JP2924251B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2924251B2
JP2924251B2 JP7286691A JP7286691A JP2924251B2 JP 2924251 B2 JP2924251 B2 JP 2924251B2 JP 7286691 A JP7286691 A JP 7286691A JP 7286691 A JP7286691 A JP 7286691A JP 2924251 B2 JP2924251 B2 JP 2924251B2
Authority
JP
Japan
Prior art keywords
film
electrolytic capacitor
solid electrolytic
dielectric film
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7286691A
Other languages
Japanese (ja)
Other versions
JPH04307915A (en
Inventor
利邦 小島
康夫 工藤
正雄 福山
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7286691A priority Critical patent/JP2924251B2/en
Publication of JPH04307915A publication Critical patent/JPH04307915A/en
Application granted granted Critical
Publication of JP2924251B2 publication Critical patent/JP2924251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子膜を固体電
解質とし、低漏れ電流特性を有し生産性が優れた固体電
解コンデンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolytic capacitor having a conductive polymer film as a solid electrolyte and having low leakage current characteristics and excellent productivity.

【0002】[0002]

【従来の技術】最近、電気機器のディジタル化にともな
って、そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求が高ま
っている。従来、高周波用のコンデンサとしてはプラス
チックフィルムコンデンサ、マイカコンデンサ、積層セ
ラミックコンデンサなどが用いられている。またその他
にアルミニウム乾式電解コンデンサやアルミニウムまた
はタンタル固体電解コンデンサなどがある。アルミニウ
ム乾式固体電解コンデンサでは、エッチングを施した
陽、陰極アルミニウム箔を紙のセパレータを介して巻取
り、液状の電解質を用いている。
2. Description of the Related Art Recently, with the digitization of electrical equipment, the capacitors used therein have low impedance in the high frequency range, and there is an increasing demand for smaller and larger capacitors. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as high-frequency capacitors. Other examples include an aluminum dry electrolytic capacitor and an aluminum or tantalum solid electrolytic capacitor. In an aluminum dry-type solid electrolytic capacitor, an etched positive and negative aluminum foil is wound up through a paper separator, and a liquid electrolyte is used.

【0003】また、アルミニウムやタンタル固体電解コ
ンデンサでは前記アルミニウム電解コンデンサの特性改
良のため電解質の固体化がなされている。この固体電解
質形成には硝酸マンガン液に陽極箔を 浸漬し、350
℃前後の高温炉中にて熱分解し、二酸化マンガン層を作
る。このコンデンサの場合、電解質が固体のために高温
における電解液の揮散、低温域での凝固から生ずる機能
低下などの欠点がなく、液状電解質と比べて良好な周波
数特性、温度特性を示す。アルミ電解コンデンサはタン
タル電解コンデンサと同様誘電体となる酸化皮膜を非常
に薄くできるために大容量を実現できる。
Further, in the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum electrolytic capacitors. To form this solid electrolyte, immerse the anode foil in a manganese nitrate solution,
Decomposes in a high-temperature furnace at around ℃ to form a manganese dioxide layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as volatilization of the electrolyte at a high temperature and functional deterioration caused by solidification in a low temperature range, and the capacitor exhibits better frequency characteristics and temperature characteristics than a liquid electrolyte. Aluminum electrolytic capacitors, like tantalum electrolytic capacitors, can achieve a large capacity because an oxide film serving as a dielectric can be made very thin.

【0004】更に、近年では7,7,8,8−テトラシ
アノキノジメタン(TCNQ)塩等の有機半導体を固体
電解質として用いた固体電解コンデンサが開発されてい
る(特開昭58−17609号公報)。さらにピロー
ル、フランなどの重合性モノマーを電解重合させて導電
性高分子とし、これを固体電解質とする方法もある(特
開昭60−244017号公報)。
Further, in recent years, a solid electrolytic capacitor using an organic semiconductor such as a 7,7,8,8-tetracyanoquinodimethane (TCNQ) salt as a solid electrolyte has been developed (Japanese Patent Laid-Open No. Sho 58-17609). Gazette). Furthermore, there is a method in which a polymerizable monomer such as pyrrole or furan is electrolytically polymerized to form a conductive polymer, which is used as a solid electrolyte (JP-A-60-244017).

【0005】[0005]

【発明が解決しようとする課題】このように種々のコン
デンサが使用されているが、フィルムコンデンサおよび
マイカコンデンサでは形状が大きくなってしまうために
大容量化が難しく、また積層セラミックコンデンサは小
型大容量の要望から生まれたものであるが価格が非常に
高くなるということと、温度特性が悪いことなどの欠点
を有している。また、アルミ電解コンデンサは酸化皮膜
の損傷が起き易いために酸化皮膜と陰極の間に電解質を
施し随時損傷を修復する必要がある。このため電解質に
液状のものを使用しているものは、電解質の液漏れやイ
オン伝導性などの理由から経時的に静電容量の減少や損
失の増大をもたらすことと高周波特性、低温領域での損
失が大きいなどの欠点を有している。
As described above, various types of capacitors are used. However, film capacitors and mica capacitors have large shapes because of their large shapes. However, it has disadvantages such as extremely high price and poor temperature characteristics. In addition, since the aluminum electrolytic capacitor is easily damaged by the oxide film, it is necessary to repair the damage by applying an electrolyte between the oxide film and the cathode as needed. For this reason, those using a liquid electrolyte for the electrolyte cause a decrease in capacitance or an increase in loss over time due to electrolyte leakage or ionic conductivity, etc. It has disadvantages such as a large loss.

【0006】次に固体電解質のものについて述べると、
高温で数回熱分解することによる酸化皮膜の損傷及び二
酸化マンガンの比抵抗が高いことなどの理由から高周波
域での損失は十分に小さいとは言えない。また、TCN
Q塩などの有機半導体を用いた固体電解コンデンサは、
二酸化マンガンを用いたものに比して優れた高周波特性
を示すが、有機半導体を塗布する際の比抵抗の上昇、陽
極箔への接着性が弱いことなどが原因で理想的な特性を
示すとは言えない。
Next, the solid electrolyte will be described.
The loss in the high frequency range cannot be said to be sufficiently small because the oxide film is damaged by thermal decomposition several times at a high temperature and the specific resistance of manganese dioxide is high. Also, TCN
Solid electrolytic capacitors using organic semiconductors such as Q salt
It shows excellent high-frequency characteristics compared to those using manganese dioxide, but shows ideal characteristics due to the increase in specific resistance when applying organic semiconductors, weak adhesion to anode foil, etc. I can't say.

【0007】更に導電性高分子薄膜を固体電解質とする
場合、周波数特性,温度特性,寿命特性などが優れてい
る。ただしこの固体電解コンデンサは、固体電解質とす
る導電性高分子薄膜を陽極弁金属上に形成させるため
に、外部電極を誘電体皮膜を有する陽極弁金属箔上に接
触させ、この外部電極を陽極として電解重合を行うため
誘電体皮膜を損傷するおそれがあり、また装置全体が大
型になり生産性も悪いという課題を有している。
Further, when a conductive polymer thin film is used as a solid electrolyte, frequency characteristics, temperature characteristics, life characteristics and the like are excellent. However, in this solid electrolytic capacitor, in order to form a conductive polymer thin film as a solid electrolyte on the anode valve metal, an external electrode is brought into contact with an anode valve metal foil having a dielectric film, and this external electrode is used as an anode. Since the electrolytic polymerization is performed, the dielectric film may be damaged, and there is a problem that the entire apparatus becomes large and the productivity is poor.

【0008】[0008]

【課題を解決するための手段】本発明による固体電解コ
ンデンサの製造方法は、陽極酸化により表面に誘電体皮
膜を形成した陽極弁金属箔の上にマンガン酸化物層を設
けた後、前記陽極弁金属箔の少なくとも1カ所で前記誘
電体皮膜を除去し金属部を露出させ、この金属部と接触
させて設けた導電部を重合開始部として電解重合を行
い、前記マンガン酸化物層上に電解重合導電性高分子膜
を積層し、その後前記重合開始部となった導電部を切断
除去し、コンデンサ素子の前記切断面で露出している陽
極弁金属箔の上に陽極酸化により誘電体皮膜を形成する
ものである。この誘電体を形成した後にさらに別の絶縁
物をコーティングすることも何等問題はない。前記重合
開始部となった導電部を除去するのは、電解重合導電性
高分子膜積層後、あるいはカーボンペイント膜積層後、
あるいは銀ペイント膜積層後のいずれであってもかまわ
ない。
The method of manufacturing a solid electrolytic capacitor according to the present invention comprises the steps of: providing a manganese oxide layer on an anode valve metal foil having a dielectric film formed on the surface by anodic oxidation; The dielectric film is removed in at least one portion of the metal foil to expose the metal portion, and the conductive portion provided in contact with the metal portion is subjected to electrolytic polymerization using the polymerization as a polymerization initiation portion, and the electrolytic polymerization is performed on the manganese oxide layer. A conductive polymer film is laminated, and thereafter, the conductive portion serving as the polymerization initiation portion is cut and removed, and a dielectric film is formed by anodic oxidation on the anode valve metal foil exposed at the cut surface of the capacitor element. Is what you do. There is no problem in coating another insulator after forming this dielectric. The removal of the conductive portion serving as the polymerization start portion, after the electropolymerized conductive polymer film laminated, or after the carbon paint film laminated,
Alternatively, it may be any one after the silver paint film is laminated.

【0009】[0009]

【作用】本発明は上記構成のように、誘電体皮膜を形成
した陽極弁金属箔の上にマンガン酸化物層を設けた後、
前記陽極弁金属箔に少なくとも1カ所で前記誘電体皮膜
を除去した金属部と接触させて設けた導電部を重合開始
部として電解重合を行い、前記マンガン酸化物層上に電
解重合導電性高分子膜を積層させ、その後前記重合開始
部となった導電部を切断除去しコンデンサ素子の前記切
断面で露出している陽極弁金属箔の上に陽極酸化により
誘電体皮膜を形成しているので、前記重合開始部で安定
に重合反応が行われ前記電解重合導電性高分子膜層が速
く成長し、電解重合終了後に前記陽極弁金属箔と接触し
ている前記重合開始部を切断除去するので短絡部がなく
なり、また前記切断面で露出している陽極弁作用金属箔
の上に誘電体皮膜を形成させるので耐圧が向上し、温度
変化によって短絡部分ができることもなく漏れ電流の低
減ができ、また装置全体を小型化でき生産性を向上させ
ることができる。
According to the present invention, a manganese oxide layer is provided on an anode valve metal foil on which a dielectric film is formed, as described above.
Electrolytic polymerization is performed using a conductive part provided in contact with the metal part from which the dielectric film has been removed in at least one place on the anode valve metal foil as a polymerization initiation part, and an electrolytically polymerized conductive polymer is formed on the manganese oxide layer. The dielectric layer is formed by anodic oxidation on the anode valve metal foil exposed on the cut surface of the capacitor element by cutting and removing the conductive portion serving as the polymerization start portion after laminating the film, The polymerization reaction is performed stably at the polymerization initiation part, the electropolymerization conductive polymer film layer grows quickly, and after the completion of the electropolymerization, the polymerization initiation part in contact with the anode valve metal foil is cut off and short-circuited. Part is eliminated, and since a dielectric film is formed on the anode valve action metal foil exposed at the cut surface, the withstand voltage is improved, the leakage current can be reduced without a short-circuited portion due to temperature change, and Dress The whole can be improved productivity can be miniaturized.

【0010】[0010]

【実施例】以下に本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】(実施例1)図1(a)側面図、図1
(b)正面図に示す弁作用金属箔2(アルミニウムエッ
チド箔)を7%アジピン酸アンモニウム水溶液を用い、
約70℃、40分間、印加電圧42Vの条件で陽極酸化
し、図2(a)一部破砕側面図、図2(b)正面図のご
とく誘電体皮膜3を形成した。つぎに、硝酸マンガン水
溶液を塗布し300℃、20分の条件で熱分解し図3
(a)一部破砕側面図、図3(b)正面図のごとくマン
ガン酸化物膜4からなる導電層を形成した。
(Embodiment 1) FIG. 1 (a) side view, FIG.
(B) The valve action metal foil 2 (aluminum etched foil) shown in the front view was prepared using a 7% ammonium adipate aqueous solution.
Anodization was performed at about 70 ° C. for 40 minutes at an applied voltage of 42 V to form a dielectric film 3 as shown in FIG. 2 (a), a partially crushed side view, and FIG. 2 (b), a front view. Next, an aqueous solution of manganese nitrate was applied and thermally decomposed at 300 ° C. for 20 minutes.
(A) A conductive layer composed of a manganese oxide film 4 was formed as shown in a partially crushed side view and FIG. 3 (b) front view.

【0012】ついで、図4(a)側面図、図4(b)正
面図に示すように、重合開始導電部10(実施例ではニ
ッケル箔片、直径1mm、厚さ50μm)を溶接によっ
てマンガン酸化物膜4の上に設置した。重合開始導電部
10は、図5(図4(b)のA−A’における断面図)
に示すように誘電体皮膜3、マンガン酸化物膜4を突き
抜けて弁作用金属箔2と接触している。ピロール(0.
25M)、トリイソプロピルナフタレンスルフォネート
(0.1M)、水からなる電解重合溶液に弁金属箔を浸
し、ニッケル箔片を重合開始部導電部10として、2.
5Vの定電圧を30分印加し、図6(a)一部破砕側面
図、図6(b)正面図に示すようにマンガン酸化物4上
に固体電解質用の導電性高分子膜5(ポリピロール膜)
を形成した。
Next, as shown in FIG. 4 (a) side view and FIG. 4 (b) front view, the polymerization initiation conductive part 10 (in the embodiment, a nickel foil piece, diameter 1 mm, thickness 50 μm) is manganese oxide by welding. It was set on the material film 4. The polymerization initiation conductive part 10 is shown in FIG. 5 (a cross-sectional view taken along line AA ′ in FIG.
As shown in the figure, the dielectric film 3 penetrates through the manganese oxide film 4 and is in contact with the valve metal foil 2. Pyrrole (0.
25M), triisopropyl naphthalene sulphonate (0.1 M), and an electrolytic polymerization solution composed of water.
A constant voltage of 5 V is applied for 30 minutes, and a conductive polymer film 5 (polypyrrole) for the solid electrolyte is formed on the manganese oxide 4 as shown in FIG. film)
Was formed.

【0013】続いて、図7(a)一部破砕側面図、図7
(b)正面図にみるように重合開始導電部10をその上
下の弁作用金属箔2、誘電体皮膜3、マンガン酸化物膜
4、導電性高分子膜5と共に折り曲げて除去した。次い
で図8(a)一部破砕側面図、図8(b)正面図に示す
ように、重合開始部を除去したこの素子の切断面で露出
している弁作用金属箔2(アルミニウムエッチド箔)の
上に、7%アジピン酸アンモニウム水溶液を用い、約7
0℃、20分間、印加電圧42Vの条件で陽極酸化し、
誘電体皮膜9を形成した。その後に図9、図10(各
(a)は一部破砕側面図、(b)は正面図)に示すよう
にカーボンペイント膜6、続いて銀ペイント膜7を形成
した。最後に、図11に示すように陽極リード1と陰極
リード8を設け、樹脂で外装して固体電解コンデンサを
得た。
Next, FIG. 7A is a partially broken side view, and FIG.
(B) As shown in the front view, the polymerization initiation conductive portion 10 was bent and removed together with the upper and lower valve action metal foils 2, the dielectric film 3, the manganese oxide film 4, and the conductive polymer film 5. Next, as shown in FIG. 8A, a partially crushed side view, and FIG. 8B, a front view, the valve action metal foil 2 (aluminum etched foil) exposed at the cut surface of this element from which the polymerization initiation portion has been removed ) Using a 7% aqueous solution of ammonium adipate,
Anodize at 0 ° C. for 20 minutes at an applied voltage of 42 V,
A dielectric film 9 was formed. Thereafter, as shown in FIGS. 9 and 10 (each (a) is a partially crushed side view, and (b) is a front view), a carbon paint film 6 and subsequently a silver paint film 7 were formed. Finally, as shown in FIG. 11, the anode lead 1 and the cathode lead 8 were provided and covered with a resin to obtain a solid electrolytic capacitor.

【0014】本実施例による切断面で露出している弁作
用金属箔2に誘電体皮膜3を形成した固体電解コンデン
サの特性と比較例として誘電体皮膜3を形成しない固体
電解コンデンサに関し、初期特性、ヒートサイクル試験
LC歩留まり特性についてそれぞれ(表1)と(表2)
に示している。これら(表1)と(表2)から明らかな
ように、本実施例による固体電解コンデンサは、耐圧特
性と信頼性の点で優れた効果が得られる。
The characteristics of the solid electrolytic capacitor having the dielectric film 3 formed on the valve metal foil 2 exposed at the cut surface according to the present embodiment and the solid electrolytic capacitor without the dielectric film 3 as a comparative example are shown as initial characteristics. , Heat cycle test LC yield characteristics (Table 1) and (Table 2)
Is shown in As is clear from Tables 1 and 2, the solid electrolytic capacitor according to the present embodiment has excellent effects in terms of withstand voltage characteristics and reliability.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】以上のように本実施例によれば、重合開始
導電部を陽極箔に設けて導電性高分子膜を陽極箔上に形
成させた後、前記重合開始導電部を少なくとも含む部分
を除去し、除去した断面部に陽極酸化によって誘電体皮
膜を形成させるので、耐圧特性と信頼性を向上させるこ
とができる。
As described above, according to this embodiment, after the polymerization initiation conductive portion is provided on the anode foil and the conductive polymer film is formed on the anode foil, the portion including at least the polymerization initiation conductive portion is removed. Then, since a dielectric film is formed on the removed cross-section by anodic oxidation, the withstand voltage characteristics and reliability can be improved.

【0018】(実施例2)電解重合導電性高分子膜5を
形成させるまでは、実施例1と同様である。即ち図6に
示すように導電性高分子膜5を形成させた後、図12
(a)一部破砕側面図、図12(b)正面図にみられる
ようにカーボンペイント膜6を形成した。続いて図13
(a)一部破砕側面図、図13(b)正面図にみるよう
に重合開始導電部10をその上下の弁作用金属箔2、誘
電体皮膜3、マンガン酸化物膜4、導電性高分子膜5、
カーボンペイント膜6と共に折り曲げて除去した。
(Example 2) The process up to the formation of the electropolymerized conductive polymer film 5 is the same as in Example 1. That is, after the conductive polymer film 5 is formed as shown in FIG.
(A) A carbon paint film 6 was formed as shown in a partially crushed side view and FIG. 12 (b) front view. Subsequently, FIG.
(A) As shown in the partially crushed side view and FIG. 13 (b) front view, the polymerization initiating conductive part 10 is formed of a valve metal foil 2, a dielectric film 3, a manganese oxide film 4, and a conductive polymer above and below it. Membrane 5,
It was bent and removed together with the carbon paint film 6.

【0019】次いで図14(a)一部破砕側面図、図1
4(b)正面図に示すように、この素子の重合開始部を
除去した切断面で露出している弁作用金属箔2(アルミ
ニウムエッチド箔)の上に、7%アジピン酸アンモニウ
ム水溶液を用い、約70℃、20分間、印加電圧42V
の条件で陽極酸化し、誘電体皮膜9を形成した。その後
に図15(a)一部破砕側面図、図15(b)正面図に
示すように銀ペイント膜7を形成した。最後に、図16
にみるように陽極リード1と陰極リード8を設け、樹脂
で外装して固体電解コンデンサを得た。
Next, FIG. 14 (a) is a partially crushed side view, and FIG.
4 (b) As shown in the front view, a 7% aqueous solution of ammonium adipate was used on the valve-acting metal foil 2 (aluminum-etched foil) exposed at the cut surface where the polymerization initiation portion of the element was removed. , About 70 ° C, 20 minutes, applied voltage 42V
Anodizing was performed under the conditions described above to form a dielectric film 9. Thereafter, a silver paint film 7 was formed as shown in FIG. 15 (a), a partially crushed side view, and FIG. 15 (b), a front view. Finally, FIG.
As shown in FIG. 2, an anode lead 1 and a cathode lead 8 were provided and covered with a resin to obtain a solid electrolytic capacitor.

【0020】本実施例による固体電解コンデンサに関
し、初期特性、ヒートサイクル試験LC歩留まり特性に
ついてそれぞれ(表1)と(表2)に示している。これ
ら(表1)と(表2)から明らかなように、本実施例に
よる固体電解コンデンサは、第1の実施例と同様に耐圧
特性と信頼性の点で優れた効果が得られる。
With respect to the solid electrolytic capacitor of this embodiment, the initial characteristics and the heat cycle test LC yield characteristics are shown in (Table 1) and (Table 2), respectively. As is clear from Tables 1 and 2, the solid electrolytic capacitor according to the present embodiment has excellent effects in terms of withstand voltage characteristics and reliability as in the first embodiment.

【0021】(実施例3)電解重合導電性高分子膜5を
形成させるまでは、実施例1と同様である。図6に示す
ように導電性高分子膜5を形成させた後、図17(a)
一部破砕側面図、図17(b)正面図にみられるように
カーボンペイント膜6を形成し、続いて図18(a)一
部破砕側面図、図18(b)正面図にみるように銀ペイ
ント膜7を形成した。続いて、図19(a)一部破砕側
面図、図19(b)正面図にみるように重合開始導電部
10をその上下の弁作用金属箔2、誘電体皮膜3、マン
ガン酸化物膜4、導電性高分子膜5、カーボンペイント
膜6、銀ペイント膜7と共に折り曲げて除去した。次い
で図20(a)一部破砕側面図、図20(b)正面図に
示すように、この素子の重合開始部を除去した切断面で
露出している弁作用金属箔2(アルミニウムエッチド
箔)の上に、7%アジピン酸アンモニウム水溶液を用
い、約70℃、20分間、印加電圧42Vの条件で陽極
酸化し、誘電体皮膜9を形成した。最後に、図21にみ
るように陽極リード1と陰極リード8を設け、樹脂で外
装して固体電解コンデンサを得た。
Example 3 The procedure up to the formation of the electropolymerized conductive polymer film 5 is the same as that of Example 1. After the formation of the conductive polymer film 5 as shown in FIG. 6, FIG.
As shown in the partially crushed side view and FIG. 17 (b) front view, the carbon paint film 6 is formed, and then as shown in FIG. 18 (a) partially crushed side view and FIG. 18 (b) front view. A silver paint film 7 was formed. Subsequently, as shown in FIG. 19A, a partially crushed side view, and FIG. 19B, a front view, the polymerization initiating conductive part 10 is provided with a valve metal foil 2, a dielectric film 3, a manganese oxide film 4 above and below it. And the conductive polymer film 5, the carbon paint film 6, and the silver paint film 7 were bent and removed. Next, as shown in FIG. 20 (a) a partially crushed side view and FIG. 20 (b) front view, the valve action metal foil 2 (aluminum etched foil) exposed at the cut surface of the element from which the polymerization initiation portion has been removed is shown. ) Was anodized using a 7% aqueous solution of ammonium adipate at about 70 ° C. for 20 minutes at an applied voltage of 42 V to form a dielectric film 9. Finally, as shown in FIG. 21, the anode lead 1 and the cathode lead 8 were provided, and were packaged with resin to obtain a solid electrolytic capacitor.

【0022】本実施例による固体電解コンデンサに関
し、初期特性、ヒートサイクル試験LC歩留まり特性に
ついてそれぞれ(表1)と(表2)に示している。これ
ら(表1)と(表2)から明らかなように、本実施例に
よる固体電解コンデンサは、第1の実施例と同様に耐圧
特性と信頼性の点で優れた効果が得られる。
With respect to the solid electrolytic capacitor according to this embodiment, the initial characteristics and the LC yield characteristics of the heat cycle test are shown in (Table 1) and (Table 2), respectively. As is clear from Tables 1 and 2, the solid electrolytic capacitor according to the present embodiment has excellent effects in terms of withstand voltage characteristics and reliability as in the first embodiment.

【0023】なお、上記実施例では硝酸マンガンを用い
てマンガン酸化物を形成した場合についてのみ述べた
が、硝酸マンガンに限らず、マンガン酸化物を形成でき
るものであれば他の物でも使用可能である。また上記実
施例ではニッケル箔を陽極に溶接して接触させ重合開始
部に使用したと述べたが、ニッケルに限らず陽極酸化さ
れない導電物であれば他のものを用いることも可能であ
る。また接触方法としては溶接に限らず、かしめ等他の
方法を用いることも可能である。
In the above embodiment, only the case where manganese oxide was formed using manganese nitrate was described. However, the present invention is not limited to manganese nitrate, and any other material capable of forming manganese oxide can be used. is there. In the above embodiment, the nickel foil was welded to the anode and brought into contact with the anode to be used for the polymerization initiation part. However, the conductive member is not limited to nickel, and any other conductive material that is not anodized may be used. Also, the contact method is not limited to welding, and other methods such as caulking can be used.

【0024】[0024]

【発明の効果】以上のように本発明は、誘電体皮膜の上
にマンガン酸化物層を形成せしめた後に、陽極金属箔に
陽極酸化されない導電部を接触させて重合開始部を設け
電解重合することで前記マンガン酸化物層上に電解重合
導電性高分子膜を積層し、その後重合開始部を切断除去
し、コンデンサ素子の前記切断面で露出している陽極弁
金属箔の上に陽極酸化により誘電体皮膜を形成する方法
により、重合開始部より安定に速く電解重合導電性高分
子膜を形成させることが可能で、また重合開始部除去後
の切断面に誘電体皮膜を形成させるので耐圧特性が向上
し、切断面部の経時劣化を抑えられ信頼性が向上し、漏
れ電流の少ない固体電解コンデンサを効率よく作製でき
る利点を有する。
As described above, according to the present invention, after a manganese oxide layer is formed on a dielectric film, a conductive portion which is not anodized is brought into contact with an anode metal foil to provide a polymerization initiation portion to perform electrolytic polymerization. By laminating an electropolymerized conductive polymer film on the manganese oxide layer by cutting and then removing the polymerization initiation portion, by anodic oxidation on the anode valve metal foil exposed at the cut surface of the capacitor element By the method of forming the dielectric film, it is possible to form the electropolymerized conductive polymer film stably and faster than the polymerization start part, and to form the dielectric film on the cut surface after removing the polymerization start part, so that the pressure resistance characteristics And the reliability of the solid electrolytic capacitor with reduced leakage current can be suppressed, and a solid electrolytic capacitor with low leakage current can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における固体電解コンデ
ンサの製造方法で使用した弁作用金属(アルミエッチド
箔)
FIG. 1 shows a valve metal (aluminum etched foil) used in a method for manufacturing a solid electrolytic capacitor according to a first embodiment of the present invention.

【図2】同実施例において弁作用金属上に誘電体皮膜を
形成した工程図
FIG. 2 is a process chart of forming a dielectric film on a valve metal in the embodiment.

【図3】同実施例において誘電体皮膜上にマンガン酸化
膜を形成した工程図
FIG. 3 is a process chart of forming a manganese oxide film on a dielectric film in the example.

【図4】同実施例においてマンガン酸化膜上に重合開始
導電部を形成した工程図
FIG. 4 is a process diagram of forming a polymerization initiation conductive part on a manganese oxide film in the same example.

【図5】同実施例において重合開始導電部の接触状態を
示す断面図
FIG. 5 is a sectional view showing a contact state of a polymerization initiation conductive portion in the example.

【図6】同実施例においてマンガン酸化膜上に導電性高
分子膜を形成した工程図
FIG. 6 is a process chart of forming a conductive polymer film on a manganese oxide film in the example.

【図7】同実施例において重合開始導電部を除去した工
程図
FIG. 7 is a process diagram in which the polymerization initiation conductive portion is removed in the same example.

【図8】同実施例において切断面で露出した弁作用金属
箔上に誘電体皮膜を形成した工程図
FIG. 8 is a process diagram in which a dielectric film is formed on the valve action metal foil exposed at the cut surface in the same example.

【図9】同実施例において導電性高分子膜上にカーボン
ペイント膜を形成した工程図
FIG. 9 is a process chart of forming a carbon paint film on a conductive polymer film in the example.

【図10】同実施例においてカーボンペイント膜上に銀
ペイント膜形成した工程図
FIG. 10 is a process chart of forming a silver paint film on a carbon paint film in the example.

【図11】同実施例において作製したコンデンサの平面
FIG. 11 is a plan view of the capacitor manufactured in the same example.

【図12】本発明の第2の実施例における固体電解コン
デンサの製造方法を示す導電性高分子膜上にカーボンペ
イント膜を形成した工程図
FIG. 12 is a process diagram showing a method for manufacturing a solid electrolytic capacitor according to a second embodiment of the present invention, in which a carbon paint film is formed on a conductive polymer film.

【図13】同実施例において重合開始導電部を除去した
工程図
FIG. 13 is a process diagram in which the polymerization initiation conductive portion is removed in the same example.

【図14】同実施例において切断面で露出した弁作用金
属箔上に誘電体皮膜を形成した工程図
FIG. 14 is a process chart of forming a dielectric film on the valve action metal foil exposed at the cut surface in the example.

【図15】同実施例においてカーボンペイント膜上に銀
ペイント膜形成した工程図
FIG. 15 is a process chart of forming a silver paint film on a carbon paint film in the example.

【図16】同実施例において作製したコンデンサの平面
FIG. 16 is a plan view of the capacitor manufactured in the same example.

【図17】本発明の第3の実施例における固体電解コン
デンサの製造方法を示す導電性高分子膜上にカーボンペ
イント膜を形成した工程図
FIG. 17 is a process diagram showing a method of manufacturing a solid electrolytic capacitor according to a third embodiment of the present invention, in which a carbon paint film is formed on a conductive polymer film.

【図18】同実施例においてカーボンペイント膜上に銀
ペイント膜形成した工程図
FIG. 18 is a process chart of forming a silver paint film on a carbon paint film in the example.

【図19】同実施例において重合開始導電部を除去した
工程図
FIG. 19 is a process diagram in which the polymerization initiation conductive portion is removed in the same example.

【図20】同実施例において切断面で露出した弁作用金
属箔上に誘電体皮膜を形成した工程図
FIG. 20 is a process chart of forming a dielectric film on the valve action metal foil exposed at the cut surface in the example.

【図21】同実施例において作製したコンデンサの平面
FIG. 21 is a plan view of the capacitor manufactured in the example.

【符号の説明】[Explanation of symbols]

1 陽極リード 2 弁作用金属箔 3 誘電体皮膜 4 マンガン酸化物膜 5 電解重合導電性高分子膜 6 カーボンペイント膜 7 銀ペイント膜 8 陰極リード 9 誘電体皮膜 10 重合開始導電部 DESCRIPTION OF SYMBOLS 1 Anode lead 2 Valve action metal foil 3 Dielectric film 4 Manganese oxide film 5 Electropolymerized conductive polymer film 6 Carbon paint film 7 Silver paint film 8 Cathode lead 9 Dielectric film 10 Polymerization start conductive part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01G 9/02 H01G 9/24 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshinari Nanai 3-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa Prefecture Matsushita Giken Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01G 9/02 H01G 9/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽極酸化により表面に誘電体皮膜を形成し
た陽極弁金属箔の上に、マンガン酸化物層を形成させた
後、前記陽極弁金属箔の少なくとも1カ所で前記誘電体
皮膜を除去し金属部を露出させ、露出させた金属部と接
触させて設けた導電部を重合開始部として電解重合を行
い、前記マンガン酸化物層上に電解重合導電性高分子膜
を積層させた後に前記重合開始部を切断除去し、前記切
断面に露出している陽極弁金属箔の上に、陽極酸化によ
り誘電体皮膜を形成することを特徴とする固体電解コン
デンサの製造方法。
A manganese oxide layer is formed on an anode valve metal foil having a dielectric film formed on the surface by anodic oxidation, and then the dielectric film is removed at least at one portion of the anode valve metal foil. The metal part is exposed, and the conductive part provided in contact with the exposed metal part is subjected to electrolytic polymerization as a polymerization initiation part, and after the electrolytic polymerization conductive polymer film is laminated on the manganese oxide layer, A method for producing a solid electrolytic capacitor, comprising cutting off a polymerization initiation portion and forming a dielectric film by anodic oxidation on an anode valve metal foil exposed on the cut surface.
【請求項2】電解重合導電性高分子膜が、ピロール、チ
オフェンあるいはそれらの誘導体の少なくとも一種と支
持電解質とを含む溶液中で形成されることを特徴とする
請求項1記載の固体電解コンデンサの製造方法。
2. The solid electrolytic capacitor according to claim 1, wherein the electropolymerized conductive polymer film is formed in a solution containing at least one of pyrrole, thiophene or a derivative thereof and a supporting electrolyte. Production method.
【請求項3】陽極弁金属がアルミニウムもしくはタンタ
ルから選ばれる一種である請求項1または2記載の固体
電解コンデンサの製造方法。
3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the anode valve metal is one selected from aluminum or tantalum.
JP7286691A 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2924251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7286691A JP2924251B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7286691A JP2924251B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04307915A JPH04307915A (en) 1992-10-30
JP2924251B2 true JP2924251B2 (en) 1999-07-26

Family

ID=13501685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7286691A Expired - Fee Related JP2924251B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2924251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Also Published As

Publication number Publication date
JPH04307915A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
US6239965B1 (en) Electrolytic capacitor and method of producing the same
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP3314480B2 (en) Solid electrolytic capacitors
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2768061B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2730345B2 (en) Manufacturing method of capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0266924A (en) Manufacture of solid electrolytic capacitor
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JP2969703B2 (en) Solid electrolytic capacitors
JP2924253B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof
JP2775762B2 (en) Solid electrolytic capacitors
JPH0748454B2 (en) Method for manufacturing solid electrolytic capacitor
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JPH06349689A (en) Solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JP3496013B2 (en) Electrolytic capacitor
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees