JPH0393214A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH0393214A
JPH0393214A JP23095389A JP23095389A JPH0393214A JP H0393214 A JPH0393214 A JP H0393214A JP 23095389 A JP23095389 A JP 23095389A JP 23095389 A JP23095389 A JP 23095389A JP H0393214 A JPH0393214 A JP H0393214A
Authority
JP
Japan
Prior art keywords
film
polymerization
electrolytic
foil
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23095389A
Other languages
Japanese (ja)
Inventor
Soji Tsuchiya
土屋 宗次
Masao Fukuyama
正雄 福山
Yasuo Kudo
康夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23095389A priority Critical patent/JPH0393214A/en
Publication of JPH0393214A publication Critical patent/JPH0393214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a highly reliable solid-state capacitor of good high frequency properties by forming an anode oxide film on a valve metal, by forming a film of Al2O3 and MnO2 by heat decomposition method and by forming a conducive polymer film on a surface thereof by electrolytic polymerization. CONSTITUTION:Etching is carried out to increase an area of an Al foil 1 which is a valve metal. An oxide film 3a is formed by using adipic acid water solution, etc. Then, it is immersed in aluminum nitrate water solution for heat decomposition and an Al2O3 film 3b is formed. Manganese nitrate is thermally decomposed similarly to form an MnO2 film 4. An electrolytic polymerization counter electrode 6 is arranged in a polymerization reaction container 7 and a voltage of at least a polymerization electric potential is applied to paired electrolytic polymerization electrodes 5 to carry out electrolytic polymerization by immersing a foil 1 with a film 3b and a film 4 in polymerization solution 8. Thereby, a polymerization film is formed on the electrode 5 and grows on a surface of the foil 1 which is treated by the film 4 to cover a surface of the film 4 entirely. Thereafter, armor treatment is carried out by resin and a highly reliable solid-state capacitor can be obtained in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高周波特性にすぐれ、かつ漏れ電流が小さく
、耐圧の高い特性を有する固体電解コンデンサに関する
. 従来の技術 近年、電気機器回路のディジタル化にともなって、そこ
に使用されるコンデンサも高周波領域でのインピーダン
スが低く、小型大容量のものへの要求が高まっている.
従来、高周波領域用のコンデンサとしては、プラスチッ
クフィルムコンデンサ、マイカコンデンサ、積層セラミ
ンクコンデンサおよびマイカコンデンサでは形状が大き
くなってしまうために大容量化がむずかしく、また積層
セラミックコンデンサでは、小型大容量になればなるほ
ど、温度特性が悪くなり、価格が非常に高くなるという
欠点がある. 一方、大容量タイプのコンデンサとして知られるものに
、アルξニウム乾式電解コンデンサあるいはアルミニウ
ムまたはタンタル固体電解コンデンサなどがある.これ
らのコンデンサは誘導体となる陽極酸化皮膜を非常に薄
くできるために大容量が実現できるのであるが、その反
面、酸化皮膜の損傷がおきやすいために、酸化皮膜と陰
極の間に損傷を修復するための電解質を設ける必要があ
る.アルミニウム乾式電解コンデンサでは、エッチング
をほどこした陽、陰極アルξニウム箔を紙のセパレー夕
を介して巻き取り、液状の電解質をセパレー夕に含浸し
て用いられている.このため、電解質の液漏れ、蒸発等
の理由により経時的に静電容量の減少や損失(tanδ
)の増大が起こると同時に、電解質のイオン伝導性によ
り高周波特性および、低点特性が著しく劣る等の欠点を
有している.又、アルミニウム、タンタル固体電解コン
デンサでは、上記アルミニウム、乾式電解質コンデンサ
の欠点を改良するために固体電解質として二酸化マンガ
ンが用いられている.この固定電解質は硝酸マンガン水
溶液に陽極素子を浸漬し、250〜350℃の温度で熱
分解して得られている.このコンデンサの場合、電解質
が固体のため、高温における電解賞の流出、低温域での
凝固から生ずる性能の低温下などの欠点がなく、液状電
解質を用いたコンデンサに比して良好な周波特性および
温度特性を示すのが、硝酸マンガンの熱分解による酸化
皮膜の損傷及び二酸化マンガンの比抵抗が高いことなど
の理由から、高周波領域のインピーダンスあるいは損失
は積層セラ稟ツクコンデンサあるいは、プラスチックフ
ィルムコンデンサと比較して1けた以上高い値となって
いる. 前記の問題点を解決するために固体電解質として導電性
が高く、陽化酸化性のすぐれた有機半導体(7、7、8
、8−テトラシアノキノジメタン錯体)を用いることが
提案されている.この有機半導体は有機溶媒に溶解した
り、加熱による融解などの手段を用いて酸化皮膜に含浸
塗布することが可能であり、MnO.を含浸する際に生
ずる熱分解による酸化皮膜の損傷を防ぐことができる.
TCNQ錯体は導電性が高く、陽極酸化性のすぐれたも
ので、高周波特性が良好で大容量のコンデンサが可能と
なる.例えば、丹波信一氏により、N−n−プロビルあ
るいはN  ist−プロビルイソキノリンとTCNQ
からなる有機半導体を固体電解質として用いる発明が出
願されている(特開昭58−17609号公報).前記
発明によると捲回型アルミニウム電解コンデンサへのT
CNQ塩の含浸がTCNQ塩を加熱溶融することにより
行われ、これによりTCNQ塩と酸化皮膜との強固な結
合が達戒され、TCNQ塩の高電導性の寄与にも助けら
れて、周波数特性および温度特性が著しく改良されたア
ルミニウムコンデンサが製造されているとしている.こ
のようなTCNQ塩にもとづく有機半導体を固体電解質
として用いることを、すでに同一出願人になる発明(特
開昭58−17609号公報)に示されているように、
TCNQ塩が二酸化マンガンに比して高い電導性と高い
陽極酸化能力(修復作用)を有するため二酸化マンガン
を用いた固体電解コンデンサに比してと温度特性共に優
れた性能を可能にする.発明によるとN位をアルキル基
で置換したイソキノリウムをカチオンとしたTCNQ塩
を酸化皮膜に過熱溶融することにより含浸することを行
うことになっている.さらに、近年、ピロール、チオフ
ェンなどの複素環′式化合物の重合体の膜を陽極体上に
形成して、固体電解として利用しようとする提案がなさ
れている.発明が解決しようとする課題 しかしながら、このような電解重合反応はモノマーの電
解酸化という反応過程より誘電体となる酸化皮膜上へ直
接皮膜を破壊せずに重合膜をつけることはできない.ま
た、酸化皮膜を形成する前に、電解重合膜を弁金属上に
つけてその後、化威反応により、酸化皮膜を形或するこ
とができるが、この場合電解重合膜を介して化威反応を
行うことになるので、電解重合膜の変質をきたしたり、
弁金属との接着不良を生じて良好なコンデンサを得られ
ない.従って、酸化皮膜のついた弁金属上に良好な電解
重合膜を形戒するためには予め何等かの電動性膜が必要
とされている. 本発明は、弁金属の酸化皮膜上に二酸化マンガン膜を付
着したのち電解重合膜を形成したコンデンサにおいて漏
れ電流と耐圧の特性向上を図ることを目的とする. 課題を解決するための手段 本発明は上記目的を達威するもので、その技術的手段は
、タンタル、アル竃ニウムから選ばれる弁金属上にそれ
らの陽極酸化皮膜を形成し、その後硝酸アルξニウムと
硝酸マンガンの水溶液からあるいはこれらの有機塩から
熱分解法によりAt203とMnOt膜を順次に形成後
、導電性電解重合高分子膜をこの表面上に形成させるこ
とを特徴とする固体電解コンデンサの製造方法を提供す
るものであ. 本願発明の導電性電解重合高分子膜としては、コンデン
サのリード電極とは異なる外部電極を設けてこれを開始
点としてMnO.膜上に威長ずることが望ましい. またかかる導電性電解重合高分子膜としてはビロール、
チオフェンまたは、それらの誘導体から選ばれるモノマ
ーを陽極酸化重合として得られたものが好ましい. 作用 上述の通り、本発明は弁金属において、ll!電体とな
る酸化皮膜を電気化学的に作製したのち、酸化アルミニ
ウム、酸化マンガンの熱分解膜を設けたのち電解重合膜
を或膜することにより弁金属の酸化皮膜の欠陥部分ある
いは弱い部分が減少して漏れ電流と耐圧の特性の向上が
はかられる.実施例 以下に本発明の実施例を図面を用いて詳細に説明する.
第1図は本発明の一実施例における固体電解コンデンサ
の構威を説明する製造模式図を示す.第1図(a)に示
すような、弁金属であるAi箔lにコンデンサ用陽極リ
ード電極2を取り付けたものを準備し、まず表面積を増
大するためにエッチング処理をする.次に第1図(ロ)
に示すようにアジピン酸水溶液等を用いて酸化皮膜3a
を形成する.その後、30%硝酸アルミニウム水溶液に
浸漬して、200〜300℃で空気中で熱分解処理させ
AlmOsll3bを形或する.その後同様に30%硝
酸マンガンを同条件で熱分解処理をすることによりM 
n O t膜4を形成する.この場合の水溶液濃度は2
0〜50%が適当である.析出する酸化アル果ニウム、
あるいは酸化マンガンの量が少ない場合は溶液への浸せ
き回数が多くすればよい.硝酸塩の代わりに酢酸塩や蓚
酸塩などの有機酸塩で熱分解しやすいものもどうように
用いられる.次にこの表面に電解重合膜を形戒するわけ
であるが、コンデンサの陽極を電解重合反応のための陽
極としてもちいた場合は、重合反応は起こらず膜の威長
はみられない.そこで第2図に示したように重合開始を
おこす電解重合用電極5を外部にもうけた.第2図に示
したような重合反応容器7にビロール、チオフェンある
いはそれらの誘導体などの電解重合可能なモノマーと支
持電解賞と溶媒、たとえば水からなる重合溶液8をもう
けた,この中に第2図のようにAIlzOs膜3b%M
nOx膜4付のAn!flitを浸漬して、電解重合を
行わせるため重合反応容器7の中に電解重合用対極6を
配置して、電解重合用電極5に重合電位以上の電圧を印
加することにより、重合膜が電解重合用電極5にまず形
成され、その後、徐々にここを起点に重合膜が、二酸化
マンガン!Il4で処理されたAlの箔lの表面に威長
ずる.重合膜が二酸化マンガンの膜4の表面を完全に多
いつくした後、電解重合反応を終了する.この時の電解
重合膜としては安定性が重要となる.この重合膜はビロ
ールの重合体とドーパントとして含まれているアニオン
から形成されている.安定性のためにはこのアニオンが
コンデンサの使用環境において脱ドーピングしにくいこ
とが重要となる.アニオンとしてナフタレンスルホネー
ト、あるいはアルキルナフタレンスルホネートを用いた
場合、脱ドーピングが生じないことがわかったのでこれ
らを用いる.反応終了後重合膜の表面を水あるいはアル
コールなどで洗浄して、乾燥処理をする.そして陰極の
リード電極を取り付けをカーボンペースト及び銀ペース
トなどを用いて行う.最後にエポキシ樹脂などを用いて
外装処理を行う.この後エージング処理を施すわけであ
るが、漏れ電流低減のために陰極を取り付けたのちまた
は、外装後に湿中でエージング処理をすることにより多
少の効果は見られる.また耐圧向上のためには化威電圧
を高くすることも検討した、例えば使用電圧よりも3倍
以上でおこなったが顕著な効果はみられなかった.漏れ
電流と耐圧の特性に最も効果があったのは酸化アルミニ
ウム、酸化マンガンの熱分解膜を設けたことである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solid electrolytic capacitor that has excellent high frequency characteristics, low leakage current, and high withstand voltage characteristics. Conventional technology In recent years, with the digitization of electrical equipment circuits, there has been an increasing demand for capacitors used there that have low impedance in the high frequency range and are small and large in capacity.
Conventionally, as capacitors for high frequency range, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and mica capacitors have large shapes, making it difficult to increase the capacity. The disadvantage is that the temperature characteristics become worse and the price becomes very high. On the other hand, known high-capacity type capacitors include aluminum ξ dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. These capacitors can achieve large capacitance because the anodic oxide film that serves as the dielectric can be made very thin, but on the other hand, the oxide film is easily damaged, so it is necessary to repair the damage between the oxide film and the cathode. It is necessary to provide an electrolyte for this purpose. In aluminum dry electrolytic capacitors, etched positive and negative aluminum foils are wound up with a paper separator in between, and the separator is impregnated with liquid electrolyte. For this reason, capacitance decreases and losses (tan δ
), and at the same time, it has disadvantages such as significantly inferior high frequency characteristics and low point characteristics due to the ionic conductivity of the electrolyte. Furthermore, in aluminum and tantalum solid electrolytic capacitors, manganese dioxide is used as the solid electrolyte to improve the drawbacks of the aluminum and dry electrolyte capacitors. This fixed electrolyte is obtained by immersing an anode element in an aqueous manganese nitrate solution and thermally decomposing it at a temperature of 250 to 350°C. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolytic loss at high temperatures or poor performance caused by solidification at low temperatures, and it has better frequency characteristics and better performance than capacitors using liquid electrolytes. The impedance or loss in the high frequency range is compared to that of multilayer ceramic capacitors or plastic film capacitors because the temperature characteristics are due to damage to the oxide film due to thermal decomposition of manganese nitrate and the high specific resistance of manganese dioxide. The value is more than one order of magnitude higher. In order to solve the above problems, organic semiconductors (7, 7, 8
, 8-tetracyanoquinodimethane complex). This organic semiconductor can be impregnated onto an oxide film by dissolving it in an organic solvent or melting it by heating, and MnO. This can prevent damage to the oxide film due to thermal decomposition that occurs when impregnating the oxide film.
TCNQ complexes have high conductivity and excellent anodic oxidation properties, and have good high-frequency characteristics, making it possible to create large-capacity capacitors. For example, Mr. Shinichi Tanba reported that N-n-probyl or Nist-probyl isoquinoline and TCNQ
An application has been filed for an invention in which an organic semiconductor consisting of According to the invention, T to a wound aluminum electrolytic capacitor is
Impregnation of the CNQ salt is carried out by heating and melting the TCNQ salt, thereby achieving a strong bond between the TCNQ salt and the oxide film, and also aiding the contribution of the high conductivity of the TCNQ salt, resulting in improved frequency characteristics and It is said that aluminum capacitors with significantly improved temperature characteristics have been manufactured. The use of such an organic semiconductor based on TCNQ salt as a solid electrolyte has already been disclosed in an invention filed by the same applicant (Japanese Unexamined Patent Publication No. 17609/1983).
Since TCNQ salt has higher conductivity and higher anodic oxidation ability (restoration effect) than manganese dioxide, it enables superior performance in terms of temperature characteristics and temperature characteristics compared to solid electrolytic capacitors using manganese dioxide. According to the invention, an oxide film is impregnated with a TCNQ salt having a cation of isoquinolium substituted with an alkyl group at the N-position by melting it under heating. Furthermore, in recent years, proposals have been made to form a film of a polymer of a heterocyclic compound such as pyrrole or thiophene on an anode body and use it as a solid electrolyte. Problems to be Solved by the Invention However, in this electrolytic polymerization reaction, it is not possible to directly attach a polymer film to the oxide film that serves as a dielectric without destroying the film due to the reaction process of electrolytic oxidation of monomers. In addition, before forming the oxide film, it is possible to apply an electrolytic polymer film on the valve metal and then perform a chemical reaction to form the oxide film. In this case, the chemical reaction is performed through the electrolytic polymer film. This may cause deterioration of the electropolymerized membrane, or
Poor adhesion with the valve metal occurs, making it impossible to obtain a good capacitor. Therefore, in order to form a good electropolymerized film on a valve metal with an oxide film, some type of electrically conductive film is required in advance. The purpose of the present invention is to improve the characteristics of leakage current and withstand voltage in a capacitor in which a manganese dioxide film is deposited on the oxide film of the valve metal and then an electrolytically polymerized film is formed. Means for Solving the Problems The present invention achieves the above object, and its technical means is to form an anodic oxide film of tantalum or aluminum on a valve metal selected from tantalum or aluminum, and then apply aluminum nitrate ξ. A solid electrolytic capacitor characterized in that an At203 and MnOt film is sequentially formed from an aqueous solution of Ni and manganese nitrate or an organic salt thereof by a thermal decomposition method, and then a conductive electrolytically polymerized polymer film is formed on the surface of the At203 and MnOt films. It provides a manufacturing method. The conductive electropolymerized polymer membrane of the present invention is prepared by providing an external electrode different from the lead electrode of the capacitor, and using this as a starting point to form an MnO. It is desirable that the material be stretched over the membrane. In addition, such conductive electropolymerized polymer membranes include virol,
Preferably, monomers selected from thiophene or their derivatives are obtained by anodic oxidation polymerization. Operation As mentioned above, the present invention is applicable to valve metals. After electrochemically creating an oxide film that will serve as an electric body, a thermally decomposed film of aluminum oxide and manganese oxide is applied, and then an electrolytic polymer film is applied to reduce defective or weak parts of the oxide film on the valve metal. As a result, leakage current and breakdown voltage characteristics are improved. EXAMPLES Examples of the present invention will be explained in detail below with reference to the drawings.
Figure 1 shows a manufacturing schematic diagram illustrating the structure of a solid electrolytic capacitor in an embodiment of the present invention. A capacitor anode lead electrode 2 is attached to an Ai foil (valve metal) as shown in FIG. 1(a), and first, an etching treatment is performed to increase the surface area. Next, Figure 1 (b)
As shown in FIG.
form. Thereafter, it is immersed in a 30% aluminum nitrate aqueous solution and thermally decomposed in air at 200 to 300°C to form AlmOsll3b. After that, 30% manganese nitrate was subjected to thermal decomposition treatment under the same conditions.
Form an nOt film 4. In this case, the concentration of the aqueous solution is 2
0 to 50% is appropriate. Al fruitium oxide precipitates,
Alternatively, if the amount of manganese oxide is small, the number of immersions in the solution may be increased. Instead of nitrates, organic acid salts such as acetate and oxalate, which are easily decomposed by heat, can also be used. Next, an electrolytically polymerized film is placed on this surface, but if the anode of a capacitor is used as an anode for the electrolytically polymerized reaction, no polymerization reaction occurs and the film does not show any length. Therefore, as shown in Figure 2, an electrode 5 for electrolytic polymerization was provided outside to initiate polymerization. In a polymerization reaction vessel 7 as shown in FIG. 2, a polymerization solution 8 consisting of an electrolytically polymerizable monomer such as virol, thiophene or a derivative thereof, a supporting electrolyte, and a solvent such as water was placed. As shown in the figure, AIlzOs film 3b%M
An with nOx film 4! A counter electrode 6 for electrolytic polymerization is placed in the polymerization reaction vessel 7 in order to perform electrolytic polymerization by immersing the flit, and by applying a voltage higher than the polymerization potential to the electrode 5 for electrolytic polymerization, the polymer membrane is electrolyzed. A polymerization film is first formed on the polymerization electrode 5, and then a polymerization film is gradually formed starting from this point, manganese dioxide! The surface of the Al foil treated with Il4 is thickened. After the polymer film completely covers the surface of the manganese dioxide film 4, the electrolytic polymerization reaction is terminated. Stability is important for the electropolymerized membrane at this time. This polymer film is formed from a virol polymer and an anion contained as a dopant. For stability, it is important that this anion is difficult to dedope in the environment in which the capacitor is used. When naphthalene sulfonate or alkylnaphthalene sulfonate is used as an anion, it was found that dedoping does not occur, so these are used. After the reaction is complete, the surface of the polymerized membrane is washed with water or alcohol, and then dried. Then, attach the cathode lead electrode using carbon paste, silver paste, etc. Finally, the exterior is treated using epoxy resin. After this, aging treatment is performed, and some effect can be seen by aging treatment in humidity after attaching the cathode or after packaging to reduce leakage current. In order to improve the withstand voltage, we also considered increasing the voltage, for example, at least three times the operating voltage, but no significant effect was seen. The most effective method for improving leakage current and breakdown voltage characteristics was the provision of a thermally decomposed film of aluminum oxide and manganese oxide.

以下、更に詳しく説明する. コンデンサの陽極箔としては通常よく用いられているエ
ッチング処理がされて化戒処理のされているものを用い
た(定格16V用、lO#F).この箔を30%硝酸ア
ルミニウム水溶液中にひたしたのち、270℃空気下に
おいて10+win熱分解処理を行った.その後さらに
同様な条件により硝酸マンガン水溶液より熱分解法によ
りMnO,膜をこの酸化皮膜上に作製した. 電解重合反応のモノマーとしてはビロール、溶媒として
は水を用いた。電解質としばてトリイソブロビルナフタ
レンスルホンサンソーダを用いた.濃度はモノマーが0
.5M/1、電解賞が0.1M/1とした.重合反応は
第2図に示したような重合反応容器7において電解重合
用電極5と、電解重合用対極7との間に直流電圧3vを
15min印加することにより行った.その後、純水で
洗浄及び乾燥を行い、カーボンペースト、銀ペーストを
用いて陰極を取り付けた.さらに、外装をエポキシ樹脂
で行ったのち、16Vでエージング処理を行った.この
コンデンサの特性を測定したところ次表のようであった
.(試料数 lOケ). 比較のために硝酸アル業二ウムの処理を行わないものの
試料も作製した. 表 これらの漏れ電流を16Vで2win後の値を測定した
ところすべて硝酸アルミニウムから酸化アルミニウム膜
をつけたものは1uA以下であった.ところがこの処理
をおこなわないものは、2〜3割は1μA以上であり大
きいものではmA程度のものがみられる.耐圧について
は硝酸アルごニウムから酸化アルミニウム膜をつけたも
のは破壊電圧を測定したところすべて23〜26Vの犯
意で破壊した。この処理を行わない場合は16V以下で
破壊する場合がみられた.この効果は用いる箔の定格電
圧が25、35Vと高いものにすることにより顕著にな
る.特に耐圧については硝酸アルミニウムから酸化アル
ミニウム膜をつけないものは化戒電圧にかかわらずに2
3〜26V以上が得られる歩どまり非常に悪い. アルミニウム、マンガンの硝酸塩の代わりに酢酸や蓚酸
の塩を用いても同様な効果が得られた.発明の効果 以上のように、本発明は弁金属上にAffi. 0.膜
、MnO,膜を熱分解法により付着後、電解重合膜を成
膜するもので、高周波特性に優れ、漏れ電流が小さく、
バラつきが少なく、そして耐圧が高く信頼性の高い固体
コンデンサの提供が可能となった。
This will be explained in more detail below. As the anode foil for the capacitor, we used a commonly used etched and chemically treated foil (rated for 16V, 1O#F). After immersing this foil in a 30% aluminum nitrate aqueous solution, it was subjected to a 10+win thermal decomposition treatment at 270°C in air. Thereafter, a MnO film was further fabricated on this oxide film using the pyrolysis method from an aqueous manganese nitrate solution under the same conditions. Virol was used as the monomer for the electrolytic polymerization reaction, and water was used as the solvent. Triisobrobylnaphthalene sulfone soda was used as the electrolyte. Concentration is 0 monomer
.. 5M/1, and the electrolytic award was 0.1M/1. The polymerization reaction was carried out by applying a DC voltage of 3 V for 15 minutes between the electrolytic polymerization electrode 5 and the electrolytic polymerization counter electrode 7 in a polymerization reaction vessel 7 as shown in FIG. After that, it was washed with pure water and dried, and a cathode was attached using carbon paste and silver paste. Furthermore, after the exterior was made of epoxy resin, aging treatment was performed at 16V. The characteristics of this capacitor were measured and were as shown in the table below. (Number of samples: 10). For comparison, we also prepared samples that were not treated with aluminum nitrate. Table When we measured the leakage current after 2wins at 16V, it was less than 1uA in all cases where an aluminum oxide film was attached instead of aluminum nitrate. However, 20% to 30% of those that do not undergo this treatment have a voltage of 1 μA or more, and some that are large are around mA. Regarding breakdown voltage, when the breakdown voltage was measured for those made from argonium nitrate to which an aluminum oxide film was attached, all of them broke at a voltage of 23 to 26V. If this treatment was not performed, there were cases where the product was destroyed at 16V or less. This effect becomes more noticeable when the rated voltage of the foil used is as high as 25 or 35V. In particular, regarding voltage resistance, aluminum nitrate to aluminum oxide film is rated at 2.
The yield of obtaining 3 to 26 V or more is very poor. Similar effects were obtained when acetic acid or oxalic acid salts were used instead of aluminum or manganese nitrates. Effects of the Invention As described above, the present invention provides Affi. 0. After attaching the film, MnO, and the film using a thermal decomposition method, an electrolytic polymer film is formed, which has excellent high frequency characteristics and low leakage current.
It has become possible to provide a highly reliable solid capacitor with little variation and high withstand voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例における固体電解
コンデンサの製造方法の手順を示す説明図である.
FIGS. 1 and 2 are explanatory diagrams showing the steps of a method for manufacturing a solid electrolytic capacitor in an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)弁金属上にその陽極酸化皮膜を形成し、その後硝
酸アルミニウムと硝酸マンガンの水溶液からあるいはこ
れらの有機塩から熱分解法によりAl_2O_3とMn
O_2膜を順次に形成後、導電性電解重合高分子膜をこ
の表面上に形成させることを特徴とする固体電解コンデ
ンサの製造方法。
(1) Form an anodic oxide film on the valve metal, and then generate Al_2O_3 and Mn from an aqueous solution of aluminum nitrate and manganese nitrate or from these organic salts by a thermal decomposition method.
A method for manufacturing a solid electrolytic capacitor, which comprises sequentially forming an O_2 film and then forming a conductive electrolytically polymerized polymer film on the surface.
(2)導電性電解重合高分子膜をコンデンサのリード電
極とは異なる外部電極を設けてこれを開始点としてMn
O_2膜上に成長することを特徴とする請求項(1)記
載の固体電解コンデンサの製造方法。
(2) A conductive electropolymerized polymer film is provided with an external electrode different from the lead electrode of the capacitor, and this is used as a starting point for Mn.
The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is grown on an O_2 film.
(3)導電性電解重合高分子膜がピロール、チオフェン
または、それらの誘導体から選ばれるモノマーを陽極酸
化重合して得られたものであることを特徴とする請求項
(1)または(2)記載の固体電解コンデンサの製造方
法。
(3) The conductive electrolytically polymerized polymer membrane is obtained by anodic oxidation polymerization of a monomer selected from pyrrole, thiophene, or a derivative thereof. A method for manufacturing solid electrolytic capacitors.
JP23095389A 1989-09-06 1989-09-06 Manufacture of solid-state electrolytic capacitor Pending JPH0393214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23095389A JPH0393214A (en) 1989-09-06 1989-09-06 Manufacture of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23095389A JPH0393214A (en) 1989-09-06 1989-09-06 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0393214A true JPH0393214A (en) 1991-04-18

Family

ID=16915909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23095389A Pending JPH0393214A (en) 1989-09-06 1989-09-06 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0393214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895606A (en) * 1995-02-17 1999-04-20 Matsushita Electric Industrial Co., Ltd. Conductive polymer composition comprising polypyrrole and composite dopant
JP4719823B2 (en) * 2008-07-29 2011-07-06 昭和電工株式会社 Manufacturing method of niobium solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895606A (en) * 1995-02-17 1999-04-20 Matsushita Electric Industrial Co., Ltd. Conductive polymer composition comprising polypyrrole and composite dopant
JP4719823B2 (en) * 2008-07-29 2011-07-06 昭和電工株式会社 Manufacturing method of niobium solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
JPS61240625A (en) Solid electrolytic capacitor
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0274016A (en) Solid electrolytic condenser
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0550125B2 (en)
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP3851294B2 (en) Electrolytic capacitor
JPH0274018A (en) Manufacture of solid electrolytic condenser
JPH0393218A (en) Solid-state electrolytic capacitor and its manufacture
JPH02260516A (en) Solid electrolytic capacitor and manufacture thereof
JPH0274020A (en) Manufacture of solid electrolytic condenser