JP2730345B2 - Manufacturing method of capacitor - Google Patents

Manufacturing method of capacitor

Info

Publication number
JP2730345B2
JP2730345B2 JP3245606A JP24560691A JP2730345B2 JP 2730345 B2 JP2730345 B2 JP 2730345B2 JP 3245606 A JP3245606 A JP 3245606A JP 24560691 A JP24560691 A JP 24560691A JP 2730345 B2 JP2730345 B2 JP 2730345B2
Authority
JP
Japan
Prior art keywords
capacitor
electrode
aqueous solution
conductive polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3245606A
Other languages
Japanese (ja)
Other versions
JPH0590080A (en
Inventor
利邦 小島
康夫 工藤
正雄 福山
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3245606A priority Critical patent/JP2730345B2/en
Publication of JPH0590080A publication Critical patent/JPH0590080A/en
Application granted granted Critical
Publication of JP2730345B2 publication Critical patent/JP2730345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は誘電体皮膜を介して対向
している電極の、少なくとも一方の電極に導電性高分子
膜を用い、高性能、高信頼特性に優れたコンデンサの製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitor having excellent performance and high reliability by using a conductive polymer film for at least one of electrodes facing each other via a dielectric film. Things.

【0002】[0002]

【従来の技術】最近、電気機器のディジタル化にともな
って、そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求が高ま
っている。
2. Description of the Related Art Recently, with the digitization of electrical equipment, the capacitors used therein have low impedance in the high frequency range, and there is an increasing demand for smaller and larger capacitors.

【0003】従来、高周波用のコンデンサとしてはプラ
スチックフィルムコンデンサ、マイカコンデンサ、積層
セラミックコンデンサなどが用いられている。またその
他にアルミニウム乾式電解コンデンサやアルミニウムま
たはタンタル固体電解コンデンサなどがある。
Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors and the like have been used as high frequency capacitors. Other examples include an aluminum dry electrolytic capacitor and an aluminum or tantalum solid electrolytic capacitor.

【0004】アルミニウム乾式電解コンデンサでは、エ
ッチングを施した陽、陰極アルミニウム箔を紙のセパレ
ータを介して巻取り、液状の電解質を用いている。
In an aluminum dry electrolytic capacitor, an etched positive and negative electrode aluminum foil is wound through a paper separator, and a liquid electrolyte is used.

【0005】また、アルミニウムやタンタル固体電解コ
ンデンサでは前記アルミニウム電解コンデンサの特性改
良のため電解質の固体化がなされている。この固体電解
質形成には硝酸マンガン液に陽極箔を浸漬し、350℃
前後の高温炉中にて熱分解し、二酸化マンガン層を作
る。このコンデンサの場合、電解質が固体のために高温
における電解液の揮散、低温域での凝固から生ずる機能
低下などの欠点がなく、液状電解質と比べて良好な周波
数特性、温度特性を示す。アルミ電解コンデンサはタン
タル電解コンデンサと同様誘電体となる酸化皮膜を非常
に薄くできるために大容量を実現できる。
[0005] In the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified to improve the characteristics of the aluminum electrolytic capacitors. The anode foil is immersed in a manganese nitrate solution at 350 ° C. to form this solid electrolyte.
Pyrolyze in high and low temperature furnaces to form a manganese dioxide layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as volatilization of the electrolyte at a high temperature and functional deterioration caused by solidification in a low temperature range, and the capacitor exhibits better frequency characteristics and temperature characteristics than a liquid electrolyte. Aluminum electrolytic capacitors, like tantalum electrolytic capacitors, can achieve a large capacity because an oxide film serving as a dielectric can be made very thin.

【0006】更に、近年では7,7,8,8−テトラシ
アノキノジメタン(TCNQ)塩等の有機半導体を固体
電解質として用いた固体電解コンデンサ(特開昭58−
17609号公報)が開発されている。さらにピロー
ル、チオフェン、フランなどの重合性モノマーを電解重
合させて導電性高分子とし、これをコンデンサの電極の
少なくとも一方に用いる方法もあり、電極表面に誘電体
となるポリイミド薄膜を電着法によって形成し、化学重
合導電性高分子膜を積層してさらに電解重合導電性高分
子膜を積層してなるコンデンサを1991年春の電気化
学協会第58回大会で開示されている(講演要旨集P2
51及びP252)。
Further, in recent years, a solid electrolytic capacitor using an organic semiconductor such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) salt as a solid electrolyte (Japanese Patent Application Laid-Open No. 58-1983)
17609) has been developed. There is also a method in which a polymerizable monomer such as pyrrole, thiophene, or furan is electrolytically polymerized to form a conductive polymer, which is used for at least one of the electrodes of the capacitor.A polyimide thin film serving as a dielectric is formed on the electrode surface by an electrodeposition method. A capacitor formed by laminating a chemically polymerized conductive polymer film and further laminating an electrolytic polymerized conductive polymer film is disclosed in the 58th Annual Meeting of the Electrochemical Society of Japan in the spring of 1991 (collection of abstracts P2)
51 and P252).

【0007】[0007]

【発明が解決しようとする課題】このように種々のコン
デンサが使用されているが、フィルムコンデンサおよび
マイカコンデンサでは形状が大きくなってしまうために
大容量化が難しく、また積層セラミックコンデンサは小
型大容量の要望から生まれたものであるが価格が非常に
高くなるということと、温度特性が悪いことなどの欠点
を有している。
As described above, various types of capacitors are used. However, film capacitors and mica capacitors have large shapes because of their large shapes. However, it has disadvantages such as extremely high price and poor temperature characteristics.

【0008】また、アルミ電解コンデンサは酸化皮膜の
損傷が起き易いために酸化皮膜と陰極の間に電解質を施
し随時損傷を修復する必要がある。このため電解質に液
状のものを使用しているものは、電解質の液漏れやイオ
ン伝導性などの理由から経時的に静電容量の減少や損失
の増大をもたらす事と高周波特性、低温領域での損失が
大きいなどの欠点を有している。
In addition, since the aluminum electrolytic capacitor is easily damaged by the oxide film, it is necessary to repair the damage as needed by applying an electrolyte between the oxide film and the cathode. For this reason, those that use a liquid electrolyte as the electrolyte may cause a decrease in capacitance or an increase in loss over time due to electrolyte leakage or ionic conductivity, etc. It has disadvantages such as a large loss.

【0009】次に固体電解質のものについて述べると、
高温で数回熱分解することによる酸化皮膜の損傷及び二
酸化マンガンの比抵抗が高いことなどの理由から高周波
域での損失は十分に小さいとは言えない。また、TCN
Q塩などの有機半導体を用いた固体電解コンデンサは、
二酸化マンガンを用いたものに比して優れた高周波特性
を示すが、有機半導体を塗布する際の比抵抗の上昇、陽
極箔への接着性が弱いことなどが原因で理想的な特性を
示すとは言えない。さらに導電性高分子薄膜をコンデン
サの電極として用いると、周波数特性,温度特性、高温
寿命特性などが優れている。しかし、誘電体皮膜が水分
に侵され易いので高温恒湿寿命特性に欠点を有してい
る。
Next, the solid electrolyte will be described.
The loss in the high frequency range cannot be said to be sufficiently small because the oxide film is damaged by thermal decomposition several times at a high temperature and the specific resistance of manganese dioxide is high. Also, TCN
Solid electrolytic capacitors using organic semiconductors such as Q salt
It shows superior high-frequency characteristics compared to those using manganese dioxide, but exhibits ideal characteristics due to the increase in specific resistance when applying an organic semiconductor, weak adhesion to the anode foil, etc. I can't say. Further, when a conductive polymer thin film is used as an electrode of a capacitor, frequency characteristics, temperature characteristics, high-temperature life characteristics, and the like are excellent. However, since the dielectric film is easily attacked by moisture, it has a defect in the high-temperature constant-humidity life characteristic.

【0010】本発明は上記従来の課題に鑑み、耐湿特性
及び耐熱特性の優れたコンデンサを実現する製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a manufacturing method for realizing a capacitor excellent in moisture resistance and heat resistance.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するもので、その製造方法は、誘電体皮膜、マンガン酸
化物層を順次形成させた電極を、ケイ酸またはケイ酸塩
の水溶液中に浸漬処理し、その後電解重合を行い、前記
電極表面上に電解重合導電性高分子膜を積層させ対極と
するものである。
SUMMARY OF THE INVENTION The present invention achieves the above object, and a method for producing the same comprises forming an electrode on which a dielectric film and a manganese oxide layer are sequentially formed in an aqueous solution of silicic acid or silicate. Then, electrolytic polymerization is performed, and an electrolytic polymerized conductive polymer film is laminated on the electrode surface to serve as a counter electrode.

【0012】[0012]

【作用】本発明は上記構成のように、誘電体皮膜、マン
ガン酸化物層を順次形成させた電極を、ケイ酸またはケ
イ酸塩の水溶液中に浸漬処理するので、誘電体皮膜の水
和が抑制され、さらにその表面に熱安定性の優れた電解
重合導電性高分子膜を積層させ対極とするので、高温恒
湿中に放置しても特性の劣化が小さいコンデンサができ
る。
According to the present invention, as described above, the electrode on which the dielectric film and the manganese oxide layer are sequentially formed is immersed in an aqueous solution of silicic acid or silicate. Since a counter electrode is formed by laminating an electropolymerized conductive polymer film having excellent thermal stability on the surface of the capacitor, a capacitor having a small deterioration in characteristics even when left in a high-temperature constant humidity can be obtained.

【0013】[0013]

【実施例】以下に本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】(実施例1)以下第1の実施例として、本
発明をアルミ電解コンデンサへ応用したことについて、
図面を参照しながら説明する。
(Embodiment 1) As a first embodiment, the present invention is applied to an aluminum electrolytic capacitor.
This will be described with reference to the drawings.

【0015】弁作用金属2の表面に耐熱絶縁テープ8を
貼り二つの領域に分割し、面積の小さい領域を陽極リー
ド取り付け面にし、面積の大きい領域(4mm×5mm)を
誘電体皮膜形成面とした。弁作用金属箔2(アルミニウ
ムエッチド箔)を7%アジピン酸アンモニウム水溶液を
用い、約70℃、40分間、印加電圧42Vの条件で陽
極酸化し誘電体皮膜3を形成し、つぎに硝酸マンガン水
溶液を塗布し300℃、20分の条件で熱分解しマンガ
ン酸化物膜4からなる導電層を形成した。
A heat-resistant insulating tape 8 is applied to the surface of the valve metal 2 and divided into two regions. The small area is used as the anode lead mounting surface, and the large area (4 mm × 5 mm) is used as the dielectric film forming surface. did. The valve-acting metal foil 2 (aluminum-etched foil) is anodized using a 7% aqueous solution of ammonium adipate at about 70 ° C. for 40 minutes under an applied voltage of 42 V to form a dielectric film 3. And thermally decomposed at 300 ° C. for 20 minutes to form a conductive layer composed of the manganese oxide film 4.

【0016】次に、図1に示すごとく誘電体皮膜3、マ
ンガン酸化物膜4を形成した面を、ケイ酸ナトリウム水
溶液9(0.01mol/l、25℃)に24時間浸漬
した。 更に図2に示すごとくピロール(0.25mol/
l)、トリイソプロピルナフタレンスルフォネート
(0.1mol/l)、水からなる電解重合溶液10に弁金
属箔を浸し、重合開始用電極7をマンガン酸化物膜4に
近接させ、2.5Vの定電圧を30分印加し、マンガン
酸化物4上に対極用の導電性高分子膜5(ポリピロール
膜)を形成し、図3に示すようにカーボンペイント層1
1、銀ペイント層12を積層し、陽極リード1と陰極リ
ード6を設けてコンデンサを得た。試料数は10個であ
る。
Next, as shown in FIG. 1, the surface on which the dielectric film 3 and the manganese oxide film 4 were formed was immersed in an aqueous solution of sodium silicate 9 (0.01 mol / l, 25 ° C.) for 24 hours. Further, as shown in FIG. 2, pyrrole (0.25 mol /
l), a valve metal foil is immersed in an electrolytic polymerization solution 10 composed of triisopropylnaphthalene sulphonate (0.1 mol / l) and water, and the polymerization initiating electrode 7 is brought close to the manganese oxide film 4 so as to have a voltage of 2.5 V. A constant voltage is applied for 30 minutes to form a conductive polymer film 5 (polypyrrole film) for the counter electrode on the manganese oxide 4, and as shown in FIG.
1. A silver paint layer 12 was laminated, and an anode lead 1 and a cathode lead 6 were provided to obtain a capacitor. The number of samples is 10.

【0017】本実施例によるケイ酸ナトリウム水溶液で
処理した電極に、電解重合導電性高分子膜を積層してな
るコンデンサの特性を(表1)に示している。また比較
例1として電極処理を行わずに電解重合導電性高分子膜
を積層したコンデンサの特性を(表1)に示している。
(表1)から明らかなように、本実施例によるコンデン
サは、初期特性に対し長時間高温恒湿下に放置した特性
の劣化が著しく小さく比較例1に比べ優れた効果が得ら
れる。
The characteristics of a capacitor obtained by laminating an electropolymerized conductive polymer film on an electrode treated with an aqueous solution of sodium silicate according to this embodiment are shown in Table 1. In addition, Table 1 shows the characteristics of a capacitor in which the electropolymerized conductive polymer film was laminated without performing the electrode treatment as Comparative Example 1.
As is clear from Table 1, the capacitor according to the present embodiment has significantly less deterioration of the characteristics left in a high-temperature and constant-humidity state for a long time compared to the initial characteristics, and can obtain an excellent effect as compared with Comparative Example 1.

【0018】以上のように本実施例によれば、誘電体皮
膜の水和を抑制し、電極に用いる電解重合導電性高分子
膜が熱安定性に優れているので、寿命特性の優れた高性
能のコンデンサを実現させることができる。
As described above, according to the present embodiment, the hydration of the dielectric film is suppressed, and the electropolymerized conductive polymer film used for the electrode has excellent thermal stability. High performance capacitors can be realized.

【0019】なお本実施例では弁金属を電極としその陽
極酸化皮膜を誘電体とする電解コンデンサについて述べ
たが、他の形態のコンデンサでも、電解重合導電性高分
子が電極として使用されるものであれば含まれることは
いうまでもない。なお、実施例では硝酸マンガンを用い
てマンガン酸化物を形成した場合についてのみ述べた
が、硝酸マンガンに限らず、マンガン酸化物を形成でき
るものであれば他の物でも使用可能である。
In this embodiment, an electrolytic capacitor having a valve metal as an electrode and its anodic oxide film as a dielectric material has been described. However, in other types of capacitors, an electropolymerized conductive polymer is used as an electrode. Needless to say, it is included. In the embodiment, only the case where manganese oxide is formed using manganese nitrate has been described. However, the material is not limited to manganese nitrate, and any other material that can form manganese oxide can be used.

【0020】(実施例2)ケイ酸ナトリウム水溶液の濃
度を(イ)0.0005mol/l、(ロ)0.000
1mol/l、(ハ)0.00005mol/lとした
こと以外は実施例1と同様にしてコンデンサを作製し
た。試料数は各々10個である。
Example 2 The concentration of the aqueous solution of sodium silicate was adjusted to (a) 0.0005 mol / l and (b) 0.000
A capacitor was manufactured in the same manner as in Example 1 except that the amount was 1 mol / l and (c) 0.00005 mol / l. The number of samples is 10 each.

【0021】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例による濃度が0.0005mol/l、ま
たは0.0001mol/lのケイ酸ナトリウム水溶液
で処理した電極に、電解重合導電性高分子膜を積層して
なるコンデンサは、初期特性に対し長時間高温恒湿下に
放置した特性の劣化が著しく小さく実施例1同様優れた
効果が得られたが、濃度を0.00005mol/lに
すると特性劣化の抑制効果がないことがわかり、濃度は
0.0001mol/l以上が望ましいと判断される。
Table 1 shows the characteristics of the capacitor according to the present embodiment. As is clear from these (Table 1), the electropolymerized conductive polymer film was laminated on the electrode treated with the aqueous sodium silicate solution having a concentration of 0.0005 mol / l or 0.0001 mol / l according to the present example. In the capacitor made by the method, the deterioration of the characteristics left for a long time under high temperature and constant humidity was remarkably small compared to the initial characteristics, and excellent effects were obtained as in Example 1. However, when the concentration was 0.00005 mol / l, the deterioration of the characteristics was suppressed. It turns out that there is no effect, and it is judged that the concentration is desirably 0.0001 mol / l or more.

【0022】(実施例3)ケイ酸ナトリウム0.05m
ol/lを水中で撹拌し、不溶分はろ過して除去した飽
和濃度のケイ酸ナトリウム水溶液を用いたこと以外は
(実施例1)と同様にしてコンデンサを作製した。試料
数は10個である。
Example 3 0.05 m of sodium silicate
ol / l was stirred in water, and an insoluble content was removed by filtration. A capacitor was produced in the same manner as in (Example 1) except that a saturated sodium silicate aqueous solution was used. The number of samples is 10.

【0023】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例による飽和濃度のケイ酸ナトリウム水溶液
で処理した電極に、電解重合導電性高分子膜を積層して
なるコンデンサは、初期特性に対し長時間高温恒湿下に
放置した特性の劣化が著しく小さく実施例1同様優れた
効果が得られる。
Table 1 shows the characteristics of the capacitor according to the present embodiment. As is clear from these (Table 1), the capacitor obtained by laminating the electropolymerized conductive polymer film on the electrode treated with the saturated sodium silicate aqueous solution according to the present example has a high temperature for a long time with respect to the initial characteristics. Deterioration of the characteristics left under constant humidity is extremely small, and excellent effects can be obtained as in Example 1.

【0024】(実施例4)電極の浸漬時間を48時間に
したこと以外は実施例1と同様にしてコンデンサを作製
した。試料数は10個である。
Example 4 A capacitor was produced in the same manner as in Example 1 except that the immersion time of the electrode was changed to 48 hours. The number of samples is 10.

【0025】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例によるケイ酸水溶液で処理した電極に、電
解重合導電性高分子膜を積層してなるコンデンサは、初
期特性に対し長時間高温恒湿下に放置した特性の劣化が
著しく小さく実施例1同様優れた効果が得られる。
Table 1 shows the characteristics of the capacitor according to this embodiment. As is clear from these (Table 1), the capacitor obtained by laminating the electropolymerized conductive polymer film on the electrode treated with the aqueous solution of silicic acid according to the present embodiment has a long period of time under high temperature and humidity with respect to the initial characteristics. Deterioration of the characteristics left as it is is extremely small, and excellent effects can be obtained as in Example 1.

【0026】(実施例5)電極の浸漬時間を(イ)1
分、(ロ)3分、(ハ)5分にしたこと以外は実施例1
と同様にしてコンデンサを作製した。試料数は各々10
個である。
(Example 5) The electrode immersion time was set to (a) 1
Example 1 except that the minutes were (B) 3 minutes and (C) 5 minutes.
A capacitor was produced in the same manner as described above. 10 samples each
Individual.

【0027】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例によるケイ酸水溶液で5分処理した電極
に、電解重合導電性高分子膜を積層してなるコンデンサ
は、初期特性に対し長時間高温恒湿下に放置した特性の
劣化が著しく小さく実施例1同様優れた効果が得られる
が、電極処理時間が1分、3分では特性劣化を抑制する
ことは出来ず、浸漬時間は5分以上が望ましいと判断さ
れる。
Table 1 shows the characteristics of the capacitor according to the present embodiment. As is clear from these (Table 1), the capacitor obtained by laminating the electropolymerized conductive polymer film on the electrode treated with the aqueous solution of silicic acid for 5 minutes according to the present example has a high temperature and humidity for a long time with respect to the initial characteristics. The deterioration of the characteristics left undisturbed is extremely small, and excellent effects can be obtained as in Example 1. However, when the electrode treatment time is 1 minute and 3 minutes, the characteristic deterioration cannot be suppressed, and the immersion time is preferably 5 minutes or more. Is determined.

【0028】(実施例6)ケイ酸ナトリウム水溶液の液
温を(イ)99℃、(ロ)100℃にし、浸漬時間を5
分にしたこと以外は実施例1と同様にしてコンデンサを
作製した。試料数は各々10個である。
(Example 6) The temperature of the aqueous solution of sodium silicate was set to (a) 99 ° C and (b) 100 ° C, and the immersion time was set to 5 hours.
A capacitor was produced in the same manner as in Example 1 except that the above-mentioned steps were taken. The number of samples is 10 each.

【0029】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例によるケイ酸水溶液の温度を99℃にして
処理した電極に、電解重合導電性高分子膜を積層してな
るコンデンサは、初期特性に対し長時間高温恒湿下に放
置した特性の劣化が著しく小さく実施例1同様優れた効
果が得られるが、温度を100℃にすると、特性劣化の
抑制効果が下がってしまうので、処理温度は99℃まで
が望ましいと判断される。
Table 1 shows the characteristics of the capacitor according to the present embodiment. As is clear from these (Table 1), the capacitor obtained by laminating the electrolytic polymerized conductive polymer film on the electrode treated with the silicic acid aqueous solution at a temperature of 99 ° C. according to the present example has a longer initial characteristic. The deterioration of the characteristics left for a long time at a high temperature and a constant humidity is remarkably small, and excellent effects can be obtained as in Example 1. However, when the temperature is set to 100 ° C., the effect of suppressing the characteristic deterioration is reduced. Is determined to be desirable.

【0030】(実施例7)ケイ酸ナトリウム水溶液の液
温を1℃にし、浸漬時間を24時間にしたこと以外は実
施例1と同様にしてコンデンサを作製した。試料数は1
0個である。
Example 7 A capacitor was manufactured in the same manner as in Example 1 except that the liquid temperature of the aqueous solution of sodium silicate was set at 1 ° C. and the immersion time was set at 24 hours. 1 sample
There are zero.

【0031】本実施例によるコンデンサの特性を(表
1)に示している。なお、ケイ酸ナトリウム水溶液の液
温を0℃にすると水が凝固してしまい電極の浸漬処理は
不可能であった。これら(表1)から明らかなように、
本実施例によるケイ酸水溶液の温度を1℃にして処理し
た電極に、電解重合導電性高分子膜を積層してなるコン
デンサは、電極処理を行わない比較例1と比べて初期特
性に対し長時間高温恒湿下に放置した特性の劣化が著し
く小さく実施例1同様優れた効果が得られる。
Table 1 shows the characteristics of the capacitor according to the present embodiment. In addition, when the liquid temperature of the aqueous solution of sodium silicate was set to 0 ° C., water solidified, and immersion treatment of the electrode was impossible. As is clear from these (Table 1),
The capacitor obtained by laminating the electropolymerized conductive polymer film on the electrode treated with the temperature of the aqueous solution of silicic acid at 1 ° C. according to the present embodiment has a longer initial characteristic compared to Comparative Example 1 in which no electrode treatment is performed. The deterioration of the characteristics left for a long time at a high temperature and a constant humidity is extremely small, and excellent effects can be obtained as in the first embodiment.

【0032】(実施例8)ケイ酸が0.01mol/l
溶けている水溶液を用いること以外は実施例1と同様に
してコンデンサを作製した。試料数は10個である。
EXAMPLE 8 0.01 mol / l of silicic acid
A capacitor was manufactured in the same manner as in Example 1 except that a dissolved aqueous solution was used. The number of samples is 10.

【0033】本実施例によるコンデンサの特性を(表
1)に示している。これら(表1)から明らかなよう
に、本実施例によるケイ酸水溶液で処理した電極に、電
解重合導電性高分子膜を積層してなるコンデンサは、電
極処理を行わない比較例1と比べて、初期特性に対し長
時間高温恒湿下に放置した特性の劣化が著しく小さく実
施例1同様優れた効果が得られる。
Table 1 shows the characteristics of the capacitor according to this embodiment. As is clear from these (Table 1), the capacitor obtained by laminating the electropolymerized conductive polymer film on the electrode treated with the aqueous solution of silicic acid according to the present example is compared with Comparative Example 1 in which no electrode treatment is performed. In addition, the deterioration of the characteristics left for a long time under a high temperature and constant humidity with respect to the initial characteristics is extremely small, and excellent effects can be obtained as in Example 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上のように本発明は、ケイ酸またはケ
イ酸塩の水溶液に浸漬処理した電極に、電解重合導電性
高分子膜を積層し対極とするコンデンサの製造方法にあ
り、高温恒湿下に長時間放置しても特性の劣化が少ない
優れたコンデンサを作製できるものである。
As described above, the present invention resides in a method for manufacturing a capacitor in which an electrolytically polymerized conductive polymer film is laminated on an electrode immersed in an aqueous solution of silicic acid or silicate and used as a counter electrode. This makes it possible to produce an excellent capacitor with less deterioration in characteristics even when left under moisture for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるコンデンサの製造方
法の一工程である誘電体皮膜、マンガン酸化物膜を形成
した電極を、ケイ酸またはケイ酸塩の水溶液に浸漬した
工程図
FIG. 1 is a process diagram of a method of manufacturing a capacitor according to an embodiment of the present invention, in which an electrode on which a dielectric film and a manganese oxide film are formed is immersed in an aqueous solution of silicic acid or silicate.

【図2】同実施例におけるコンデンサの製造方法の一工
程である表面処理を終えた電極に、電解重合導電性高分
子膜を形成する工程図
FIG. 2 is a process chart of forming an electropolymerized conductive polymer film on the electrode after the surface treatment, which is one step of the method of manufacturing the capacitor in the embodiment.

【図3】同実施例におけるコンデンサの製造方法で作製
したコンデンサの断面図
FIG. 3 is a cross-sectional view of the capacitor manufactured by the method for manufacturing a capacitor according to the embodiment.

【図4】同実施例におけるコンデンサの製造方法で作製
したコンデンサの平面図
FIG. 4 is a plan view of a capacitor manufactured by the method for manufacturing a capacitor according to the embodiment.

【符号の説明】[Explanation of symbols]

1 陽極リード 2 弁作用金属 3 誘電体皮膜 4 マンガン酸化物膜 5 電解重合導電性高分子膜 6 陰極リード 7 重合開始用電極 8 耐熱絶縁テープ 9 ケイ酸またはケイ酸塩の水溶液 10 重合溶液 11 カーボンペイント膜 12 銀ペイント膜 REFERENCE SIGNS LIST 1 anode lead 2 valve metal 3 dielectric film 4 manganese oxide film 5 electropolymerized conductive polymer film 6 cathode lead 7 polymerization initiation electrode 8 heat-resistant insulating tape 9 aqueous solution of silicic acid or silicate 10 polymerization solution 11 carbon Paint film 12 Silver paint film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (56)参考文献 特開 平4−184811(JP,A) 特開 平5−234822(JP,A) 特開 平5−234821(JP,A) 特開 平5−234820(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tomonari Nanai 3-1-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa Prefecture Matsushita Giken Co., Ltd. JP-A-5-234822 (JP, A) JP-A-5-234821 (JP, A) JP-A-5-234820 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体皮膜、マンガン酸化物層を順次形
成させた電極を、ケイ酸またはケイ酸塩の水溶液中に浸
漬処理した後電解重合を行い、前記電極表面上に電解重
合導電性高分子膜を積層させ対極とすることを特徴とす
るコンデンサの製造方法。
An electrode on which a dielectric film and a manganese oxide layer are sequentially formed is immersed in an aqueous solution of silicic acid or silicate, and then subjected to electrolytic polymerization. A method for manufacturing a capacitor, comprising stacking molecular films to form a counter electrode.
【請求項2】 ケイ酸またはケイ酸塩水溶液の濃度が
0.0001mol/l以上であり、浸漬処理の液温1
〜99℃、浸漬処理時間5分以上であることを特徴とす
る請求項1記載のコンデンサの製造方法。
2. The method according to claim 1, wherein the concentration of the aqueous solution of silicic acid or silicate is 0.0001 mol / l or more,
The method for producing a capacitor according to claim 1, wherein the immersion treatment time is 5 minutes or more.
【請求項3】 誘電体皮膜、マンガン酸化物層を順次形
成させた電極が、弁作用金属であることを特徴とする請
求項1記載のコンデンサの製造方法。
3. The method according to claim 1, wherein the electrode on which the dielectric film and the manganese oxide layer are sequentially formed is a valve metal.
【請求項4】 弁作用金属がアルミニウムもしくはタン
タルから選ばれる一種である請求項3記載のコンデンサ
の製造方法。
4. The method according to claim 3, wherein the valve metal is one selected from aluminum and tantalum.
【請求項5】 電解重合導電性高分子膜が、ピロール、
チオフェンあるいはそれらの誘導体の少なくとも一種と
支持電解質とを含む溶液中で形成されることを特徴とす
る請求項1から4のいずれかに記載のコンデンサの製造
方法。
5. The electropolymerized conductive polymer film comprises pyrrole,
5. The method for producing a capacitor according to claim 1, wherein the capacitor is formed in a solution containing at least one of thiophene or a derivative thereof and a supporting electrolyte.
JP3245606A 1991-09-25 1991-09-25 Manufacturing method of capacitor Expired - Fee Related JP2730345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245606A JP2730345B2 (en) 1991-09-25 1991-09-25 Manufacturing method of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245606A JP2730345B2 (en) 1991-09-25 1991-09-25 Manufacturing method of capacitor

Publications (2)

Publication Number Publication Date
JPH0590080A JPH0590080A (en) 1993-04-09
JP2730345B2 true JP2730345B2 (en) 1998-03-25

Family

ID=17136217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245606A Expired - Fee Related JP2730345B2 (en) 1991-09-25 1991-09-25 Manufacturing method of capacitor

Country Status (1)

Country Link
JP (1) JP2730345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184782B1 (en) * 2008-02-15 2012-09-20 쇼와 덴코 가부시키가이샤 Method for treating surface of electrode, electrode, and process for producing organic electroluminescent element
KR102625407B1 (en) * 2019-05-24 2024-01-16 가부시키가이샤 무라타 세이사쿠쇼 Electronic components and method for forming silicate films

Also Published As

Publication number Publication date
JPH0590080A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JPH04307914A (en) Manufacture of solid electrolytic capacitor
JPS61240625A (en) Solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP2776113B2 (en) Manufacturing method of capacitor
JP3542613B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JP2785565B2 (en) Manufacturing method of capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP3548040B2 (en) Solid electrolytic capacitors
JPH0645200A (en) Solid-state electrolytic capacitor
JP2982543B2 (en) Manufacturing method of capacitor
JPH0274016A (en) Solid electrolytic condenser
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH0550125B2 (en)
JPH01232712A (en) Fixed electrolytic capacitor and manufacture thereof
JPH0521280A (en) Capacitor and its manufacture
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees