JPH03139816A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH03139816A
JPH03139816A JP27611489A JP27611489A JPH03139816A JP H03139816 A JPH03139816 A JP H03139816A JP 27611489 A JP27611489 A JP 27611489A JP 27611489 A JP27611489 A JP 27611489A JP H03139816 A JPH03139816 A JP H03139816A
Authority
JP
Japan
Prior art keywords
film
oxide film
chemical
solid electrolytic
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27611489A
Other languages
Japanese (ja)
Inventor
Yutaka Harashima
豊 原島
Akihiro Inoue
井上 明広
Yoshihiko Funayama
舩山 義彦
Minoru Fukuda
実 福田
Hideo Yamamoto
秀雄 山本
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP27611489A priority Critical patent/JPH03139816A/en
Publication of JPH03139816A publication Critical patent/JPH03139816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To completely insulate by doping compound liquid solute, and to prevent a solid electrolytic capacitor from short-circuiting and an LC defect, by forming a chemical polymer film on an oxide film, then applying a reverse voltage in compound liquid, and applying a positive voltage thereto. CONSTITUTION:After a chemical polymer film made of conductive polymer is formed on an oxide film, a winding element is formed. Then, the element is dipped in compound liquid of ammonium adipate as solute, a reverse current of 0.1mA is applied for 10 min, a part in direct contact with the defect of the polymer film is selectively dedoped, and a positive voltage is subsequently applied to recompound the defective part. Simultaneously, adipic acid is selectively doped only at the selectively dedoped part to provide a complete insulator. Thus, since a completely insulating layer is formed between the metal and a negative layer, improper breakdown strength, a short-circuiting, a LC defect, etc., can be completely prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電性高分子膜を固体電解質として用いた固
体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer membrane as a solid electrolyte.

(従来の技術) 近年、小形高性能化の要請に応えた固体電解コンデンサ
として、特開昭60−244017号公報又は特開昭6
3−181308号公報に開示されたものがある。
(Prior art) In recent years, solid electrolytic capacitors that meet the demand for smaller size and higher performance have been developed as disclosed in Japanese Patent Application Laid-open No. 60-244017 or Japanese Patent Application Laid-open No. 60-244017.
There is one disclosed in Publication No. 3-181308.

これら公報に開示された技術は、表面を粗面化した弁作
用金属を化成し酸化皮膜を形成して得た陽極体を陽極と
して電解液に浸漬して通電し、前記酸化皮膜上に形成し
た電解重合膜を固体電解質として用いるものであるが、
酸化皮膜が絶縁物であるため、陰極と効果的な通電が行
われず、酸化皮膜の欠陥部あるいは陰極との距離が近い
ところに電流が集中し、固体電解質としての均一な電解
重合膜を得ることが極めて回能であった。
The technology disclosed in these publications is that an anode body obtained by chemically converting a valve metal with a roughened surface to form an oxide film is used as an anode, immersed in an electrolytic solution and energized to form an oxide film on the oxide film. It uses an electrolytic polymer membrane as a solid electrolyte,
Since the oxide film is an insulator, effective current conduction with the cathode is not carried out, and current concentrates in defective parts of the oxide film or in areas close to the cathode, resulting in a uniform electrolytic polymer film as a solid electrolyte. was extremely efficient.

そのため、陽極体を例えばビロール溶液に浸漬し、しか
る後酸イヒ剤溶液に浸漬することによる化学酸化重合手
段を講じ、陽極体上にあらかじめ化学重合膜を形成し、
この化学重合膜を陽極として電解液中で電解酸化重合を
行い、化学重合膜上に効果的に電解重合膜を形成するよ
うにしている。
Therefore, a chemical oxidation polymerization method is taken in which the anode body is immersed in, for example, a virol solution, and then immersed in an acid quenching agent solution to form a chemically polymerized film on the anode body in advance.
Electrolytic oxidation polymerization is carried out in an electrolytic solution using this chemically polymerized membrane as an anode to effectively form an electrolytically polymerized membrane on the chemically polymerized membrane.

しかしながら、酸化皮膜に欠陥があった場合には、化学
酸化重合の際に導電性の化学重合膜が直接欠陥部に接触
するため、ショート不良の原因となっている。そのため
、一般に化学重合膜形成後に再化成を行っているが、上
述のとおり欠陥部に導電性の化学重合膜が直接接触して
いるため非常に化成性が悪く、耐圧不良、シヨ・−ト不
良、LC不良の抜本的な対策にはなり得なかった。
However, if there is a defect in the oxide film, the conductive chemically polymerized film comes into direct contact with the defect during chemical oxidation polymerization, causing short-circuit failure. Therefore, re-formation is generally performed after the formation of a chemically polymerized film, but as mentioned above, the conductive chemically polymerized film is in direct contact with the defective areas, resulting in very poor chemical formation, resulting in poor voltage resistance and shot defects. , it could not be a drastic measure against LC defects.

(発明が解決しようとする課題) 以上のような手段によって得られる固体電解コンデンサ
は、小形高性能化の要請に応えたものとして注目に値す
るが、酸化皮膜に欠陥部がある場合、ショート不良、L
C不良が生じるため、製造過程において歩留が非常に低
くなってしまうという問題をかかえていた。
(Problems to be Solved by the Invention) The solid electrolytic capacitor obtained by the above method is worthy of attention as it meets the demand for smaller size and higher performance, but if there is a defect in the oxide film, short circuit failure, L
Since C defects occur, there has been a problem in that the yield rate becomes extremely low during the manufacturing process.

本発明は、上記の点に鑑みてなされたもので、導電性高
分子膜を固体電解質として用いた固体電解コンデンサの
ショート不良、LC不良等を防止できる固体電解コンデ
ンサの製造方法を提供することを目的とするものである
The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that can prevent short-circuit defects, LC defects, etc. of solid electrolytic capacitors using a conductive polymer membrane as a solid electrolyte. This is the purpose.

[発明の構成] (8題を解決するための手段) 本発明の固体電解コンデンサの製造方法は、弁作用金属
に形成した酸化皮膜上に化学酸化重合により化学重合膜
を形成した後、この化学重合膜上に電解酸化重合により
電解重合膜を形成する固体電解コンデンサの製造方法に
おいて、前記酸化皮膜上に化学重合膜を形成した後、化
成液中で逆電圧を印加し、続いて正電圧を印加すること
を特徴とするものである。
[Structure of the Invention] (Means for Solving the Eight Problems) The method for manufacturing a solid electrolytic capacitor of the present invention involves forming a chemically polymerized film by chemical oxidative polymerization on an oxide film formed on a valve metal, and then In a method for manufacturing a solid electrolytic capacitor in which an electrolytic polymer film is formed on a polymer film by electrolytic oxidation polymerization, after forming a chemical polymer film on the oxide film, a reverse voltage is applied in a chemical solution, and then a positive voltage is applied. It is characterized by the fact that it is applied.

(作用) 以上の構成によれば、酸化皮膜欠陥部と導電性の化学重
合膜が接触している場合、逆電流が酸化皮膜欠陥部に選
択的に流れることにより、化学重合膜のうち、皮膜欠陥
部に接触している部分だけが脱ドーピングされ、更にそ
の後の化成で化成液溶質がドーピングされることで完全
に絶縁化されるため、この優の電解酸化重合においても
この絶縁化された化学重合膜上には電解重合、膜も形成
されず、FIJ極である金属と陰極層との間には完全に
絶縁層が形成されることになる。
(Function) According to the above configuration, when the defective part of the oxide film is in contact with the conductive chemically polymerized film, a reverse current selectively flows to the defective part of the oxide film, so that the part of the chemically polymerized film is Only the part that is in contact with the defect is dedoped, and is completely insulated by doping with the chemical solution solute in the subsequent chemical formation, so even in this excellent electrolytic oxidation polymerization, this insulating chemical No electrolytic polymerization or film is formed on the polymer film, and an insulating layer is completely formed between the metal that is the FIJ electrode and the cathode layer.

(実施例) 以下、本発明の一実施例につき説明する。(Example) An embodiment of the present invention will be described below.

すなわち、エツチングによって表面積を拡大し化成工程
を経て表面に酸化皮膜を形成した、例えば、高純度アル
ミニウムからなるra陽極箔陽極リード線を取着し、次
に、この陽極箔をビロール又はチオフェンあるいは7ラ
ン/エタノール水溶液に浸漬した後、更に、支持電解質
としてパラトルエンスルホン酸テトラエチルアンモニウ
ムなどを含む過硫酸アンモニウム水溶液に浸漬して化学
酸化重合を施し、酸化皮膜上に導電性高分子からなる化
学重合膜を形成した後巻回し巻回体を構成する。次に、
この巻回体をアジピン酸アンモニウムなどを溶質とする
化成液中に浸漬し0.1yyLAの逆電流を10分間印
加し化学重合膜の皮膜欠陥部と直接接触している部分に
ついて選択的に脱ドーピングを行い、引続き正電流に印
加することで皮膜欠陥部の再化成を行うと同時に、上記
選択的に脱ドーピングされた部分にのみ選択的にアジピ
ン酸などをドーピングさせ完全な絶縁体とする。次に、
支持電解質及びビロール、チオフェン、フランなどのモ
ノマーを含む電解酸化重合液中に浸漬し電解酸化重合を
施し、上記パラトルエンスルホン酸などの脱ドーピング
及びアジピン酸などのドーピングが行われなかった大部
分の導電性の化学重合膜に導電性高分子からなる電解重
合膜を生成する。
That is, an RA anode foil anode lead wire made of, for example, high-purity aluminum, whose surface area has been expanded by etching and an oxide film formed on the surface through a chemical conversion process, is attached, and then this anode foil is coated with virol, thiophene, or After being immersed in a Ran/ethanol aqueous solution, it is further immersed in an ammonium persulfate aqueous solution containing tetraethylammonium para-toluenesulfonate as a supporting electrolyte to perform chemical oxidative polymerization to form a chemically polymerized film made of conductive polymer on the oxide film. After forming, it is wound to form a wound body. next,
This wound body is immersed in a chemical solution containing ammonium adipate or the like as a solute, and a reverse current of 0.1yyLA is applied for 10 minutes to selectively dedope the portions that are in direct contact with film defects in the chemically polymerized film. Then, by applying a positive current, the defective parts of the film are reformed, and at the same time, only the selectively dedoped parts are selectively doped with adipic acid to become a complete insulator. next,
Most of the polymers were immersed in an electrolytic oxidative polymerization solution containing a supporting electrolyte and monomers such as virol, thiophene, and furan, and subjected to electrolytic oxidative polymerization. An electrolytic polymer film made of conductive polymer is produced on a conductive chemical polymer film.

次に、コロイダルカーボンに浸漬−銀ペースト塗布にて
陰極層を設け、この陰極層の部分に陰極リードを取着し
、最後に外装を施してなるものである。
Next, a cathode layer is provided on colloidal carbon by dipping and applying silver paste, a cathode lead is attached to this cathode layer, and finally, an exterior is applied.

以上の構成になる固体電解コンデンサの製造方法によれ
ば、化学酸化重合後に酸化皮膜欠陥部と導電性高分子で
ある化学重合膜が直接接触している、ごく限られた範囲
でのみ化学重合膜S導電性を与えているパラトルエンス
ルホン酸などを脱ドーピングし、更に続けて酸化皮膜の
再化成を行うとき、前記脱ドーピングされた部分にのみ
化学重合膜に絶縁性を与えるアジピン酸などをドーピン
グさせるため、酸化皮膜欠陥部の再化成がスムーズに行
われ、更には電解酸化重合において前記絶縁化された化
学重合膜上には導電性の電解重合膜は形成されず、また
、電解酸化重合液中のパラトルエンスルホン酸などのド
ーパントが、既にアジピン酸などがドーピングされてい
る前記絶縁性高分子膜中にドーピングされることもない
ため、例えば欠陥部を再化成して形成された酸化皮膜の
耐圧が低いなどの過程を加味しても陽極である金属と陰
極層との間には完全に絶縁層が形成されているため、耐
圧不良、ショート不良、LC不良などが完全に防止でき
ることになる。
According to the manufacturing method of a solid electrolytic capacitor having the above structure, the chemical polymer film can only be formed in a very limited area where the defective part of the oxide film and the chemical polymer film, which is a conductive polymer, are in direct contact after chemical oxidation polymerization. When dedoping paratoluenesulfonic acid, etc., which gives S conductivity, and then re-forming the oxide film, doping only the dedoped areas with adipic acid, etc., which gives insulation to the chemically polymerized film. Therefore, the reconstitution of defective parts of the oxide film is carried out smoothly, and furthermore, a conductive electrolytic polymer film is not formed on the insulating chemical polymer film during electrolytic oxidation polymerization, and the electrolytic oxidation polymerization solution Since the dopant such as para-toluene sulfonic acid in the insulating film is not doped into the insulating polymer film, which has already been doped with adipic acid, for example, an oxide film formed by re-chemically forming a defective part. Even if processes such as low breakdown voltage are taken into account, an insulating layer is completely formed between the metal anode and the cathode layer, so breakdown voltage defects, short circuit defects, LC defects, etc. can be completely prevented. .

次に、本発明によって得られた固体電解コンデンサと、
従来例によって得られた固体電解コンデンサの緒特性比
較について述べる。
Next, a solid electrolytic capacitor obtained by the present invention,
A comparison of the characteristics of solid electrolytic capacitors obtained using conventional examples will be described.

数表は、以下に記した実施例Aと従来例Bによる定格1
0V−3μFの固体電解コンデンサの緒特性を示すもの
である。
The numerical table shows the rating 1 according to Example A and Conventional Example B described below.
This figure shows the initial characteristics of a 0V-3μF solid electrolytic capacitor.

なお、表中の数値でショート不良を除いたものは試料1
00個の平均値で、()内はバラツキを示す。
In addition, the values in the table excluding short-circuit defects are for sample 1.
The average value is 00, and the numbers in parentheses indicate variations.

実施例A (1)化学酸化重合条件 ビロール/エタノール溶液に化成処理したアルミニウム
陽極箔を5分間浸漬後、支持電解質としてトルエンスル
ホン酸テトラエチルアンモニウム 0.05mo l/
j!を含む0.1m0I/1過硫酸アンモニウム水溶液
に5分間浸漬。
Example A (1) Chemical oxidative polymerization conditions After immersing a chemically treated aluminum anode foil in a virol/ethanol solution for 5 minutes, 0.05 mol/tetraethylammonium toluenesulfonate was added as a supporting electrolyte.
j! Immersed in 0.1m0I/1 ammonium persulfate aqueous solution containing 5 minutes.

(2)コンデンサ素子構造 巻回形状 (3)電解酸化重合条件 ビロールモノマー 1mol/41及び支持電解質とし
てパラトルエンスルホン酸ナトリウム 1mol/jを
含むアセトニトリルからなる電解液中に浸漬し、定電流
酸化重合(1TrLA/ai、30分)を行う。
(2) Capacitor element structure and winding shape (3) Electrolytic oxidative polymerization conditions Immersed in an electrolytic solution consisting of acetonitrile containing virol monomer 1 mol/41 and sodium paratoluenesulfonate 1 mol/j as a supporting electrolyte, and subjected to constant current oxidative polymerization. (1TrLA/ai, 30 minutes).

(4)逆電流印加条件 0.15M−アジピン酸アンモニウム水溶液中で逆電流
印加(0,1mA/j、10分)を行った後、直ちに再
化成(正電流印加)を行う。
(4) Reverse current application conditions After applying a reverse current (0.1 mA/j, 10 minutes) in a 0.15 M ammonium adipate aqueous solution, reconstitution (positive current application) is performed immediately.

従来例日 (1)化学酸化重合条件 実施例Aと同じ (2)コンデンサ素子構造 実施例Aと同じ (3)電解酸化重合条件 実施例Aと同じ (4)逆1!流は印加しない 表   1 上表から明らかなように、実施例Aに係るものは従来例
Bに係るものと比較して漏れ電流特性が著しく改善され
るとともに、ショート不良の大幅な改善効果がみられる
Conventional Example Day (1) Chemical oxidation polymerization conditions Same as Example A (2) Capacitor element structure Same as Example A (3) Electrolytic oxidation polymerization conditions Same as Example A (4) Reverse 1! No current is applied Table 1 As is clear from the above table, the leakage current characteristics of Example A are significantly improved compared to those of Conventional Example B, and a significant improvement effect on short-circuit defects is observed. It will be done.

なお、上記実施例では陽極箔としてアルミニウム箔を用
いたものを例示して説明したが、タンタル箔又はニオブ
箔などの弁作用金属箔を用いたものに適用できる。
Although the above embodiments have been described using aluminum foil as the anode foil, the present invention can also be applied to valve metal foils such as tantalum foil or niobium foil.

また、素子構造として上記実施例では巻回構造のものを
例示して説明したが、これら弁作用金属箔を巻回するこ
となく平板状にしたもの、あるいはこれらの弁作用金属
からなる粉末を焼結し焼結体としたものに適用できるこ
とは勿論である。
In addition, although the element structure was explained using a wound structure in the above embodiment, it is also possible to use a device in which these valve metal foils are made into a flat plate without being wound, or powders made of these valve metal foils are sintered. Of course, it can be applied to a compacted and sintered body.

[発明の効果] 本発明によれば、酸化皮膜欠陥部の高分子膜のみが絶縁
化されることにより、完全にしかも絶縁化による容量損
失もほとんどない状態で陽極金属と陰極層が絶縁化され
るため、初期の緒特性改善に大きく貢献すると同時・に
、ショート不良の大幅な改善効果により、 製品歩留が大幅に改善できる 固体電解コンデンサの製造方法を得ることができる。
[Effects of the Invention] According to the present invention, only the polymer film in the defective part of the oxide film is insulated, so that the anode metal and the cathode layer are completely insulated with almost no capacity loss due to insulation. Therefore, it is possible to obtain a manufacturing method for solid electrolytic capacitors that greatly contributes to the improvement of initial characteristics and at the same time can significantly improve the product yield due to the effect of greatly reducing short-circuit defects.

特 許 出 願 人 マルコン電子株式会社 日本力〜リット株式会社Special permission Out wish Man Marcon Electronics Co., Ltd. Nippon Power ~ Lit Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)弁作用金属に形成した酸化皮膜上に化学酸化重合
により化学重合膜を形成した後、この化学重合膜上に電
解酸化重合により電解重合膜を形成する固体電解コンデ
ンサの製造方法において、酸化皮膜上に化学重合膜を形
成した後、化成液中でコンデンサ素子に逆電圧を印加し
、続いて正電圧を印加することを特徴とする固体電解コ
ンデンサの製造方法。
(1) In a method for manufacturing a solid electrolytic capacitor, a chemically polymerized film is formed by chemical oxidative polymerization on an oxide film formed on a valve metal, and then an electrolytic polymerized film is formed on this chemically polymerized film by electrolytic oxidative polymerization. A method for manufacturing a solid electrolytic capacitor, which comprises forming a chemically polymerized film on a film, applying a reverse voltage to a capacitor element in a chemical solution, and then applying a positive voltage.
JP27611489A 1989-10-25 1989-10-25 Manufacture of solid electrolytic capacitor Pending JPH03139816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27611489A JPH03139816A (en) 1989-10-25 1989-10-25 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27611489A JPH03139816A (en) 1989-10-25 1989-10-25 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03139816A true JPH03139816A (en) 1991-06-14

Family

ID=17564991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27611489A Pending JPH03139816A (en) 1989-10-25 1989-10-25 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03139816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269070A (en) * 1999-03-19 2000-09-29 Matsushita Electric Ind Co Ltd Manufacturing of capacitor
WO2007004556A1 (en) * 2005-06-30 2007-01-11 Showa Denko K. K. Method for manufacturing solid electrolytic capacitor device
JP2008231512A (en) * 2007-03-20 2008-10-02 Sachiko Ono Aluminum substrate for etching, and aluminum electrode material for electrolytic capacitor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269070A (en) * 1999-03-19 2000-09-29 Matsushita Electric Ind Co Ltd Manufacturing of capacitor
WO2007004556A1 (en) * 2005-06-30 2007-01-11 Showa Denko K. K. Method for manufacturing solid electrolytic capacitor device
US7842103B2 (en) 2005-06-30 2010-11-30 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor device
JP2008231512A (en) * 2007-03-20 2008-10-02 Sachiko Ono Aluminum substrate for etching, and aluminum electrode material for electrolytic capacitor using the same

Similar Documents

Publication Publication Date Title
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2924310B2 (en) Manufacturing method of capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP2022144218A (en) Electrolytic capacitor and manufacturing method therefor
JPH0366810B2 (en)
JP2775762B2 (en) Solid electrolytic capacitors
JP2004128035A (en) Method of manufacturing solid-state electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture