JPH0274016A - Solid electrolytic condenser - Google Patents

Solid electrolytic condenser

Info

Publication number
JPH0274016A
JPH0274016A JP63227022A JP22702288A JPH0274016A JP H0274016 A JPH0274016 A JP H0274016A JP 63227022 A JP63227022 A JP 63227022A JP 22702288 A JP22702288 A JP 22702288A JP H0274016 A JPH0274016 A JP H0274016A
Authority
JP
Japan
Prior art keywords
film
polymerized
electrolytic
oxide film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63227022A
Other languages
Japanese (ja)
Other versions
JPH0682587B2 (en
Inventor
Soji Tsuchiya
土屋 宗次
Yasuo Kudo
康夫 工藤
Toshikuni Kojima
小島 利邦
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63227022A priority Critical patent/JPH0682587B2/en
Priority to EP89105640A priority patent/EP0336299B1/en
Priority to DE68918486T priority patent/DE68918486T2/en
Priority to US07/331,204 priority patent/US4943892A/en
Publication of JPH0274016A publication Critical patent/JPH0274016A/en
Publication of JPH0682587B2 publication Critical patent/JPH0682587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

PURPOSE:To contrive improvement in high frequency characteristics, the irregularity both in a leakage current and withstand voltage characteristics, and also in the yield of production by a method wherein a first layer consisting of manganese dioxide formed on valve metal through an anodic oxide film, a second layer consisting of an electrolytic reduction polymerized high molecule, and a third layer consisting of a conductivity electrolytic oxide polymerized high molecule are provided. CONSTITUTION:An oxide film 3 is formed on a Al foil which is valve metal, they are dipped into a manganese nitrate aqueous solution, and an MnO2 film 4 is formed. Then, the above-mentioned materials are dipped into a polymerized solution 8 such as acrylamide and the like, an electrolytic reduction polymerized high molecular film is grown by applying electric potential, and cation is doped thereon. Then, the above- mentioned material are dipped into the polymerized solution 8 of pyrrole, thiophene and their derivative, voltage exceeding the polymerized electric potential is applied, and first, a polymerized film is formed on an electrode 5, and then a polymerized film is grown on the manganese dioxide film 4 in its surface direction. As a result, the title solid electrolytic condenser, having excellent high frequency characteristics, a low leakage current and high withstand voltage, can be manufactured with excellent yield of production.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコンデンサ特性、特に高周波特性のすぐれた固
体電解コンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solid electrolytic capacitor with excellent capacitor characteristics, particularly high frequency characteristics.

従来の技術 近年、電気機器回路のディジタル化にともなって、そこ
に使用されるコンデンサも高周波領域でのインピーダン
スが低く、小型大容量のものへの要求が高まっている。
BACKGROUND OF THE INVENTION In recent years, with the digitization of electrical equipment circuits, there has been an increasing demand for capacitors used therein that have low impedance in the high frequency range and are small and large in capacity.

従来、高周波領域用のコンデンサとしては、プラスチッ
クフィルムコンデンサ、マイカコンデンサ、積層セラミ
ックコンデンサが用いられているが、フィルムコンデン
サおよびマイカコンデンサでは形状が大きくなってしま
うために大容量化がむずかしく、また積層セラミックコ
ンデンサでは、小型大容量になればなるほど、温度特性
が悪くなり、価格が非常に高くなるという欠点がある。
Conventionally, plastic film capacitors, mica capacitors, and multilayer ceramic capacitors have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors have large shapes, making it difficult to increase the capacity, and multilayer ceramic capacitors Capacitors have the disadvantage that the smaller and larger the capacitance, the worse the temperature characteristics and the higher the price.

一方、大容量タイプのコンデンサとして知られるものに
、アルミニウム乾式電解コンデンサあるいはアルミニウ
ムまたはタンタル固体電解コンデンサなどがある。これ
らのコンデンサは誘電体となる陽極酸化皮膜を非常に薄
くできるために大容量が実現できるのであるが、その反
面、酸化皮膜の損傷がおきやすいために、酸化皮膜と陰
極の間に損傷を修復するための電解質を設ける必要があ
る。アルミニウム乾式電解コンデンサでは、エツチング
をほどこした陽、陰極アルミニウム箔を紙のセパレータ
を介して巻き取り、液状の電解質をセパレータに含浸し
て用いている。このため、電解質の液漏れ、蒸発等の理
由により経時的に静電容量の減少や損失(ta++J)
の増大が起ると同時K、電解質のイオン伝導性により高
周波特性および低温特性が著しく劣る等の欠点を有して
いる。
On the other hand, known high-capacity type capacitors include aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. These capacitors can achieve large capacitance because the anodic oxide film that serves as the dielectric can be made very thin, but on the other hand, the oxide film is easily damaged, so damage must be repaired between the oxide film and the cathode. It is necessary to provide an electrolyte for this purpose. In an aluminum dry electrolytic capacitor, etched positive and negative electrode aluminum foils are wound up with a paper separator in between, and the separator is impregnated with a liquid electrolyte. For this reason, capacitance decreases and losses (ta++J) occur over time due to electrolyte leakage, evaporation, etc.
At the same time as the increase in K occurs, there are disadvantages such as extremely poor high frequency characteristics and low temperature characteristics due to the ionic conductivity of the electrolyte.

又、アルミニウム、タンタル固体電解コンデンサでは、
上記アルミニウム乾式電解コンデンサの欠点を改良する
ために固体電解質として二酸化マノガンが用いられてい
る。この固体電解質は硝酸マンガン水溶液に陽極素子を
浸漬し、350℃前後の温度で熱分解して得られている
。このコンデ/すの場合、電解質が固体のため、高温に
おける電解質の流出、低温域での凝固から生ずる性能の
低下などの欠点がなく、液状電解質を用いたコンデンサ
に比して良好な周波数特性および温度特性を示すが、硝
酸マンガンの熱分解による酸化皮膜の損傷及び二酸化マ
ンガンの比抵抗が高いことなどの理由から、高周波領域
のインピーダンスあるいは損失は積層セラミックコンデ
ンサあるいはグラスチックフィルムコンデンサと比較し
て1けた以上高い値となっている。
In addition, for aluminum and tantalum solid electrolytic capacitors,
Manogan dioxide has been used as a solid electrolyte to improve the drawbacks of the above-mentioned aluminum dry electrolytic capacitors. This solid electrolyte is obtained by immersing an anode element in a manganese nitrate aqueous solution and thermally decomposing it at a temperature of around 350°C. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or performance deterioration caused by coagulation at low temperatures, and it has better frequency characteristics and characteristics than capacitors using liquid electrolytes. However, due to damage to the oxide film due to thermal decomposition of manganese nitrate and the high specific resistance of manganese dioxide, the impedance or loss in the high frequency range is 1% compared to multilayer ceramic capacitors or glass film capacitors. The value is more than an order of magnitude higher.

前記の問題点を解決するために固体電解質として導電性
が高く、陽化酸化性のすぐれた有機半導体(7,7,8
,8−テトラシアノキノジメタン錯体)を用いることが
提案されている。この有機半導体は有機溶媒に溶解した
り、加熱による融解などの手段を用いて酸化皮膜に含浸
塗布することが可能であり、MnQtを含浸する際に生
ずる熱分解による酸化皮膜の損傷を防ぐことができる。
In order to solve the above problems, organic semiconductors (7, 7, 8
, 8-tetracyanoquinodimethane complex). This organic semiconductor can be applied to the oxide film by dissolving it in an organic solvent or melting it by heating, and can prevent damage to the oxide film due to thermal decomposition that occurs when impregnating MnQt. can.

TCNQCN上導電性が高く、陽極酸化性のすぐれたも
ので、高周波特性が良好で大容量のコンデンサが可能と
なる。
TCNQCN has high conductivity and excellent anodic oxidation properties, and has good high frequency characteristics, making it possible to manufacture large capacity capacitors.

たとえば、N−n−プロピルあるいはN−1so−プロ
ピルイソキノリンとTCNQからなる有機半導体を固体
電解質として用いる発明が出願されている(特開昭58
−17609号公報)。前記発明によると捲回型アルミ
ニウム電解コンデンサへのTCNQ塩の含浸がTCNQ
塩を加熱溶融することにより行われ、これによりTCN
Q塩と酸化皮膜との強固な結合が達成され、TCNQ塩
の高電導性の寄与にも助けられて、周波数特性および温
度特性が著しく改良されたアルミニウムコンデンサが製
造されるとしている。このようなTCNQ塩にもとづく
有機半導体を固体電解質として用いることを、すでに同
一出願人になる発明(特開昭58−17609号公報)
に示されているように、TCNQ塩が二酸化マンガンに
比して高い電導性と高い陽極酸化能力(修復作用)を有
するため二酸化マンガンを用いた固体電解コンデンサに
比して周波数特性と温度特性共に優れた性能を可能にす
る。この発明によるとN位をアルキル基で置換したイン
キツリウムをカチオンとしたTCNQ塩を酸化皮膜に加
熱溶融することにより含浸すること釦なっている。
For example, an application has been filed for an invention in which an organic semiconductor consisting of N-n-propyl or N-1so-propylisoquinoline and TCNQ is used as a solid electrolyte (Japanese Patent Laid-Open No. 58
-17609). According to the invention, impregnation of a wound aluminum electrolytic capacitor with TCNQ salt
This is done by heating and melting the salt, which results in TCN
A strong bond between the Q salt and the oxide film is achieved, and the high conductivity of the TCNQ salt helps to produce an aluminum capacitor with significantly improved frequency and temperature characteristics. The use of an organic semiconductor based on TCNQ salt as a solid electrolyte has already been proposed by the same applicant (Japanese Patent Application Laid-Open No. 17609/1983).
As shown in , TCNQ salt has higher conductivity and higher anodic oxidation ability (repairing action) than manganese dioxide, so it has better frequency characteristics and temperature characteristics than solid electrolytic capacitors using manganese dioxide. enable superior performance. According to this invention, the oxide film is impregnated with a TCNQ salt having a cation of inquiturium substituted with an alkyl group at the N position by heating and melting the oxide film.

さらK、近年、ピロール、チオフェンなどの複素環式化
合物の重合体を陽極体上に形成して、固体電解して利用
しようとする提案がなされている。
Furthermore, in recent years, proposals have been made to form polymers of heterocyclic compounds such as pyrrole and thiophene on an anode body and to utilize the polymers by solid electrolysis.

発明が解決しようとする課題 しかしながら、電解重合反応はモノマーの電解酸化とい
う反応過程より誘電体となる酸化皮膜上へ皮膜を破壊せ
ずには重合膜をつけることはできない。また、酸化皮膜
を形成する前に、電解重合膜を弁金属上につけてその後
、化成反応により、酸化皮膜を形成することができるが
、この場合、電解重合膜を介して化成反応を行うことに
なるので、電解重合膜の変質をきたしたり、弁金属との
付着性の低下を生じる。従って、これまで、弁金属上に
良好な電解重合膜を形成する方法は困難とされていた。
Problems to be Solved by the Invention However, in the electrolytic polymerization reaction, it is not possible to form a polymer film on the oxide film that serves as a dielectric without destroying the film due to the reaction process of electrolytic oxidation of monomers. Furthermore, before forming the oxide film, it is possible to apply an electrolytic polymer film on the valve metal and then perform a chemical conversion reaction to form the oxide film. As a result, the quality of the electropolymerized membrane may be altered, and its adhesion to the valve metal may be reduced. Therefore, until now, it has been considered difficult to form a good electrolytically polymerized film on a valve metal.

本発明は上記従来の課題を解決するもので高周波特性に
すぐれ、漏れ電流や耐圧特性のバラつきが少く歩留まり
の高い固体電解コンデンサの提供を目的とするものであ
る。
The present invention solves the above-mentioned conventional problems and aims to provide a solid electrolytic capacitor with excellent high frequency characteristics, less variation in leakage current and withstand voltage characteristics, and high yield.

課題を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、弁金属上に陽極酸化皮膜を介して形成された二酸化マ
ンガンからなる第4の層と、前記第1の層上の少なくと
も一部に形成された電解還元重合高分子からなる第2の
層と、導電性電解酸化重合高分子からなる第3の層とを
具備するものである。
Means for Solving the Problems The present invention achieves the above object, and its technical means includes: a fourth layer made of manganese dioxide formed on the valve metal via an anodized film; A second layer made of an electrolytically reduced polymer formed on at least a portion of the layer, and a third layer made of a conductive electrolytically oxidized polymer.

作用 本発明は、AtやTaの弁金属上の酸化皮膜上に二酸化
マンガン処理をして、次に、電解還元重合高分子を酸化
皮膜の欠陥部分等に形成し、その後電解酸化重合膜を酸
化皮膜上の全体に形成することにより、高周波特性なら
びに、漏れ電流が低く、高耐圧の固体電解コンデンサが
得られる。
Effect of the present invention: Manganese dioxide treatment is applied to the oxide film on the At or Ta valve metal, and then electrolytic reduction polymerization polymer is formed on the defective parts of the oxide film, and then the electrolytic oxidation polymer film is oxidized. By forming it over the entire surface of the film, a solid electrolytic capacitor with high frequency characteristics, low leakage current, and high withstand voltage can be obtained.

本発明の電解還元高分子としては、アクリル酸エステル
、メタクル酸エステル、アクリロニトリル、またはアク
リルアミドなどが好ましく、導電性電解酸化重合高分子
としては、ピロール、チオフェン、あるいはそれらの誘
導体から選ばれるモノコーから得られる高分子であるこ
とが望ましい。
The electrolytically reduced polymer of the present invention is preferably acrylic ester, methacrylic ester, acrylonitrile, or acrylamide. It is desirable that the polymer be a polymer that can be used.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図に本発明の一実施例における固体電解コンデンサ
の構成を説明する製造模式図を示す。第1図(a+に示
すような、弁金属であるAtの箔lにコンデンサ用陽極
リード電極2を取り付けたものを準備し、まず表面積を
増大するためにエツチング処理をする。次に第1図(b
)に示すようにアジピン酸水溶液等を用いてAl*O−
からなる酸化度M3を形成する。酸化皮膜3は電気化学
的な手段により通常の方法で形成する。その後、硝酸マ
ンガン水溶液に浸漬して、250〜300℃で空気中で
熱分解処理することKよりMnQ、膜4を形成する。次
にこの表面に電解重合膜を形成するわけであるが、コン
デンサの陽極2を重合電極として用いて電圧を印加して
も誘電体皮膜が介在するので電解重合は起こらず膜の成
長はおこらない。そこで第2図に示したように重合開始
をおこす電解重合用電極5をMnOを膜4に接触するよ
うに外部にもうけ、更に電解重合用対極6を、電解重合
用電極5から離隔して設けた。ところが酸化皮膜に欠陥
があったりするとそこから重合膜が成長したり、エノチ
ングビノトの深部へ膜が成長する。そしてこのような箇
所が漏れ電流の増大や耐圧の低下の原因となってしまう
。従って、本実施例では導電性のすぐれた電解酸化重合
高分子を製膜する前に、電解還元重合高分子膜をこの欠
陥に前もって形成する。
FIG. 1 shows a manufacturing schematic diagram illustrating the structure of a solid electrolytic capacitor in an embodiment of the present invention. As shown in Fig. 1 (a+), a capacitor anode lead electrode 2 is attached to a foil l of At, which is a valve metal, and is first subjected to an etching treatment to increase the surface area.Next, as shown in Fig. 1 (b
), using an adipic acid aqueous solution etc.
An oxidation degree M3 consisting of The oxide film 3 is formed by a conventional method using electrochemical means. Thereafter, it is immersed in a manganese nitrate aqueous solution and thermally decomposed in air at 250 to 300°C to form a MnQ film 4. Next, an electrolytic polymer film is formed on this surface, but even if a voltage is applied using the anode 2 of the capacitor as a polymerizing electrode, electrolytic polymerization does not occur and film growth does not occur because the dielectric film is present. . Therefore, as shown in FIG. 2, an electrode 5 for electrolytic polymerization that initiates polymerization is provided externally so as to be in contact with the MnO membrane 4, and a counter electrode 6 for electrolytic polymerization is further provided separated from the electrode 5 for electrolytic polymerization. Ta. However, if there is a defect in the oxide film, a polymeric film will grow from there, or the film will grow deep into the oxide layer. Such locations cause an increase in leakage current and a decrease in withstand voltage. Therefore, in this example, before forming a film of an electrolytically oxidized polymer having excellent conductivity, an electrolytically reduced polymer film is previously formed on the defect.

即ち第2図に示した重合反応容器7に、アクリル酸エス
テル、メタクル酸エステル、メタクリセントリル、メタ
クリルアミド、アクリロニトリル、又はアクリルアミド
からなる重合溶液8を用意し、この中に上記MnO寞膜
4を形成したAt箔1を浸漬し、電解重合用対極6に正
電位、電解重合用電極5に負電位を印加することによっ
て電解還元重合高分子膜は成長し、カチオ/がドープさ
れる。
That is, a polymerization solution 8 made of acrylic acid ester, methacrylic acid ester, methacrycentrile, methacrylamide, acrylonitrile, or acrylamide is prepared in the polymerization reaction container 7 shown in FIG. By immersing the formed At foil 1 and applying a positive potential to the counter electrode 6 for electrolytic polymerization and a negative potential to the electrode 5 for electrolytic polymerization, the electrolytically reduced polymer film grows and is doped with cation/.

次K、第2図に示したような重合反応容器7に、ピロー
ル、チオフェン、及びそれらの誘導体から選ばれる電解
重合可能なモノマーに支持電解質と溶媒からなる重合溶
液8をもうけた。この中に、上記At箔1を図のよ5’
IC浸漬して、電解重合用対極6と電解重合用電極5間
に重合電位以上に電圧を印加することにより重合膜(図
示せず)が電極5にまず形成され、その後、徐々にここ
を起点に重合膜を二酸化マンガン膜4の表面方向に成長
する。重合膜が二酸化マンガン膜4の表面を完全におお
いつくした後、電解重合反応を終了する。
Next, a polymerization solution 8 consisting of an electrolytically polymerizable monomer selected from pyrrole, thiophene, and derivatives thereof, a supporting electrolyte, and a solvent was placed in a polymerization reaction vessel 7 as shown in FIG. In this, the above At foil 1 is placed 5' as shown in the figure.
By immersing the IC and applying a voltage higher than the polymerization potential between the counter electrode 6 for electrolytic polymerization and the electrode 5 for electrolytic polymerization, a polymer film (not shown) is first formed on the electrode 5, and then, gradually starting from this point, a polymer film (not shown) is formed on the electrode 5. Then, a polymer film is grown in the direction of the surface of the manganese dioxide film 4. After the polymer film completely covers the surface of the manganese dioxide film 4, the electrolytic polymerization reaction is terminated.

この過程で電解還元高分子よりはカチオンが脱ドープさ
れて電気伝導性が高抵抗化する。従って、酸化皮膜の欠
陥箇所に導電性のすぐれた電解重合膜が形成されること
になり、漏れ電流の増大や耐圧の低下が大巾に低減化さ
れる。最後罠、重合膜の表面を洗浄して、乾燥する。そ
の後図示してないが重合膜に接触してコンデンサ用陰極
のリード電極の取り付けをカーボンペースト及び銀ペー
ストなどを用いて行う。そして最後にエボキと樹脂など
を用いて外装処理を行う。電解重合用電極5としては複
数個設けても良い。また電解重合用対極6は、電解重合
用電極5から離隔した位置であればどこでも良く、電解
重合用電極5は、電解重合用対極6に対してその形状は
小さい方が望ましい。
In this process, cations are dedoped from the electrolytically reduced polymer, resulting in higher electrical conductivity and resistance. Therefore, an electrolytically polymerized film with excellent conductivity is formed at the defective portion of the oxide film, and an increase in leakage current and a decrease in withstand voltage are significantly reduced. Finally, the surface of the trap and polymeric membrane is washed and dried. Thereafter, although not shown, a lead electrode of a capacitor cathode is attached in contact with the polymer film using carbon paste, silver paste, or the like. Finally, the exterior is treated using epoxy wood and resin. A plurality of electrodes 5 for electrolytic polymerization may be provided. Further, the counter electrode 6 for electrolytic polymerization may be located anywhere as long as it is located apart from the electrode 5 for electrolytic polymerization, and it is desirable that the electrode 5 for electrolytic polymerization has a smaller shape than the counter electrode 6 for electrolytic polymerization.

以下に更に詳しく述べる。More details are provided below.

At箔としては通常にエツチング処理されている定格が
16V、 16μF用のものを用いた。アジピン酸水溶
液により化成皮膜をつけた後、30%硝酸マンガン水溶
液に浸漬して、270℃空気中で15分間、熱分解処理
を行った。
The At foil used was one that had been normally etched and had a rating of 16 V and 16 μF. After applying a chemical conversion film using an adipic acid aqueous solution, it was immersed in a 30% manganese nitrate aqueous solution and thermally decomposed in air at 270°C for 15 minutes.

電解還元重合溶液をメタクリル酸メチル(05M/l)
、テトラエチルアンモニウムバークロレート (01M
/l)、アセトニトリルから作製した。
Electrolytic reduction polymerization solution was mixed with methyl methacrylate (05M/l)
, tetraethylammonium barchlorate (01M
/l), prepared from acetonitrile.

電解酸化重合溶液は、ピロール(0,5M/l)、テト
ラエチルアンモニウムバラトルエンスルホネート (0
,1M/l) 、アセトニトリルから作製した。
The electrolytic oxidation polymerization solution contains pyrrole (0.5M/l), tetraethylammonium valatoluenesulfonate (0.
, 1M/l) and acetonitrile.

まず、電解還元重合反応を電解重合開始点の電極として
白金線、対極として白金板を用いて、この電極間に7■
の印加で、5分間行わせた。その後、アルコールで洗浄
後、電解酸化重合反応を同様な電極構成で30分間行っ
た。その後、アルコールで洗浄後乾燥をする。次にアク
アダックと銀ペーストを用いて陰極リード電極を取り付
ける。最後に、エポキシ樹脂で外装を行った。次に、8
0℃で20Vを2時間印加のエツチング処理をほどこし
た。
First, an electrolytic reduction polymerization reaction is carried out using a platinum wire as an electrode at the starting point of electrolytic polymerization and a platinum plate as a counter electrode.
was applied for 5 minutes. Thereafter, after washing with alcohol, an electrolytic oxidation polymerization reaction was performed for 30 minutes using the same electrode configuration. Then, wash with alcohol and dry. Next, attach the cathode lead electrode using Aquaduck and silver paste. Finally, the exterior was covered with epoxy resin. Next, 8
Etching treatment was performed by applying 20V at 0°C for 2 hours.

次にこのコンデンサの特性を表に示す。表の結果は、サ
ンプル10個の平均値を示し、液中容量は10 pF 
(120Hz)である。
Next, the characteristics of this capacitor are shown in the table. The results in the table represent the average value of 10 samples, with a liquid volume of 10 pF.
(120Hz).

表 コンデンサ特性 表から明らかなように、例えば120 Hzにおける容
量値は95μFと非常に高く(通常の固体コンデンサ例
えばTCNQ塩では37μFである) 、500KH2
Kおける直列抵抗(ESR) も、At電解コンデンサ
のなかでは30mflと非常に小さく、高周波特性が優
れている。また漏れ電流も02μ八以下と非常に小さい
値を示した。更に電解還元重合高分子の処理を行わない
場合は、漏れ電流としてはmAのオーダ以上のものが1
0個中に2〜3個もあり、耐圧としても16V以下で破
壊してしまうものもあったが、処理を行うことにより、
その様な不良はみられなくなり、歩留り向上が図れた。
As is clear from the capacitor characteristics table, the capacitance value at 120 Hz, for example, is very high at 95 μF (normal solid capacitors, such as TCNQ salt, have a value of 37 μF) and 500 KH2.
The series resistance (ESR) at K is also very small at 30 mfl among At electrolytic capacitors, and the high frequency characteristics are excellent. The leakage current also showed a very small value of 0.2μ8 or less. Furthermore, if the electrolytically reduced polymer polymer is not treated, the leakage current will be on the order of mA or more.
There were 2 to 3 out of 0, and some were destroyed at a withstand voltage of 16V or less, but by processing,
Such defects were no longer observed, and the yield was improved.

発明の効果 以E要するに本発明は、酸化皮膜上に二酸化マンガン処
理により形成した第1の層、第1の層の少なくとも一部
を覆って設けられた電解還元重合高分子よりなる第2の
層、及び導電性のすぐれた電解酸化重合高分子よりなる
第3の層を具備する固体電解コンデンサを提供するもの
であり、高周波特性に優れ、かつ漏れ電流が低く、高耐
圧のものが歩留り良くつくれる利点を有する。
Effects of the Invention In short, the present invention provides a first layer formed on an oxide film by manganese dioxide treatment, and a second layer made of an electrolytically reduced polymeric polymer provided covering at least a portion of the first layer. , and a third layer made of an electrolytically oxidized polymer with excellent conductivity, the solid electrolytic capacitor has excellent high frequency characteristics, low leakage current, and high withstand voltage, which can be manufactured with high yield. has advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における固体電解
コンデンサの製造方法の手順を示す説明図である。 1・・・At箔、2・・陽極リード電極、3・・・酸化
皮膜、4・・・MnO雪膜、5・・・電解重合用電極、
6・・・電解重合用対極、7・・・重合反応容器、8・
・・重合溶液。 代理人の氏名 弁理士 粟 野 重 孝ほか1名第1図
FIGS. 1 and 2 are explanatory diagrams showing the steps of a method for manufacturing a solid electrolytic capacitor in an embodiment of the present invention. 1... At foil, 2... anode lead electrode, 3... oxide film, 4... MnO snow film, 5... electrode for electrolytic polymerization,
6... Counter electrode for electrolytic polymerization, 7... Polymerization reaction vessel, 8...
...Polymerization solution. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)弁金属上にその陽極酸化皮膜を介して形成される
二酸化マンガンからなる第1の層と、前記第1の層の少
なくとも一部に設けられる電解還元重合高分子からなる
第2の層と、導電性電解酸化重合高分子からなる第3の
層とを具備することを特徴とする固体電解コンデンサ。
(1) A first layer made of manganese dioxide formed on the valve metal through its anodic oxide film, and a second layer made of an electrolytically reduced polymer provided on at least a portion of the first layer. and a third layer made of a conductive electrolytically oxidized polymer.
(2)電解還元高分子として、アクリル酸エステルメタ
ル酸エステル、アクリロニトリル、アクリルアミド、導
電性電解酸化重合高分子として、ピロール、チオフェン
、あるいはそれらの誘導体から選ばれるモノマーから得
られる高分子であることを特徴とする請求項1記載の固
体電解コンデンサ。
(2) The electrolytically reduced polymer is a polymer obtained from a monomer selected from acrylic acid ester metal ester, acrylonitrile, acrylamide, and the conductive electrolytically oxidized polymer is selected from pyrrole, thiophene, or their derivatives. The solid electrolytic capacitor according to claim 1, characterized in that:
JP63227022A 1988-03-31 1988-09-09 Solid electrolytic capacitor Expired - Fee Related JPH0682587B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63227022A JPH0682587B2 (en) 1988-09-09 1988-09-09 Solid electrolytic capacitor
EP89105640A EP0336299B1 (en) 1988-03-31 1989-03-30 Solid electrolytic capacitor and method for manufacturing the same
DE68918486T DE68918486T2 (en) 1988-03-31 1989-03-30 Solid electrolytic capacitor and process for its manufacture.
US07/331,204 US4943892A (en) 1988-03-31 1989-03-31 Solid electrolytic capacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227022A JPH0682587B2 (en) 1988-09-09 1988-09-09 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0274016A true JPH0274016A (en) 1990-03-14
JPH0682587B2 JPH0682587B2 (en) 1994-10-19

Family

ID=16854288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227022A Expired - Fee Related JPH0682587B2 (en) 1988-03-31 1988-09-09 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0682587B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234824A (en) * 1992-02-21 1993-09-10 Matsushita Electric Ind Co Ltd Capacitor
WO2023210693A1 (en) * 2022-04-27 2023-11-02 パナソニックIpマネジメント株式会社 Method for manufacturing electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234824A (en) * 1992-02-21 1993-09-10 Matsushita Electric Ind Co Ltd Capacitor
WO2023210693A1 (en) * 2022-04-27 2023-11-02 パナソニックIpマネジメント株式会社 Method for manufacturing electrolytic capacitor

Also Published As

Publication number Publication date
JPH0682587B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH0274016A (en) Solid electrolytic condenser
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0563009B2 (en)
JP2741072B2 (en) Method for manufacturing solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0274018A (en) Manufacture of solid electrolytic condenser
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH01310529A (en) Manufacture of solid electrolyte capacitor
JP3851294B2 (en) Electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof
JP2001102256A (en) Method for manufacturing solid electrolytic capacitor
JPH05234826A (en) Manufacture of capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees