-09 Fujitsu Media Device Kk Multilayer solid-state electrolytic capacitor
US7482900B2 (en) 2004-01-27 2009-01-27 Matsushita Electric Works, Ltd. Micro relay
US7906803B2 (en) 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
CN103531361A (en) * 2012-07-03 2014-01-22 株式会社村田制作所 A solid electrolytic capacitor and a manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482900B2 (en) 2004-01-27 2009-01-27 Matsushita Electric Works, Ltd. Micro relay
JP2007184554A (en) * 2005-12-06 2007-07-19 Canon Inc Capacitor and circuit device employing it
US7906803B2 (en) 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
JP2007200950A (en) * 2006-01-23 2007-08-09 Fujitsu Media Device Kk Multilayer solid-state electrolytic capacitor
CN103531361A (en) * 2012-07-03 2014-01-22 株式会社村田制作所 A solid electrolytic capacitor and a manufacturing method thereof
JP2014013787A (en) * 2012-07-03 2014-01-23 Murata Mfg Co Ltd Solid electrolytic capacitor and method of manufacturing the same
CN103531361B (en) * 2012-07-03 2017-03-01 株式会社村田制作所 Solid electrolytic capacitor And Manufacturing approach

Also Published As

Publication number Publication date
JP2768061B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JP3459547B2 (en) Electrolytic capacitor and method for manufacturing the same
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10247612A (en) Solid electrolytic capacitor
JP2768061B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP3459573B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11204377A (en) Solid-state electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP3500068B2 (en) Electrolytic capacitor and method of manufacturing the same
JP3851294B2 (en) Electrolytic capacitor
JP3548040B2 (en) Solid electrolytic capacitors
JP2924310B2 (en) Manufacturing method of capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JP3232841B2 (en) Capacitor and method of manufacturing the same
JP2000340462A (en) Solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JP2531589B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees