JP2924252B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2924252B2
JP2924252B2 JP7286791A JP7286791A JP2924252B2 JP 2924252 B2 JP2924252 B2 JP 2924252B2 JP 7286791 A JP7286791 A JP 7286791A JP 7286791 A JP7286791 A JP 7286791A JP 2924252 B2 JP2924252 B2 JP 2924252B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
polymerization
film
valve metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7286791A
Other languages
Japanese (ja)
Other versions
JPH04307916A (en
Inventor
利邦 小島
康夫 工藤
正雄 福山
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7286791A priority Critical patent/JP2924252B2/en
Publication of JPH04307916A publication Critical patent/JPH04307916A/en
Application granted granted Critical
Publication of JP2924252B2 publication Critical patent/JP2924252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子膜を固体電
解質として用い、特に低漏れ電流特性を有し生産性が優
れた固体電解コンデンサの製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte and having particularly low leakage current characteristics and excellent productivity.

【0002】[0002]

【従来の技術】最近、電気機器のディジタル化にともな
って、そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求が高ま
っている。従来、高周波用のコンデンサとしてはプラス
チックフィルムコンデンサ、マイカコンデンサ、積層セ
ラミックコンデンサなどが用いられている。またその他
にアルミニウム乾式電解コンデンサやアルミニウムまた
はタンタル固体電解コンデンサなどがある。アルミニウ
ム乾式固体電解コンデンサでは、エッチングを施した
陽、陰極アルミニウム箔を紙のセパレータを介して巻取
り、液状の電解質を用いている。
2. Description of the Related Art Recently, with the digitization of electrical equipment, the capacitors used therein have low impedance in the high frequency range, and there is an increasing demand for smaller and larger capacitors. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as high-frequency capacitors. Other examples include an aluminum dry electrolytic capacitor and an aluminum or tantalum solid electrolytic capacitor. In an aluminum dry-type solid electrolytic capacitor, an etched positive and negative aluminum foil is wound up through a paper separator, and a liquid electrolyte is used.

【0003】また、アルミニウムやタンタル固体電解コ
ンデンサでは前記アルミニウム電解コンデンサの特性改
良のため電解質の固体化がなされている。この固体電解
質形成には硝酸マンガン液に陽極箔を浸漬し、350℃
前後の高温炉中にて熱分解し、二酸化マンガン層を作
る。このコンデンサの場合、電解質が固体のために高温
における電解液の揮散、低温域での凝固から生ずる機能
低下などの欠点がなく、液状電解質と比べて良好な周波
数特性、温度特性を示す。アルミ電解コンデンサはタン
タル電解コンデンサと同様誘電体となる酸化皮膜を非常
に薄くできるために大容量を実現できる。
Further, in the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum electrolytic capacitors. The anode foil is immersed in a manganese nitrate solution at 350 ° C. to form this solid electrolyte.
Pyrolyze in high and low temperature furnaces to form a manganese dioxide layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as volatilization of the electrolyte at a high temperature and functional deterioration caused by solidification in a low temperature range, and the capacitor exhibits better frequency characteristics and temperature characteristics than a liquid electrolyte. Aluminum electrolytic capacitors, like tantalum electrolytic capacitors, can achieve a large capacity because an oxide film serving as a dielectric can be made very thin.

【0004】更に、近年では7,7,8,8−テトラシ
アノキノジメタン(TCNQ)塩等の有機半導体を固体
電解質として用いた固体電解コンデンサが開発されてい
る(特開昭58−17609号公報)。またピロール、
フランなどの重合性モノマーを電解重合させて導電性高
分子とし、これを固体電解質とする方法もある(特開昭
60−244017号公報)。
Further, in recent years, a solid electrolytic capacitor using an organic semiconductor such as a 7,7,8,8-tetracyanoquinodimethane (TCNQ) salt as a solid electrolyte has been developed (Japanese Patent Laid-Open No. Sho 58-17609). Gazette). Also pyrrole,
There is also a method in which a polymerizable monomer such as furan is electrolytically polymerized to form a conductive polymer, which is used as a solid electrolyte (JP-A-60-244017).

【0005】[0005]

【発明が解決しようとする課題】このように種々のコン
デンサが使用されているが、フィルムコンデンサおよび
マイカコンデンサでは形状が大きくなってしまうために
大容量化が難しく、また積層セラミックコンデンサは小
型大容量の要望から生まれたものであるが価格が非常に
高くなるということと、温度特性が悪いことなどの課題
を有している。また、アルミ電解コンデンサは酸化皮膜
の損傷が起き易いために酸化皮膜と陰極の間に電解質を
施し随時損傷を修復する必要がある。このため電解質に
液状のものを使用しているものは、電解質の液漏れやイ
オン伝導性などの理由から経時的に静電容量の減少や損
失の増大をもたらす事と高周波特性、低温領域での損失
が大きいなどの欠点を有している。
As described above, various types of capacitors are used. However, film capacitors and mica capacitors have large shapes because of their large shapes. However, there are problems such as an extremely high price and poor temperature characteristics. In addition, since the aluminum electrolytic capacitor is easily damaged by the oxide film, it is necessary to repair the damage by applying an electrolyte between the oxide film and the cathode as needed. For this reason, those that use a liquid electrolyte as the electrolyte may cause a decrease in capacitance or an increase in loss over time due to electrolyte leakage or ionic conductivity, etc. It has disadvantages such as a large loss.

【0006】次に固体電解質のものについて述べると、
高温で数回熱分解することによる酸化皮膜の損傷及び二
酸化マンガンの比抵抗が高いことなどの理由から高周波
域での損失は十分に小さいとは言えない。また、TCN
Q塩などの有機半導体を用いた固体電解コンデンサは、
二酸化マンガンを用いたものに比して優れた高周波特性
を示すが、有機半導体を塗布する際の比抵抗の上昇、陽
極箔への接着性が弱いことなどが原因で理想的な特性を
示すとは言えない。更に導電性高分子薄膜を固体電解質
とする場合、周波数特性,温度特性,寿命特性などが優
れている。ただしこの固体電解コンデンサは、固体電解
質とする導電性高分子薄膜を陽極弁金属上に形成させる
ために、重合開始導電部を誘電体皮膜を有する陽極弁金
属箔上に設け、この重合開始導電部を陽極として電解重
合を行い導電性高分子膜を積層するが、陽極弁金属箔を
垂直に立てた状態で電解重合を行うことがしばしばあり
重合開始導電部を設ける位置が低いと、重合開始部でで
きるオリゴマーが密度大の為落下するので開始部より高
い位置にある陽極弁金属箔の表面に付着することがな
く、オリゴマーによる重合膜形成の促進効果が得られな
いため重合時間が遅く、開始点付近の膜が厚くなり抵抗
が大きくなるという課題を有している。
Next, the solid electrolyte will be described.
The loss in the high frequency range cannot be said to be sufficiently small because the oxide film is damaged by thermal decomposition several times at a high temperature and the specific resistance of manganese dioxide is high. Also, TCN
Solid electrolytic capacitors using organic semiconductors such as Q salt
It shows excellent high-frequency characteristics compared to those using manganese dioxide, but shows ideal characteristics due to the increase in specific resistance when applying organic semiconductors, weak adhesion to anode foil, etc. I can't say. Further, when the conductive polymer thin film is used as a solid electrolyte, frequency characteristics, temperature characteristics, life characteristics, and the like are excellent. However, in order to form a conductive polymer thin film as a solid electrolyte on the anode valve metal, the solid electrolytic capacitor is provided with a polymerization initiation conductive part on the anode valve metal foil having a dielectric film, and the polymerization initiation conductive part is provided. Electrolytic polymerization is performed with the anode as the anode, and the conductive polymer film is laminated.However, the electrolytic polymerization is often performed in a state where the anode valve metal foil is set up vertically, and if the position where the polymerization initiation conductive part is provided is low, the polymerization initiation part is Since the oligomer formed in step (1) drops due to the high density, it does not adhere to the surface of the anode valve metal foil located at a position higher than the starting portion, and the polymerization time is slow because the effect of promoting the formation of the polymer film by the oligomer cannot be obtained. There is a problem that the film near the point becomes thick and the resistance increases.

【0007】[0007]

【課題を解決するための手段】本発明による固体電解コ
ンデンサの製造方法は、陽極弁金属箔表面に絶縁物を形
成して表面を分割し、一方の表面に陽極酸化により誘電
体皮膜を形成し、その上にマンガン酸化物層を形成さ
せ、次に前記マンガン酸化物層を形成させた面の絶縁物
近傍に、少なくとも1カ所で前記誘電体皮膜を除去して
金属部を露出させ、この露出させた金属部と接触させて
導電部を設け、前記陽極弁金属箔の導電部を形成した面
を絶縁物が電解重合溶液の界面に一致するまで浸漬し、
前記導電部を重合開始部として電解重合し前記マンガン
酸化物層上に電解重合導電性高分子膜を厚さ均一に速く
積層するものである。
A method of manufacturing a solid electrolytic capacitor according to the present invention comprises forming an insulator on the surface of an anode valve metal foil, dividing the surface, and forming a dielectric film on one surface by anodization. Forming a manganese oxide layer thereon, removing the dielectric film at least at one location near the insulator on the surface on which the manganese oxide layer is formed, exposing the metal part, A conductive portion is provided by contacting the metal portion, and the surface of the anode valve metal foil on which the conductive portion is formed is immersed until the insulator matches the interface of the electrolytic polymerization solution,
Electroconductive polymerization is performed using the conductive portion as a polymerization initiation portion, and an electropolymerized conductive polymer film is uniformly and quickly laminated on the manganese oxide layer.

【0008】[0008]

【作用】本発明は上記構成のように、重合開始部を電解
重合溶液中に浸漬した陽極弁金属箔の上部に設けている
ので、重合開始部で重合中にできるオリゴマーが密度大
のため落下する際、陽極弁金属箔の表面に付着し電解重
合導電性高分子膜の成長を促進させるため、短時間で陽
極弁金属箔の表面全体に積層でき膜厚が薄く均一になり
膜の電気抵抗が大きくならず、損失の小さい固体電解コ
ンデンサを得ることができる。
According to the present invention, since the polymerization initiation portion is provided on the anode valve metal foil immersed in the electrolytic polymerization solution as described above, the oligomer formed during the polymerization at the polymerization initiation portion drops due to the high density. In order to promote the growth of the electropolymerized conductive polymer film by adhering to the surface of the anode valve metal foil, it can be laminated on the entire surface of the anode valve metal foil in a short time, and the film thickness becomes thin and uniform, and the electric resistance of the film Does not increase, and a solid electrolytic capacitor with small loss can be obtained.

【0009】[0009]

【実施例】(実施例1)以下本発明の第1の実施例につ
いて、図面を参照しながら説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0010】図1、図2、図3、図4、図5、図6は本
実施例における製造工程図である。図1(a)側面図、
図1(b)正面図に示すように弁作用金属箔2(アルミ
ニウムエッチド箔)の表面に絶縁物、例えば耐熱絶縁テ
ープ11(ポリイミドテープ)を形成して表面を分割し
たものを準備し、一方の面を7%アジピン酸アンモニウ
ム水溶液を用い、約70°C、40分間、印加電圧42
Vの条件で陽極酸化し誘電体皮膜3を形成し、つぎに、
硝酸マンガン水溶液を塗布し300℃、85%の恒温恒
湿中で20分間熱分解しマンガン酸化物膜4からなる導
電層を形成し、ついで重合開始導電部10(実施例では
ニッケル箔片、直径1mm、厚さ50μm)を溶接によ
ってマンガン酸化物膜4の上に設置し、図2に示すごと
くピロール(0.25M)、トリイソプロピルナフタレ
ンスルフォネート(0.1M)、水からなる電解重合溶
液9に前記弁作用金属箔2の誘電体皮膜3などを形成し
た面を浸漬し前記耐熱絶縁テープ11が前記電解重合溶
液9の界面に一致する所で固定する。図で12は陽極、
13は陰極を示す。
FIGS. 1, 2, 3, 4, 5, and 6 are views showing the manufacturing process of this embodiment. FIG. 1 (a) side view,
As shown in the front view of FIG. 1 (b), an insulator, for example, a heat-resistant insulating tape 11 (polyimide tape) is formed on the surface of the valve action metal foil 2 (aluminum-etched foil) to prepare a divided surface. One surface was treated with a 7% aqueous ammonium adipate solution at about 70 ° C. for 40 minutes with an applied voltage of 42%.
Anodize under the condition of V to form a dielectric film 3;
A manganese nitrate aqueous solution is applied and thermally decomposed in a constant temperature and humidity of 85% at 300 ° C. for 20 minutes to form a conductive layer composed of the manganese oxide film 4. 1 mm, thickness 50 μm) was placed on the manganese oxide film 4 by welding, and as shown in FIG. 2, an electrolytic polymerization solution comprising pyrrole (0.25 M), triisopropylnaphthalene sulfonate (0.1 M), and water 9 is immersed in the surface of the valve metal foil 2 on which the dielectric film 3 and the like are formed, and fixed at a place where the heat-resistant insulating tape 11 coincides with the interface of the electrolytic polymerization solution 9. In the figure, 12 is an anode,
Reference numeral 13 denotes a cathode.

【0011】ここで定電圧2.5Vを30分印加し、図
3(a)一部破砕側面図、図3(b)正面図に示すよう
にマンガン酸化物4上に固体電解質用の導電性高分子膜
5(ポリピロール膜)を形成した。
Here, a constant voltage of 2.5 V is applied for 30 minutes, and as shown in FIG. 3A, a partially crushed side view, and FIG. A polymer film 5 (polypyrrole film) was formed.

【0012】続いて図4(a)側面図、図4(b)正面
図に示すように、重合開始導電部10を少なくとも含む
部分を折り曲げて除去した。ついで図5(a)一部破砕
側面図、図5(b)正面図に示すように断面を除いてカ
ーボンペイント膜6、続いて銀ペイント膜7を形成し、
最後に、図6に示すように陽極リード1と陰極リード8
を設け、樹脂で外装して固体電解コンデンサを得た。
Subsequently, as shown in FIG. 4 (a) side view and FIG. 4 (b) front view, a portion including at least the polymerization initiation conductive portion 10 was bent and removed. Next, as shown in FIG. 5 (a), a partially crushed side view, and FIG. 5 (b), a front view, a carbon paint film 6 and a silver paint film 7 are formed except for the cross section.
Finally, as shown in FIG.
Was provided and packaged with a resin to obtain a solid electrolytic capacitor.

【0013】本実施例による重合開始導電部を重合溶液
中に浸漬した陽極弁金属箔の上部に設置して作製した固
体電解コンデンサの特性と、比較例として、重合開始導
電部を重合溶液中に浸漬した陽極弁金属箔の下部に設置
して作製した固体電解コンデンサについて、初期特性を
(表1)に、形成された導電性高分子膜の厚さを(表
2)に示している。これら(表1)と(表2)から明ら
かなように、本実施例による固体電解コンデンサは、重
合時間が速く、膜厚が薄く均一で損失が小さいという点
で優れた効果が得られる。
The characteristics of the solid electrolytic capacitor prepared by placing the polymerization initiation conductive part according to the present embodiment on the anode valve metal foil immersed in the polymerization solution, and, as a comparative example, the polymerization initiation conductive part in the polymerization solution, Table 1 shows the initial characteristics and Table 2 shows the thickness of the formed conductive polymer film of the solid electrolytic capacitor produced by placing it below the immersed anode valve metal foil. As is clear from Tables 1 and 2, the solid electrolytic capacitor according to the present example has excellent effects in that the polymerization time is short, the film thickness is thin, uniform, and loss is small.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】以上のように本実施例によれば、重合開始
導電部を重合溶液中に浸漬した陽極弁金属箔の上部に設
けて導電性高分子膜を形成させるので、重合膜の成長が
速く膜厚が均一で損失を小さくすることができる。
As described above, according to the present embodiment, the polymerization initiation conductive portion is provided on the anode valve metal foil immersed in the polymerization solution to form the conductive polymer film. The loss can be reduced because the film thickness is uniform.

【0017】(実施例2)以下本発明の第2の実施例に
ついて、図面を参照しながら説明する。
(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.

【0018】図7に示すように、重合開始導電部10を
2カ所設けること以外は実施例1と同様である。本実施
例によれば、重合時間が20分になり実施例1に比べ約
30%時間を短縮できた。本実施例による重合開始導電
部10を重合溶液中に浸漬した陽極弁作用金属箔2の上
部に2カ所設置して作製した固体電解コンデンサの特性
を(表1)に示している。(表1)から明らかなよう
に、本実施例による固体電解コンデンサは、重合時間が
速く損失が小さいという点で優れた効果が得られる。
As shown in FIG. 7, it is the same as Example 1 except that two polymerization initiation conductive portions 10 are provided. According to this example, the polymerization time was 20 minutes, and the time was able to be shortened by about 30% as compared with Example 1. Table 1 shows the characteristics of the solid electrolytic capacitor produced by installing the polymerization initiation conductive part 10 according to the present embodiment at two places on the anode valve action metal foil 2 immersed in the polymerization solution. As is clear from Table 1, the solid electrolytic capacitor according to the present example has an excellent effect in that the polymerization time is short and the loss is small.

【0019】(実施例3)以下本発明の第3の実施例に
ついて、図面を参照しながら説明する。図8に示すよう
に陽極弁作用金属箔2間を結ぶブリッジを設け、重合開
始導電部10をブリッジ部分に設置して電解重合を行う
こと以外は実施例1と同様である。開始点1カ所から2
ヶの陽極に重合時間35分で導電性高分子膜5(ポリピ
ロール膜)を形成することができた。本実施例による陽
極弁作用金属箔2間を結ぶブリッジを設けて、重合開始
導電部を重合溶液中に浸漬した陽極弁金属箔のブリッジ
部分に設置して作製した固体電解コンデンサの特性を
(表1)に示している。(表1)から明らかなように、
本実施例による固体電解コンデンサは、重合開始導電部
を少なくすることができて、重合時間が速く損失が小さ
いという点で優れた効果が得られる。
Embodiment 3 Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 8, it is the same as Example 1 except that a bridge connecting between the anode valve action metal foils 2 is provided, and the polymerization initiation conductive portion 10 is installed in the bridge portion to perform electrolytic polymerization. 2 from one starting point
A conductive polymer film 5 (polypyrrole film) was formed on the three anodes in a polymerization time of 35 minutes. The characteristics of the solid electrolytic capacitor manufactured by providing a bridge connecting the anode valve action metal foils 2 according to the present embodiment and installing the polymerization initiation conductive portion on the bridge portion of the anode valve metal foil immersed in the polymerization solution are shown in FIG. This is shown in 1). As is clear from (Table 1),
In the solid electrolytic capacitor according to the present embodiment, an excellent effect can be obtained in that the polymerization initiation conductive portion can be reduced, the polymerization time is short, and the loss is small.

【0020】なお、上記実施例では硝酸マンガンを用い
てマンガン酸化物を形成した場合についてのみ述べた
が、硝酸マンガンに限らずマンガン酸化物を形成できる
ものであれば他の物でも使用可能である。
In the above embodiment, only the case where manganese oxide is formed using manganese nitrate has been described. However, the present invention is not limited to manganese nitrate, and any other material that can form manganese oxide can be used. .

【0021】また上記実施例ではニッケル箔を陽極に溶
接して接触させ重合開始部に使用したと述べたが、ニッ
ケルに限らず陽極酸化されない導電物であれば他のもの
を用いることも可能である。
In the above embodiment, the nickel foil was welded to the anode and brought into contact with the anode to be used for the polymerization initiation part. However, the invention is not limited to nickel, and any other conductive material which is not anodized may be used. is there.

【0022】更に接触方法としては溶接に限らず、かし
め等他の方法を用いることも可能である。また絶縁仕切
手段にポリイミドテープを用いた場合についてのみ述べ
たが、ポリイミドテープに限らずカプトン等の他の絶縁
テープあるいはレジストでも使用可能である。
Further, the contact method is not limited to welding, and other methods such as caulking can be used. Although only the case where a polyimide tape is used as the insulating partition means has been described, other insulating tapes such as Kapton or a resist can be used instead of the polyimide tape.

【0023】[0023]

【発明の効果】以上のように本発明は、陽極弁金属箔表
面に絶縁物の仕切り手段により表面を分割し、一方の表
面に陽極酸化により誘電体皮膜を形成し、その上にマン
ガン酸化物層を形成させ、次に前記マンガン酸化物層を
形成させた面の絶縁物近傍に、少なくとも1カ所以上で
前記誘電体皮膜を除去した金属部と接触させて導電部を
設け、前記陽極弁金属箔の導電部を形成した面を絶縁物
仕切手段が電解重合溶液の界面に一致するまで浸漬し、
前記導電部を重合開始部として電解重合し前記マンガン
酸化物層上に電解重合導電性高分子膜を積層してなる固
体電解コンデンサであるので、電解重合導電性高分子膜
の成長が速く膜厚が均一で損失が小さい固体電解コンデ
ンサを効率よく作製できるものである。
As described above, according to the present invention, the surface of the anode valve metal foil is divided by means of an insulating partition, a dielectric film is formed on one surface by anodization, and manganese oxide is formed thereon. Forming a conductive layer by contacting the metal part from which the dielectric film has been removed at least at one or more places near the insulator on the surface on which the manganese oxide layer has been formed; Immerse the surface where the conductive part of the foil is formed until the insulator partitioning means coincides with the interface of the electrolytic polymerization solution,
Since the solid electrolytic capacitor is formed by laminating an electropolymerized conductive polymer film on the manganese oxide layer by electrolytic polymerization using the conductive portion as a polymerization initiator, the growth of the electropolymerized conductive polymer film is rapid. Thus, a solid electrolytic capacitor having uniform and small loss can be efficiently produced.

【0024】なお、上記実施例では硝酸マンガンを用い
てマンガン酸化物を形成した場合についてのみ述べた
が、硝酸マンガンに限らずマンガン酸化物を形成できる
ものであれば他の物でも使用可能である。
In the above embodiment, only the case where manganese oxide is formed using manganese nitrate has been described. However, the present invention is not limited to manganese nitrate, and any other material that can form manganese oxide can be used. .

【0025】また上記実施例ではニッケル箔を陽極に溶
接して接触させ重合開始部に使用したと述べたが、ニッ
ケルに限らず陽極酸化されない導電物であれば他のもの
を用いることも可能である。
In the above embodiment, the nickel foil was welded to the anode and brought into contact with the anode to be used for the polymerization initiation part. However, the invention is not limited to nickel, and any other conductive material which is not anodized may be used. is there.

【0026】更に接触方法としては溶接に限らず、かし
め等他の方法を用いることも可能である。また絶縁仕切
手段にポリイミドテープを用いた場合についてのみ述べ
たが、ポリイミドテープに限らずカプトン等の他の絶縁
テープあるいはレジストでも使用可能である。
Further, the contact method is not limited to welding, and other methods such as caulking can be used. Although only the case where a polyimide tape is used as the insulating partition means has been described, other insulating tapes such as Kapton or a resist can be used instead of the polyimide tape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における固体電解コンデ
ンサの製造方法に使用した弁作用金属箔に絶縁物を形成
した工程図
FIG. 1 is a process diagram of forming an insulator on a valve metal foil used in a method for manufacturing a solid electrolytic capacitor according to a first embodiment of the present invention.

【図2】同実施例における電解重合過程を示す工程図FIG. 2 is a process chart showing an electropolymerization process in the example.

【図3】同実施例における電解重合によって導電性高分
子膜を形成した工程図
FIG. 3 is a process diagram of forming a conductive polymer film by electrolytic polymerization in the same example.

【図4】同実施例における重合開始導電部を除去した工
程図
FIG. 4 is a process diagram of the embodiment in which a polymerization initiation conductive portion is removed.

【図5】同実施例における導電性高分子膜上にカーボン
ペイント膜、銀ペイント膜を形成した工程図
FIG. 5 is a process diagram of forming a carbon paint film and a silver paint film on a conductive polymer film in the same example.

【図6】同実施例における固体電解コンデンサの平面図FIG. 6 is a plan view of the solid electrolytic capacitor in the embodiment.

【図7】本発明の第2の実施例における固体電解コンデ
ンサの製造方法に使用した重合開始導電部を2カ所設置
した工程図
FIG. 7 is a process diagram in which two polymerization initiation conductive portions used in the method for manufacturing a solid electrolytic capacitor according to the second embodiment of the present invention are installed.

【図8】本発明の第3の実施例における固体電解コンデ
ンサの製造方法に使用した陽極弁作用金属箔間を結ぶブ
リッジを設け、重合開始導電部をブリッジ部分に設置し
た工程図
FIG. 8 is a process diagram in which a bridge for connecting anode valve action metal foils used in the method for manufacturing a solid electrolytic capacitor according to the third embodiment of the present invention is provided, and a polymerization initiation conductive portion is provided in the bridge portion.

【符号の説明】[Explanation of symbols]

1 陽極リード 2 弁作用金属箔 3 誘電体皮膜 4 マンガン酸化物膜 5 電解重合導電性高分子膜 6 カーボンペイント膜 7 銀ペイント膜 8 陰極リード 9 電解重合溶液 10 重合開始導電部 11 耐熱絶縁テープ DESCRIPTION OF SYMBOLS 1 Anode lead 2 Valve action metal foil 3 Dielectric film 4 Manganese oxide film 5 Electropolymerized conductive polymer film 6 Carbon paint film 7 Silver paint film 8 Cathode lead 9 Electropolymerized solution 10 Polymerization start conductive part 11 Heat resistant insulating tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01G 9/02 H01G 9/24 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshinari Nanai 3-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa Prefecture Matsushita Giken Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01G 9/02 H01G 9/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽極弁金属箔表面に絶縁物仕切り手段によ
り表面を分割し、一方の表面に陽極酸化により誘電体皮
膜を形成し、その上にマンガン酸化物層を形成させ、前
記マンガン酸化物層を形成させた面の前記絶縁物近傍
に、少なくとも1カ所の前記誘電体皮膜を除去し弁金属
を露出させ、前記露出させた弁金属と接触させて形成し
た導電部を設け、前記陽極弁金属箔の導電部を前記絶縁
物仕切手段が電解重合溶液の界面に一致するまで浸漬
し、前記導電部を重合開始部として電解重合し前記マン
ガン酸化物層上に電解重合導電性高分子膜を積層させる
ことを特徴とする固体電解コンデンサの製造方法。
An anode valve metal foil having a surface divided by an insulator partitioning means, a dielectric film formed on one surface by anodic oxidation, and a manganese oxide layer formed thereon; A conductive portion formed by removing at least one portion of the dielectric film and exposing the valve metal, and contacting the exposed valve metal in the vicinity of the insulator on the surface where the layer is formed; The conductive portion of the metal foil is immersed until the insulator partitioning means coincides with the interface of the electrolytic polymerization solution, and the conductive portion is electrolytically polymerized as a polymerization initiator, and an electropolymerized conductive polymer film is formed on the manganese oxide layer. A method for manufacturing a solid electrolytic capacitor, comprising laminating.
【請求項2】電解重合導電性高分子膜が、ピロール,チ
オフェンあるいはそれらの誘導体の少なくとも一種と支
持電解質とを含む電解重合溶液中で形成されることを特
徴とする請求項1記載の固体電解コンデンサの製造方
法。
2. The solid electrolyte according to claim 1, wherein the electropolymerized conductive polymer film is formed in an electropolymerization solution containing at least one of pyrrole, thiophene or a derivative thereof and a supporting electrolyte. Manufacturing method of capacitor.
【請求項3】陽極弁金属がアルミニウムもしくはタンタ
ルから選ばれる一種である請求項1または2記載の固体
電解コンデンサの製造方法。
3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the anode valve metal is one selected from aluminum or tantalum.
JP7286791A 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2924252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7286791A JP2924252B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7286791A JP2924252B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04307916A JPH04307916A (en) 1992-10-30
JP2924252B2 true JP2924252B2 (en) 1999-07-26

Family

ID=13501709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7286791A Expired - Fee Related JP2924252B2 (en) 1991-04-05 1991-04-05 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2924252B2 (en)

Also Published As

Publication number Publication date
JPH04307916A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
EP0336299B1 (en) Solid electrolytic capacitor and method for manufacturing the same
US5223120A (en) Method for fabricating solid electrolytic capacitors using an organic conductive layer
JP2003086459A (en) Solid electrolytic capacitor
JPH05166681A (en) Manufacture of solid electrolytic capacitor
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JP3314480B2 (en) Solid electrolytic capacitors
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2768061B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP2730345B2 (en) Manufacturing method of capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2969703B2 (en) Solid electrolytic capacitors
JP2924253B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0487316A (en) Capacitor
JPH06349689A (en) Solid electrolytic capacitor
JP2776113B2 (en) Manufacturing method of capacitor
KR100821166B1 (en) Method for manufacturing stacked type polymer-condenser
JP2785565B2 (en) Manufacturing method of capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees