JPH0883735A - Manufacture of capacitor - Google Patents

Manufacture of capacitor

Info

Publication number
JPH0883735A
JPH0883735A JP21596094A JP21596094A JPH0883735A JP H0883735 A JPH0883735 A JP H0883735A JP 21596094 A JP21596094 A JP 21596094A JP 21596094 A JP21596094 A JP 21596094A JP H0883735 A JPH0883735 A JP H0883735A
Authority
JP
Japan
Prior art keywords
valve metal
capacitor
anode valve
anode
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21596094A
Other languages
Japanese (ja)
Inventor
Toshikuni Kojima
利邦 小島
Koichi Yoshida
浩一 吉田
Yasuo Kudo
康夫 工藤
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21596094A priority Critical patent/JPH0883735A/en
Publication of JPH0883735A publication Critical patent/JPH0883735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE: To realize a capacitor which is small in leakage current by a method wherein a conductive high-molecular layer obtained by chemical oxidation polymerization is formed on a valve-action metal. CONSTITUTION: The corners of an anode valve metal 2 molded like a rectangular parallelepiped, a regular hexahedron, or a cylinder are chamfered or rounded, a dielectric film 5 is formed surrounding the anode valve metal 2 by anodization, and a conductive high-molecular layer 6 is formed thereon through chemical oxidation polymerization for the formation of a capacitor. The conductive high-molecular layer 6 is capable of being uniformly laminated on all the surface of the capacitor formed as mentioned above, so that the capacitor is small in leakage current and loss, and chemical oxidation polymerization processes can be lessened in number of times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子膜を固体電
解質として用いたコンデンサの製造方法に関するもので
あり、特に高周波特性、漏れ電流特性の優れた固体電解
コンデンサを提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitor using a conductive polymer film as a solid electrolyte, and particularly to a solid electrolytic capacitor having excellent high frequency characteristics and leakage current characteristics.

【0002】[0002]

【従来の技術】最近、電気機器のディジタル化にともな
って、そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求が高ま
っている。従来、高周波用のコンデンサとしてはプラス
チックフィルムコンデンサ、マイカコンデンサ、積層セ
ラミックコンデンサなどが用いられている。またその他
にアルミニウム乾式電解コンデンサやアルミニウムまた
はタンタル固体電解コンデンサなどがある。アルミニウ
ム乾式電解コンデンサでは、エッチングを施した陽、陰
極アルミニウム箔を紙のセパレータを介して巻取り、液
状の電解質を用いている。又、アルミニウムやタンタル
固体電解コンデンサでは前記アルミニウム乾式電解コン
デンサの特性改良のため電解質の固体化がなされてい
る。この固体電解質形成には硝酸マンガン液に陽極箔を
浸漬し、350℃前後の高温炉中にて熱分解し、二酸化
マンガン層を作る。このコンデンサの場合、電解質が固
体のために高温における電解液の揮散、低温域での凝固
から生ずる機能低下などの欠点がなく、液状電解質と比
べて良好な周波数特性、温度特性を示す。又、アルミ電
解コンデンサはタンタル電解コンデンサと同様誘電体と
なる酸化皮膜を非常に薄くできるために大容量を実現で
きる。 又、近年では7,7,8,8−テトラシアノキ
ノジメタン(TCNQ)塩等の有機半導体を固体電解質
として用いた固体電解コンデンサが開発されている。
(特開昭58−17609号公報)さらにピロール、フ
ランなどの重合性モノマーを電解重合させて導電性高分
子とし、これを固体電解質とする方法もある。(特開昭
60−244017号公報)
2. Description of the Related Art Recently, with the digitalization of electric equipment, the capacitors used therein have low impedance in the high frequency region, and there is an increasing demand for miniaturization and large capacity. Conventionally, plastic film capacitors, mica capacitors, laminated ceramic capacitors, etc. have been used as high frequency capacitors. In addition, there are aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. In the aluminum dry electrolytic capacitor, the positive and negative aluminum foils subjected to etching are wound around a paper separator and a liquid electrolyte is used. In the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum dry electrolytic capacitors. To form this solid electrolyte, the anode foil is dipped in a manganese nitrate solution and pyrolyzed in a high temperature furnace at about 350 ° C. to form a manganese dioxide layer. In the case of this capacitor, since the electrolyte is a solid, there are no drawbacks such as volatilization of the electrolytic solution at high temperature and deterioration of the function caused by solidification at low temperature, and the frequency characteristics and temperature characteristics are better than those of the liquid electrolyte. Further, the aluminum electrolytic capacitor can realize a large capacity because the oxide film serving as a dielectric can be made very thin like the tantalum electrolytic capacitor. Further, in recent years, solid electrolytic capacitors using an organic semiconductor such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) salt as a solid electrolyte have been developed.
(JP-A-58-17609) Further, there is a method in which a polymerizable monomer such as pyrrole or furan is electrolytically polymerized to form a conductive polymer, which is used as a solid electrolyte. (JP-A-60-244017)

【0003】[0003]

【発明が解決しようとする課題】このように種々のコン
デンサが使用されているが、フィルムコンデンサおよび
マイカコンデンサでは形状が大きくなってしまうために
大容量化が難しく、また積層セラミックコンデンサは小
型大容量の要望から生まれたものであるが価格が非常に
高くなるということと、温度特性が悪いことなどの欠点
を有している。また、アルミ電解コンデンサは酸化皮膜
の損傷が起き易いために酸化皮膜と陰極の間に電解質を
施し随時損傷を修復する必要がある。この電解質として
液体を使用しているものは、電解質の液漏れやイオン伝
導性などの理由から経時的に静電容量の減少や損失の増
大をもたらす事と高周波域、低温領域での損失が大きい
などの欠点を有している。次に固体電解質は、高温で数
回熱分解することによる酸化皮膜の損傷、及び二酸化マ
ンガンの比抵抗が高いことなどの理由から高周波域での
損失は小さいとは言えない。又、TCNQ塩などの有機
半導体を用いた固体電解コンデンサは、二酸化マンガン
を用いたものに比して優れた高周波特性を示すが、有機
半導体を塗布する際の比抵抗の上昇、陽極箔への接着性
が弱いことなどが原因で理想的な特性を示すとは言えな
い。さらに導電性高分子薄膜を固体電解質とする場合、
周波数特性,温度特性,寿命特性などは優れているが、
固体電解質とする導電性高分子薄膜を陽極弁金属上に形
成させるために、重合性モノマ−溶液と酸化剤溶液に陽
極弁金属を交互に浸漬して化学酸化重合を行うため、電
極形状の平面部に比べ鋭角な角部で含浸した溶液の拡散
が起きやすい。このことから、平面部に十分に固体電解
質が形成されていても角部付近はまだ未形成のままとな
るので繰り返し処理数が多くなり、そのため平面部の膜
が厚くなりすぎて損失の大きな固体電解コンデンサがで
きやすいという課題を有している。さらに酸化剤溶液の
pHは強酸性域であるので誘電体皮膜が劣化するという
課題がある。
Various types of capacitors are used in this way, but it is difficult to increase the capacity of film capacitors and mica capacitors due to their large size, and monolithic ceramic capacitors are small and large in capacity. However, it has drawbacks such as an extremely high price and poor temperature characteristics. Further, since the aluminum electrolytic capacitor is apt to be damaged by the oxide film, it is necessary to apply an electrolyte between the oxide film and the cathode to repair the damage at any time. The one that uses a liquid as this electrolyte causes a decrease in capacitance and an increase in loss over time due to electrolyte leakage and ionic conductivity, and has a large loss in the high frequency region and low temperature region. It has drawbacks such as Next, the solid electrolyte cannot be said to have a small loss in the high frequency region because of damage to the oxide film due to thermal decomposition several times at high temperature and high resistivity of manganese dioxide. Also, solid electrolytic capacitors using organic semiconductors such as TCNQ salt show superior high frequency characteristics compared to those using manganese dioxide, but increase in resistivity when applying organic semiconductors, It cannot be said that it exhibits ideal characteristics due to weak adhesion. Furthermore, when using a conductive polymer thin film as a solid electrolyte,
It has excellent frequency characteristics, temperature characteristics, life characteristics, etc.
In order to form a conductive polymer thin film as a solid electrolyte on the anode valve metal, the anode valve metal is alternately immersed in a polymerizable monomer solution and an oxidizer solution to perform chemical oxidative polymerization. The solution impregnated at the sharp corners is more likely to diffuse than the corners. From this, even if the solid electrolyte is sufficiently formed on the flat surface, the number of repetitive treatments increases because the vicinity of the corner is still unformed, and therefore the film on the flat surface becomes too thick and the solid loss is large. There is a problem that an electrolytic capacitor is easily formed. Furthermore, since the pH of the oxidant solution is in the strongly acidic range, there is a problem that the dielectric film deteriorates.

【0004】[0004]

【課題を解決するための手段】本発明によるコンデンサ
の製造方法は、第1に少なくとも一つの角部を有する立
体である陽極弁金属の角部を面取りし、次に前記陽極弁
金属の表面に陽極酸化により誘電体皮膜を形成し、さら
に複素五員環化合物溶液と酸化剤溶液を用いて化学酸化
重合を行うことにより前記誘電体皮膜上に化学酸化重合
導電性高分子層を積層するものである。
According to the method of manufacturing a capacitor of the present invention, first, a corner of an anode valve metal, which is a solid having at least one corner, is chamfered, and then the surface of the anode valve metal is cut. A dielectric film is formed by anodic oxidation, and a chemical oxidative polymerization conductive polymer layer is laminated on the dielectric film by further performing chemical oxidative polymerization using a solution of a heterocyclic five-membered ring compound and an oxidant solution. is there.

【0005】第2に、陽極弁金属の表面に陽極酸化によ
り誘電体皮膜を形成し、次に複素五員環化合物の溶液及
び蒸気と酸化剤溶液を用いて化学酸化重合を行うことに
より前記誘電体皮膜上に化学酸化重合導電性高分子層を
積層するものである。
Secondly, a dielectric film is formed on the surface of the anode valve metal by anodic oxidation, and then chemical oxidative polymerization is carried out by using a solution of a hetero five-membered ring compound and steam and an oxidant solution, and the dielectric The chemical oxidation polymerization conductive polymer layer is laminated on the body film.

【0006】第3に、陽極弁金属の表面に陽極酸化によ
り誘電体皮膜を形成し、次に前記陽極弁金属を複素五員
環化合物溶液に浸漬し、その後に前記陽極弁金属と導電
性材料からなる対極を酸化剤溶液に浸漬して前記陽極弁
材料を陽極として前記陽極弁金属と前記対極の間に電圧
を加えることにより前記誘電体皮膜の修復を行うととも
に前記誘電体皮膜上に化学酸化重合導電性高分子層を積
層するものである。
Thirdly, a dielectric film is formed on the surface of the anode valve metal by anodic oxidation, and then the anode valve metal is dipped in a solution of a hetero five-membered ring compound, and then the anode valve metal and a conductive material. The counter electrode consisting of the above is immersed in an oxidant solution, and the anode valve material is used as an anode to apply a voltage between the anode valve metal and the counter electrode to repair the dielectric film and to chemically oxidize the dielectric film on the dielectric film. The polymerized conductive polymer layer is laminated.

【0007】[0007]

【作用】この製造方法によって、第1にコンデンサの電
極形状は鋭角な部分を持たないので表面全体に同時に均
一な導電性高分子を積層することができ、化学酸化重合
の処理回数が少なく損失の小さなコンデンサを得ること
ができる。第2に、化学酸化重合をモノマ−の溶液中と
蒸気中の組み合わせで行うので、溶液中で重合すること
で細孔の奥まで充填することができ、蒸気中で重合する
ことで表面に均一に積層することができるので化学酸化
重合の処理回数が少なく損失の小さなコンデンサを得る
ことができる。第3に、さらに酸化剤溶液浸漬中に所定
の電圧を印加することで化成反応が起こり誘電体皮膜の
修復と同時に導電性高分子を積層することができ、化学
酸化重合の処理回数が少なく損失の小さなコンデンサを
得ることができる。
By this manufacturing method, firstly, the electrode shape of the capacitor does not have an acute angle portion, so that a uniform conductive polymer can be laminated on the entire surface at the same time, and the number of times of chemical oxidative polymerization is small and the loss is low. You can get a small capacitor. Secondly, since the chemical oxidative polymerization is carried out in a combination of a monomer solution and a vapor, it is possible to fill the inside of the pores by polymerizing in a solution, and by polymerizing in the vapor, the surface is evenly distributed. It is possible to obtain a capacitor with a small loss because the number of times of chemical oxidative polymerization is small. Thirdly, a chemical conversion reaction occurs by applying a predetermined voltage during the immersion in the oxidant solution, and the conductive polymer can be laminated simultaneously with the repair of the dielectric film, and the number of chemical oxidative polymerization treatments is small, resulting in loss. You can get a small capacitor.

【0008】[0008]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について、図1
を参照しながら説明する。図1は本発明の第1の実施例
で製造したコンデンサの断面図である。図1において、
1は陽極リードであり、2はコンデンサの陽極となる陽
極弁金属であり、3は陽極弁金属3の角部を面取りした
部分の斜度であり、4は陽極弁金属3の角部を面取りし
た部分の面取長であり、5はコンデンサの誘電体層とな
る誘電体皮膜であり、6は誘電体皮膜の劣化を修正する
電解質層となる導電性高分子層であり、7は導電性高分
子層5と銀ペイント膜との密着性を高めるカーボンペイ
ント膜であり、8はコンデンサの陰極となる銀ペイント
膜であり、9は陰極リードである。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIG.
Will be described with reference to. FIG. 1 is a sectional view of a capacitor manufactured in the first embodiment of the present invention. In FIG.
Reference numeral 1 is an anode lead, 2 is an anode valve metal serving as an anode of a capacitor, 3 is a slope of a portion where the corner of the anode valve metal 3 is chamfered, 4 is chamfered of a corner of the anode valve metal 3. Is a chamfered length of a portion, 5 is a dielectric film that serves as a dielectric layer of a capacitor, 6 is a conductive polymer layer that serves as an electrolyte layer that corrects deterioration of the dielectric film, and 7 is a conductive layer. A carbon paint film that enhances the adhesion between the polymer layer 5 and the silver paint film, 8 is a silver paint film that serves as the capacitor cathode, and 9 is a cathode lead.

【0009】まず、陽極リード1を付けた直方体のタン
タル焼結体である陽極弁金属2(サイズ(mm):長さ2,
高さ1.5,幅1)の各角部を斜度3が50°、面取長
4が0.2mmとなるように面取りして、その陽極弁金属
2を0.05%燐酸水溶液で約85℃、60分間、印加
電圧33.9Vの条件で陽極酸化して誘電体皮膜5を形
成した。この素子をピロールが0.75mol/l溶け
た水溶液に2分間浸漬し、続いて硫酸第2鉄0.1mo
l/lが溶けた酸化剤水溶液に10分間浸漬した。この
操作を数回繰り返し、素子全体が化学酸化重合による導
電性高分子層6(ポリピロール)で覆われたと目視で判
断した時に、この操作を終了した。次にカーボンペイン
ト膜7、続いて銀ペイント膜8を通常の方法で形成し、
銀ペイント膜8上に陰極リード9を設け、エージングを
印加電圧12.5Vで行い、樹脂で外装して固体電解コ
ンデンサを得た。
First, an anode valve metal 2 (size (mm): length 2, which is a rectangular parallelepiped tantalum sintered body with an anode lead 1 attached thereto).
Chamfer each corner of height 1.5, width 1) so that the slope 3 is 50 ° and the chamfer length 4 is 0.2 mm, and the anode valve metal 2 is treated with 0.05% phosphoric acid aqueous solution. Dielectric coating 5 was formed by anodic oxidation under conditions of an applied voltage of 33.9 V at about 85 ° C. for 60 minutes. This device was immersed in an aqueous solution in which pyrrole was dissolved in 0.75 mol / l for 2 minutes, and then ferric sulfate 0.1mo
It was immersed for 10 minutes in an oxidizing agent aqueous solution in which 1 / l was dissolved. This operation was repeated several times, and when it was visually judged that the entire element was covered with the conductive polymer layer 6 (polypyrrole) by chemical oxidative polymerization, this operation was terminated. Next, a carbon paint film 7 and then a silver paint film 8 are formed by a usual method,
A cathode lead 9 was provided on the silver paint film 8, aging was performed at an applied voltage of 12.5 V, and the package was covered with a resin to obtain a solid electrolytic capacitor.

【0010】以下本発明の第1の実施例で製造したコン
デンサの動作について、図2を参照しながら説明する。
図2は本発明の第1の実施例で製造したコンデンサの完
成図である。図2において、21は陽極リードであり、
22は陰極リードである。陽極リード21にプラス、陰
極リード22にマイナスの電圧を印加することにより、
コンデンサとして動作する。
The operation of the capacitor manufactured in the first embodiment of the present invention will be described below with reference to FIG.
FIG. 2 is a completed view of the capacitor manufactured in the first embodiment of the present invention. In FIG. 2, 21 is an anode lead,
22 is a cathode lead. By applying a positive voltage to the anode lead 21 and a negative voltage to the cathode lead 22,
Operates as a capacitor.

【0011】本実施例のコンデンサの製造方法で製造し
た固体電解コンデンサの特性を(表1)の実施例1−1
に示す。また、比較例1として直方体で面取りをしない
陽極弁金属(タンタル焼結体、長さ2,高さ1.5,幅
1(mm))を用いた固体電解コンデンサの特性を(表1)
に示す。
The characteristics of the solid electrolytic capacitor manufactured by the method for manufacturing a capacitor according to this embodiment are shown in Table 1-1 as in Example 1-1.
Shown in As Comparative Example 1, the characteristics of a solid electrolytic capacitor using a rectangular parallelepiped non-chamfered anode valve metal (tantalum sintered body, length 2, height 1.5, width 1 (mm)) are shown (Table 1).
Shown in

【0012】これら(表1)から明らかなように、本実
施例による固体電解コンデンサにおいて、ショート不良
率が低く、漏れ電流が小さく、さらに化学酸化重合の繰
り返し数が少なくて済むという点で優れた効果が得られ
た。
As is clear from these (Table 1), the solid electrolytic capacitor according to this example is excellent in that the short circuit defect rate is low, the leakage current is small, and the number of times of chemical oxidative polymerization is small. The effect was obtained.

【0013】次に、直方体の各角部を斜度3が50°、
面取長4が1.5mmとなるように面取りした陽極弁金属
2(タンタル焼結体、長さ4,高さ3,幅2.5(mm))
を用いた場合、及び各角部を斜度3が40°面取長4が
0.2mmとなるように面取りした陽極弁金属2(タンタ
ル焼結体、長さ2,高さ1.5,幅1(mm))を用いた場
合の固体電解コンデンサの特性を、それぞれ(表1)の
実施例1−2及び実施例1−3に示す。また、比較例2
として各角部を斜度50°面取長0.1mmで面取りした
陽極弁金属(タンタル焼結体、長さ2,高さ1.5,幅
1(mm))を用いたもの、比較例3として各角部を斜度5
5°面取長0.2mmで面取りした陽極弁金属(タンタル
焼結体、長さ2,高さ1.5,幅1(mm))を用いたも
の、比較例4として角部分を斜度50°面取長1.6mm
で面取りした陽極弁金属を用いたもの、及び比較例5と
して角部分を斜度35°長さ0.2mmで面取りした陽極
弁金属を用いた固体電解コンデンサの特性を(表1)に
示す。
Next, at each corner of the rectangular parallelepiped, the inclination 3 is 50 °,
Anode valve metal 2 (tantalum sintered body, length 4, height 3, width 2.5 (mm)) chamfered so that the chamfer length 4 becomes 1.5 mm
Is used, and each corner is chamfered so that the inclination 3 is 40 ° and the chamfering length 4 is 0.2 mm (tantalum sintered body, length 2, height 1.5, The characteristics of the solid electrolytic capacitor when a width of 1 (mm) is used are shown in Example 1-2 and Example 1-3 of Table 1, respectively. In addition, Comparative Example 2
As a comparative example, an anode valve metal (tantalum sintered body, length 2, height 1.5, width 1 (mm)) whose corners are chamfered with a slope of 50 ° and a chamfer length of 0.1 mm is used. 3 and each corner has a slope of 5
A 5 ° chamfered 0.2 mm chamfered anode valve metal (tantalum sintered body, length 2, height 1.5, width 1 (mm)) was used. 50 ° chamfer length 1.6 mm
The characteristics of the solid electrolytic capacitor using the anode valve metal chamfered in Example 1 and the solid electrolytic capacitor using the anode valve metal chamfered at the corner portion of 35 degrees and 0.2 mm in length as Comparative Example 5 are shown in Table 1.

【0014】これら(表1)から明らかなように、実施
例1−2及び実施例1−3の固体電解コンデンサにおい
て、ショート不良率が低く、漏れ電流が小さく、さらに
化学酸化重合の繰り返し数が少なくて済むという点で優
れた効果が得られた。
As is clear from these (Table 1), in the solid electrolytic capacitors of Examples 1-2 and 1-3, the short-circuit defect rate was low, the leakage current was small, and the number of chemical oxidative polymerization was repeated. An excellent effect was obtained in that it can be reduced.

【0015】次に、直方体の陽極弁金属2(タンタル焼
結体、長さ2,高さ1.5,幅1(mm))の角部分を曲率
半径R0.05mmの曲面で面取りした場合、及び直方体
の陽極弁金属2(タンタル焼結体、長さ4,高さ3,幅
2.5(mm))の各角部を曲率半径R1mmの曲面で面取り
した場合の固体電解コンデンサの特性をそれぞれ(表
1)の実施例1−4及び実施例1−5に示す。また、比
較例6として角部分をR0.04mmの丸みを持たせた陽
極弁金属を用いたもの、及び比較例7として角部分をR
1.1mmの丸みを持たせた陽極弁金属を用いて作製した
固体電解コンデンサの特性を(表1)に示している。
Next, when chamfering a corner portion of a rectangular parallelepiped anode valve metal 2 (tantalum sintered body, length 2, height 1.5, width 1 (mm)) with a curved surface having a radius of curvature R0.05 mm, And the characteristics of the solid electrolytic capacitor when each corner of a rectangular parallelepiped anode valve metal 2 (tantalum sintered body, length 4, height 3, width 2.5 (mm)) is chamfered with a curved surface with a radius of curvature R1 mm. These are shown in Examples 1-4 and 1-5 of (Table 1), respectively. Further, as Comparative Example 6, an anode valve metal having a rounded corner of R 0.04 mm was used, and as Comparative Example 7, the corner was R.
The characteristics of the solid electrolytic capacitor produced by using the anode valve metal having a roundness of 1.1 mm are shown in (Table 1).

【0016】これら(表1)から明らかなように実施例
1−4及び実施例1−5の固体電解コンデンサにおい
て、ショート不良率が低く、漏れ電流が小さく、さらに
化学酸化重合の繰り返し数が少なくて済むという点で優
れた効果が得られた。
As is clear from these (Table 1), in the solid electrolytic capacitors of Examples 1-4 and 1-5, the short-circuit failure rate was low, the leakage current was low, and the number of repetitions of chemical oxidative polymerization was low. An excellent effect was obtained in that it was completed.

【0017】さらに、円筒形に成型した陽極弁金属2
(タンタル焼結体、1φ1H)の角部分を斜度3が45
°面取長4が0.2mmとなるように面取りをした場合、
及び曲率半径R0.05mmの曲面で面取りした場合の固
体電解コンデンサの特性をそれぞれ(表1)の実施例1
−6及び実施例1−7に示す。また、比較例8として円
筒形陽極弁金属(タンタル焼結体、1φ1H)を用いて
面取りしない場合の特性を(表1)に示す。
Furthermore, the anode valve metal 2 formed into a cylindrical shape
(Tantalum sintered body, 1φ1H) has a slope of 3
° When chamfering so that the chamfer length 4 becomes 0.2 mm,
And the characteristics of the solid electrolytic capacitor when chamfered with a curved surface having a radius of curvature R0.05 mm are shown in Table 1 of Example 1 respectively.
-6 and Example 1-7. Further, as Comparative Example 8, the characteristics when a cylindrical anode valve metal (tantalum sintered body, 1φ1H) is not chamfered are shown in (Table 1).

【0018】これら(表1)から明らかなように実施例
1−6及び実施例1−7の固体電解コンデンサにおい
て、ショート不良率が低く、漏れ電流が小さく、さらに
化学酸化重合の繰り返し数が少なくて済むという点で優
れた効果が得られた。
As is clear from these (Table 1), in the solid electrolytic capacitors of Examples 1-6 and 1-7, the short-circuit defect rate was low, the leakage current was low, and the number of repetitions of chemical oxidative polymerization was low. An excellent effect was obtained in that it was completed.

【0019】なお、陽極弁金属の例としてタンタルを示
したが、これ以外にアルミニウムなどの金属を使用して
もよい。
Although tantalum is shown as an example of the anode valve metal, other metals such as aluminum may be used.

【0020】また、モノマ−の例としてピロ−ルを示し
たが、これ以外にチオフェン、又はフランなどの複素五
員環化合物を使用してもよい。
Although pyrrole was shown as an example of a monomer, a hetero five-membered ring compound such as thiophene or furan may be used in addition to this.

【0021】また、酸化剤の例として、硫酸第2鉄から
なる水溶液を示したが、重合性モノマ−を酸化させるも
のであれば、例えば過酸化水素水、過硫酸アンモニウ
ム、あるいはベンゼンスルホン酸鉄のような酸化剤であ
ってもよい。
Although an aqueous solution of ferric sulfate was shown as an example of the oxidizing agent, any aqueous solution of ferric sulfate, such as hydrogen peroxide solution, ammonium persulfate, or iron benzenesulfonate, can be used as long as it can oxidize the polymerizable monomer. Such an oxidant may be used.

【0022】また、カーボンペイント膜6は導電性高分
子層5と銀ペイント膜7との密着性を高めるものであ
り、導電性高分子層5と銀ペイント膜7との密着性が高
い場合は無くてもよい。
The carbon paint film 6 enhances the adhesion between the conductive polymer layer 5 and the silver paint film 7, and when the adhesion between the conductive polymer layer 5 and the silver paint film 7 is high. You don't have to.

【0023】(実施例2)以下本発明の第2の実施例に
ついて、図3を参照しながら説明する。図3は本発明の
第2の実施例で製造したコンデンサの断面図である。図
3において、31は陽極リードであり、32はコンデン
サの陽極となる陽極弁金属であり、33はコンデンサの
誘電体層となる誘電体皮膜であり、34は誘電体皮膜の
劣化を修復する電解質層となる導電性高分子層であり、
35は導電性高分子層4と銀ペイント膜との密着性を高
めるカーボンペイント膜であり、36はコンデンサの陰
極となる銀ペイント膜であり、37は陰極リードであ
る。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a sectional view of a capacitor manufactured in the second embodiment of the present invention. In FIG. 3, 31 is an anode lead, 32 is an anode valve metal that serves as a capacitor anode, 33 is a dielectric film that serves as a capacitor dielectric layer, and 34 is an electrolyte that repairs deterioration of the dielectric film. It is a conductive polymer layer to be a layer,
Reference numeral 35 is a carbon paint film that enhances the adhesion between the conductive polymer layer 4 and the silver paint film, 36 is a silver paint film that serves as the cathode of the capacitor, and 37 is a cathode lead.

【0024】まず、陽極リード31を付けた直方体のタ
ンタル焼結体である陽極弁金属32(サイズ(mm):長さ
2,高さ1.5,幅1(mm))を0.05%燐酸水溶液で
約85℃、60分間、印加電圧33.9Vの条件で陽極
酸化して誘電体皮膜33を形成した。この素子をピロー
ルが0.75mol/l溶けた水溶液に2分間浸漬し、
続いて硫酸第2鉄0.1mol/lが溶けた酸化剤水溶
液に10分間浸漬した。この操作を5回繰り返した後、
水洗及び乾燥した。次に前記酸化剤溶液に再度浸漬し、
続いてピロール蒸気に曝し素子全体に化学酸化重合によ
る導電性高分子層34を形成した。次にカーボンペイン
ト膜35、続いて銀ペイント膜36を通常の方法で形成
し、銀ペイント膜36上に陰極リード37を設け、エー
ジングを印加電圧12.5Vで行い、樹脂で外装して固
体電解コンデンサを得た。
First, 0.05% of an anode valve metal 32 (size (mm): length 2, height 1.5, width 1 (mm)), which is a rectangular parallelepiped tantalum sintered body with the anode lead 31 attached, is used. The dielectric film 33 was formed by anodic oxidation with a phosphoric acid aqueous solution at about 85 ° C. for 60 minutes under an applied voltage of 33.9V. This device was immersed in an aqueous solution in which pyrrole was dissolved at 0.75 mol / l for 2 minutes,
Then, it was immersed for 10 minutes in an oxidizing agent aqueous solution in which ferric sulfate 0.1 mol / l was dissolved. After repeating this operation 5 times,
It was washed with water and dried. Then, reimmerse in the oxidant solution,
Subsequently, the conductive polymer layer 34 was formed by chemical oxidative polymerization over the entire element by exposing it to pyrrole vapor. Next, a carbon paint film 35 and then a silver paint film 36 are formed by a usual method, a cathode lead 37 is provided on the silver paint film 36, and aging is performed at an applied voltage of 12.5 V. I got a capacitor.

【0025】本実施例のコンデンサの製造方法で製造し
た固体電解コンデンサの特性を実施例2として(表1)
に示す。これら(表1)から明らかなように、本実施例
による固体電解コンデンサは、ショート不良率が低く漏
れ電流が小さく、化学酸化重合の繰り返し数が極めて少
なくて済むという点で優れた効果が得られた。
The characteristics of the solid electrolytic capacitor manufactured by the method for manufacturing a capacitor of this example are shown as Example 2 (Table 1).
Shown in As is clear from these (Table 1), the solid electrolytic capacitor according to this example has an excellent effect in that the short circuit defect rate is low, the leakage current is small, and the number of times of chemical oxidative polymerization is extremely small. It was

【0026】なお、陽極弁金属の例としてタンタルを示
したが、これ以外にアルミニウムなどの金属を使用して
もよい。
Although tantalum is shown as an example of the anode valve metal, other metals such as aluminum may be used.

【0027】また、モノマ−の例としてピロ−ルを示し
たが、これ以外にチオフェン、又はフランなどの複素五
員環化合物を使用してもよい。
Although pyrrole was shown as an example of a monomer, a hetero five-membered ring compound such as thiophene or furan may be used in addition to this.

【0028】また、酸化剤の例として、硫酸第2鉄から
なる水溶液を示したが、重合性モノマ−を酸化させるも
のであれば、例えば過酸化水素水、過硫酸アンモニウ
ム、あるいはベンゼンスルホン酸鉄のような酸化剤であ
ってもよい。
Although an aqueous solution of ferric sulfate was shown as an example of the oxidizing agent, any aqueous solution of ferric sulfate, such as hydrogen peroxide solution, ammonium persulfate, or iron benzenesulfonate, can be used as long as it can oxidize the polymerizable monomer. Such an oxidant may be used.

【0029】また、カーボンペイント膜6は導電性高分
子層5と銀ペイント膜7との密着性を高めるものであ
り、導電性高分子層5と銀ペイント膜7との密着性が高
い場合は無くてもよい。
The carbon paint film 6 enhances the adhesion between the conductive polymer layer 5 and the silver paint film 7, and when the adhesion between the conductive polymer layer 5 and the silver paint film 7 is high. You don't have to.

【0030】また、本実施例は第1の実施例と組合わせ
ても、効果があることはいうまでもない。
It goes without saying that this embodiment is effective even if it is combined with the first embodiment.

【0031】(実施例3)以下本発明の第3の実施例に
ついて図3を参照しながら説明する。図3の説明は実施
例2と同様なので省略する。まず、陽極リード31を付
けた直方体のタンタル焼結体である陽極弁金属32(サ
イズ(mm):長さ2,高さ1.5,幅1(mm))を0.05
%燐酸水溶液で約85℃、60分間、印加電圧33.9
Vの条件で陽極酸化して誘電体皮膜33を形成した。こ
の素子をピロールが0.75mol/l溶けた水溶液に
2分間浸漬し、続いて硫酸第2鉄0.1mol/lが溶
けた酸化剤水溶液に10分間浸漬した。前記酸化剤水溶
液に浸漬している間、陽極弁金属32とは別に対極を設
けて陽極弁金属32を陽極として電圧27.1V(化成
電圧×0.8)を印加して、陽極酸化による誘電体皮膜
33の修復と化学酸化重合を同時に行った。この操作を
数回繰り返し、素子全体が化学酸化重合による導電性高
分子層34(ポリピロール)で覆われたと目視で判断し
た時に、この操作を終了した。次にカーボンペイント膜
35、続いて銀ペイント膜36を通常の方法で形成し、
銀ペイント膜36上に陰極リード37を設け、エージン
グを印加電圧12.5Vで行い、樹脂で外装して固体電
解コンデンサを得た。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to FIG. Since the description of FIG. 3 is the same as that of the second embodiment, the description thereof is omitted. First, an anode valve metal 32 (size (mm): length 2, height 1.5, width 1 (mm)), which is a rectangular parallelepiped tantalum sintered body to which the anode lead 31 is attached, is set to 0.05.
% Phosphoric acid aqueous solution at about 85 ° C. for 60 minutes, applied voltage 33.9
Anodization was performed under the condition of V to form the dielectric film 33. This device was immersed for 2 minutes in an aqueous solution in which pyrrole was dissolved in 0.75 mol / l, and then for 10 minutes in an oxidant aqueous solution in which 0.1 mol / l ferric sulfate was dissolved. While being immersed in the oxidant aqueous solution, a counter electrode was provided separately from the anode valve metal 32, and a voltage of 27.1 V (formation voltage × 0.8) was applied with the anode valve metal 32 as an anode to apply dielectric by anodic oxidation. The repair of the body film 33 and the chemical oxidative polymerization were performed at the same time. This operation was repeated several times, and when it was visually judged that the entire element was covered with the conductive polymer layer 34 (polypyrrole) by chemical oxidative polymerization, this operation was terminated. Next, a carbon paint film 35 and then a silver paint film 36 are formed by a normal method,
A cathode lead 37 was provided on the silver paint film 36, aging was performed at an applied voltage of 12.5 V, and the package was covered with a resin to obtain a solid electrolytic capacitor.

【0032】本実施例のコンデンサの製造方法で製造し
た固体電解コンデンサの特性を実施例3として(表1)
に示す。これら(表1)から明らかなように、本実施例
による固体電解コンデンサは、ショート不良率が低く漏
れ電流が小さく、化学酸化重合の繰り返し数が少なくて
済むという点で優れた効果が得られた。
The characteristics of the solid electrolytic capacitor manufactured by the method for manufacturing a capacitor of this example are shown as Example 3 (Table 1).
Shown in As is clear from these (Table 1), the solid electrolytic capacitor according to this example has an excellent effect in that the short-circuit defect rate is low, the leakage current is small, and the number of times of chemical oxidative polymerization is small. .

【0033】なお、陽極弁金属の例としてタンタルを示
したが、これ以外にアルミニウムなどの金属を使用して
もよい。
Although tantalum is shown as an example of the anode valve metal, other metals such as aluminum may be used.

【0034】また、モノマ−の例としてピロ−ルを示し
たが、これ以外にチオフェン、又はフランなどの複素五
員環化合物を使用してもよい。
Although pyrrole is shown as an example of a monomer, a hetero five-membered ring compound such as thiophene or furan may be used instead.

【0035】また、酸化剤の例として、硫酸第2鉄から
なる水溶液を示したが、重合性モノマ−を酸化させるも
のであれば、例えば過酸化水素水、過硫酸アンモニウ
ム、あるいはベンゼンスルホン酸鉄のような酸化剤であ
ってもよい。
Although an aqueous solution of ferric sulfate is shown as an example of the oxidizing agent, any oxidizing agent such as hydrogen peroxide solution, ammonium persulfate, or iron benzenesulfonate can be used as long as it can oxidize the polymerizable monomer. Such an oxidant may be used.

【0036】また、カーボンペイント膜6は導電性高分
子層5と銀ペイント膜7との密着性を高めるものであ
り、導電性高分子層5と銀ペイント膜7との密着性が高
い場合は無くてもよい。
The carbon paint film 6 enhances the adhesion between the conductive polymer layer 5 and the silver paint film 7, and when the adhesion between the conductive polymer layer 5 and the silver paint film 7 is high. You don't have to.

【0037】また、本実施例では化学酸化重合中の電圧
の例として化成電圧の80%を示したが、それ以外に化
成電圧の100%から40%の範囲の電圧印加も可能で
あり、また電流印加も可能である。
In this embodiment, 80% of the formation voltage is shown as an example of the voltage during the chemical oxidative polymerization, but other than that, it is possible to apply a voltage in the range of 100% to 40% of the formation voltage. It is also possible to apply a current.

【0038】また、本実施例は第1あるいは第2の実施
例と組合わせても、効果があることはいうまでもない。
It goes without saying that this embodiment is effective even if it is combined with the first or second embodiment.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】以上のように本発明は、第1に少なくと
も一つの角部を有する立体の陽極弁金属の角部を面取り
して用いるので、モノマ−溶液と酸化剤溶液に交互に浸
漬しても溶液中での角部におけるモノマ−あるいは酸化
剤の拡散を抑制することができ、ショート不良率が低く
漏れ電流が小さいコンデンサを、少ない化学酸化重合処
理回数で製造できるコンデンサの製造方法を実現できる
ものである。
As described above, according to the present invention, first, since the corners of the three-dimensional anode valve metal having at least one corner are chamfered and used, they are alternately immersed in the monomer solution and the oxidant solution. Even though it is possible to suppress the diffusion of monomers or oxidants at the corners in the solution, a capacitor manufacturing method that can manufacture capacitors with a low short circuit defect rate and small leakage current with a small number of chemical oxidative polymerization treatments is realized. It is possible.

【0041】第2に、化学酸化重合を溶液中と蒸気中の
組み合わせで行うので、溶液中で重合することで導電性
高分子層を細孔の奥まで充填し、蒸気中で重合すること
で導電性高分子層を表面に均一に積層することができ、
ショート不良率が低く漏れ電流が小さいコンデンサを、
少ない化学酸化重合処理回数で製造できるコンデンサの
製造方法を実現できるものである。
Secondly, since the chemical oxidative polymerization is carried out in a combination of a solution and a vapor, the conductive polymer layer is filled up to the back of the pores by the polymerization in the solution, and the polymerization is performed in the vapor. A conductive polymer layer can be uniformly laminated on the surface,
A capacitor with a low short circuit defect rate and a small leakage current,
It is possible to realize a method of manufacturing a capacitor that can be manufactured with a small number of chemical oxidative polymerization treatments.

【0042】第3に、化学酸化重合中に陽極弁金属とは
別に対極を設けて陽極弁金属を陽極として電圧又は電流
を印加するので誘電体皮膜の修復と化学酸化重合を同時
に行うことができ、ショート不良率が低く漏れ電流が小
さいコンデンサを少ない化学酸化重合処理回数で製造で
きる、コンデンサの製造方法を実現できるものである。
Thirdly, since a counter electrode is provided separately from the anode valve metal during the chemical oxidative polymerization and a voltage or current is applied using the anode valve metal as an anode, repair of the dielectric film and chemical oxidative polymerization can be carried out at the same time. Thus, it is possible to realize a capacitor manufacturing method capable of manufacturing a capacitor having a low short circuit defect rate and a small leakage current with a small number of chemical oxidation polymerization treatments.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における製造方法で製造
したコンデンサの構造断面図
FIG. 1 is a structural sectional view of a capacitor manufactured by a manufacturing method according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における製造方法で製造
したコンデンサの完成図
FIG. 2 is a completed view of a capacitor manufactured by the manufacturing method according to the first embodiment of the present invention.

【図3】本発明の第2及び3の実施例における製造方法
で製造したコンデンサの構造断面図
FIG. 3 is a structural cross-sectional view of a capacitor manufactured by a manufacturing method according to second and third embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1、21、31 陽極リード 2、32 陽極弁金属 3 斜度 4 面取長 5、33 誘電体皮膜 6、34 導電性高分子層 7、35 カーボンペイント膜 8、36 銀ペイント膜 9、22、37 陰極リード 1, 21, 31 Anode lead 2, 32 Anode valve metal 3 Gradient 4 Chamfer length 5, 33 Dielectric film 6, 34 Conductive polymer layer 7, 35 Carbon paint film 8, 36 Silver paint film 9, 22, 37 Cathode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 睦明 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsumi Murakami 3-10-1 Higashisanda, Tama-ku, Kawasaki-shi, Kanagawa Matsushita Giken Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの角部を有する立体であ
る陽極弁金属の角部を面取りし、次に前記陽極弁金属の
表面に陽極酸化により誘電体皮膜を形成し、さらに複素
五員環化合物溶液と酸化剤溶液を用いて化学酸化重合を
行うことにより前記誘電体皮膜上に化学酸化重合導電性
高分子層を積層することを特徴とするコンデンサの製造
方法。
1. A chamfered corner of an anode valve metal that is a solid having at least one corner, and then a dielectric film is formed on the surface of the anode valve metal by anodic oxidation. A method for producing a capacitor, characterized in that a chemical oxidative polymerization conductive polymer layer is laminated on the dielectric film by performing chemical oxidative polymerization using a solution and an oxidant solution.
【請求項2】 面取りした面が、斜度が40°〜50°
で長さが0.2mm〜1.5mmの平面である請求項1記載
のコンデンサの製造方法。
2. The chamfered surface has an inclination of 40 ° to 50 °.
2. The method for manufacturing a capacitor according to claim 1, wherein the flat surface has a length of 0.2 mm to 1.5 mm.
【請求項3】 面取りした面が、曲率半径Rが0.05
mm〜1mmの曲面である請求項1記載のコンデンサの製造
方法。
3. The chamfered surface has a radius of curvature R of 0.05.
The method of manufacturing a capacitor according to claim 1, wherein the curved surface has a diameter of mm to 1 mm.
【請求項4】 陽極弁金属の表面に陽極酸化により誘電
体皮膜を形成し、次に複素五員環化合物の溶液及び蒸気
と酸化剤溶液を用いて化学酸化重合を行うことにより前
記誘電体皮膜上に化学酸化重合導電性高分子層を積層す
ることを特徴とするコンデンサの製造方法。
4. The dielectric film is formed by forming a dielectric film on the surface of an anode valve metal by anodic oxidation, and then performing chemical oxidative polymerization using a solution of a five-membered heterocyclic compound and steam and an oxidant solution. A method of manufacturing a capacitor, which comprises laminating a chemically oxidatively polymerized conductive polymer layer on top.
【請求項5】 陽極弁金属の表面に陽極酸化により誘電
体皮膜を形成し、次に前記陽極弁金属を複素五員環化合
物溶液に浸漬し、その後に前記陽極弁金属と導電性材料
からなる対極を酸化剤溶液に浸漬して前記陽極弁材料を
陽極として前記陽極弁金属と前記対極の間に電圧を加え
ることにより前記誘電体皮膜の修復を行うとともに前記
誘電体皮膜上に化学酸化重合導電性高分子層を積層する
ことを特徴とするコンデンサの製造方法。
5. A dielectric film is formed on the surface of an anode valve metal by anodic oxidation, and then the anode valve metal is immersed in a solution of a five-membered heterocyclic compound, after which the anode valve metal and a conductive material are formed. The dielectric film is repaired by immersing the counter electrode in an oxidant solution and applying a voltage between the anode valve metal and the counter electrode using the anode valve material as an anode, and at the same time, the chemical oxidation polymerization on the dielectric film is conducted. A method for manufacturing a capacitor, which comprises laminating conductive polymer layers.
【請求項6】 複素五員環化合物がピロ−ル、チオフェ
ン、又はフランから選ばれる少なくとも一種である請求
項1〜5記載のコンデンサの製造方法。
6. The method for producing a capacitor according to claim 1, wherein the five-membered heterocyclic compound is at least one selected from pyrrole, thiophene, and furan.
【請求項7】 陽極弁金属がアルミニウム又はタンタル
である請求項1〜6記載のコンデンサの製造方法。
7. The method of manufacturing a capacitor according to claim 1, wherein the anode valve metal is aluminum or tantalum.
JP21596094A 1994-09-09 1994-09-09 Manufacture of capacitor Pending JPH0883735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21596094A JPH0883735A (en) 1994-09-09 1994-09-09 Manufacture of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21596094A JPH0883735A (en) 1994-09-09 1994-09-09 Manufacture of capacitor

Publications (1)

Publication Number Publication Date
JPH0883735A true JPH0883735A (en) 1996-03-26

Family

ID=16681100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21596094A Pending JPH0883735A (en) 1994-09-09 1994-09-09 Manufacture of capacitor

Country Status (1)

Country Link
JP (1) JPH0883735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310765B1 (en) 1997-06-20 2001-10-30 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for manufacturing the same
CN112992548A (en) * 2021-02-24 2021-06-18 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Method for improving stress resistance of chip solid electrolyte capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310765B1 (en) 1997-06-20 2001-10-30 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for manufacturing the same
US6413282B1 (en) 1997-06-20 2002-07-02 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for manufacturing the same
CN112992548A (en) * 2021-02-24 2021-06-18 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Method for improving stress resistance of chip solid electrolyte capacitor

Similar Documents

Publication Publication Date Title
JP4916416B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP2009016770A (en) Method for manufacturing electrolytic capacitor, and electrolytic capacitor
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP3307224B2 (en) Manufacturing method of capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JP3505370B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3615388B2 (en) Method and apparatus for manufacturing solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP3542613B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000228331A (en) Manufacture of electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH0645200A (en) Solid-state electrolytic capacitor
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH02117121A (en) Solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03139816A (en) Manufacture of solid electrolytic capacitor