JPH01310529A - Manufacture of solid electrolyte capacitor - Google Patents

Manufacture of solid electrolyte capacitor

Info

Publication number
JPH01310529A
JPH01310529A JP14213688A JP14213688A JPH01310529A JP H01310529 A JPH01310529 A JP H01310529A JP 14213688 A JP14213688 A JP 14213688A JP 14213688 A JP14213688 A JP 14213688A JP H01310529 A JPH01310529 A JP H01310529A
Authority
JP
Japan
Prior art keywords
film
manganese dioxide
electrode
electrolytic
electrolytic polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14213688A
Other languages
Japanese (ja)
Other versions
JPH0550125B2 (en
Inventor
Soji Tsuchiya
土屋 宗次
Toshikuni Kojima
小島 利邦
Yasuo Kudo
康夫 工藤
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14213688A priority Critical patent/JPH01310529A/en
Priority to EP89105640A priority patent/EP0336299B1/en
Priority to DE68918486T priority patent/DE68918486T2/en
Priority to US07/331,204 priority patent/US4943892A/en
Publication of JPH01310529A publication Critical patent/JPH01310529A/en
Publication of JPH0550125B2 publication Critical patent/JPH0550125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To contrive improvement both in high frequency characteristics and reliability by a method wherein a film which is treated by manganese dioxide is polymerized on the dielectric film provided on the surface of a foil consisting of a valve metal, they are dipped into a polymerizing solution, and an electrolytic polymerized film is formed on a manganese dioxide film using an electrode for electrolytic polymerization provided adjoining to a part of a manganese dioxide. CONSTITUTION:A manganese diocide film 4 is formed on the surface of a foil 1 consisting of valve metal through a dielectric film 3, they are dipped into electrolytic polymerization liquid 8, potential is applied to a first electrode 5 for electrolytic polymerization, provided contacting to the surface of a manganese dioxide, and a second electrode 6 for electrolytic polymerization provided at a position aparted from the first electrode 5, and a polymerized film is formed on a manganese dioixe film 4. As above-mentioned, by depositing the nuclei of manganese dioxide on a part of the dielectric film 3 formed on the surface of the foil 1 consisting of a valve metal and also by growing a polymerized film in the surface direction from said nuclei by electrolytic polymerization, the electrolytic polymerized film having excellent conductivity can be obtained. As a result, the improvement in high frequency characteristics and reliability can be achieved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコンデンサ特性、特に高周波特性及び信頼性の
すぐれた固体電解コンデンサの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor with excellent capacitor characteristics, particularly high frequency characteristics and reliability.

従来の技術 近年、電気機器回路のディジタル化にともなって、そこ
に使用されるコンデンサも高周波領域でのインピーダン
スが低く、小型大容量のものへの要求が高まっている。
BACKGROUND OF THE INVENTION In recent years, with the digitization of electrical equipment circuits, there has been an increasing demand for capacitors used therein that have low impedance in the high frequency range and are small and large in capacity.

従来、高周波領域用のコンデンサとしては、プラスチッ
クフィルムコンデンサ、マイカコンデンサ、積層セラミ
ックコンデンサが用いられているが、フィルムコンデン
サおよびマイカコンデンサでは形状が大きくなってしま
うために大容量化がむずかしく、また積層セラミックコ
ンデンサでは、小型大容量になればなるほど、温度特性
が悪くなり、価格が非常に高くなるという欠点がある。
Conventionally, plastic film capacitors, mica capacitors, and multilayer ceramic capacitors have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors have large shapes, making it difficult to increase the capacity, and multilayer ceramic capacitors Capacitors have the disadvantage that the smaller and larger the capacitance, the worse the temperature characteristics and the higher the price.

一方、大容量タイプのコンデンサとして知られるものに
、アルミニウム乾式電解コンデンサあるいはアルミニウ
ムまたはタンタル固体電解コンデンサなどがある。これ
らのコンデンサは誘電体となる陽極酸化皮膜を非常に薄
くできるために大容量が実現できるのであるが、その反
面、酸化皮膜の損傷がおきやすいために、酸化皮膜と陰
極の間に損傷を修復するための電解質を設ける必要があ
る。アルミニウム乾式電解コンデンサでは、エツチング
をほどこした陽、陰極アルミニウム箔を紙のセパレータ
を介して巻き取り、液状の電解質をセパレータに含浸し
て用いている。
On the other hand, known high-capacity type capacitors include aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. These capacitors can achieve large capacitance because the anodic oxide film that serves as the dielectric can be made very thin, but on the other hand, the oxide film is easily damaged, so damage must be repaired between the oxide film and the cathode. It is necessary to provide an electrolyte for this purpose. In an aluminum dry electrolytic capacitor, etched positive and negative electrode aluminum foils are wound up with a paper separator in between, and the separator is impregnated with a liquid electrolyte.

このだめ、電解質の液漏れ、蒸発等の理由により経時的
に静電容量の減少や損失(tanδ)の増大が起ると同
時に、電解質のイオン伝導性により高周波特性および低
温特性が著しく劣る等の欠点を有している。又、アルミ
ニウム、タンタル固体電解コンデンサでは、上記アルミ
ニウム乾式電解コンデンサの欠点を改良するために固体
電解質として二酸化マンガンが用いられている。この固
体電解質は硝酸マンガン水溶液に陽極素子を浸漬し、2
50〜350Cの温度で熱分解して得られている。この
コンデンサの場合、電解質が固体のため、高温における
電解質の流出、低温域での凝固から生ずる性能の低下な
どの欠点がなく、液状電解質を用いたコンデンサに比し
て良好な周波数特性および温度特性を示すが、硝酸マン
ガンの熱分解による酸化皮膜の損傷及び二酸化マンガン
の比抵抗が高いことなどの理由から、高周波領域のイン
ピーダンスあるいは損失は積層セラミックコンデンサあ
るいはプラスチックフィルムコンデンサと比較して1け
た以上高い値となっている。
As a result, capacitance decreases and loss (tan δ) increases over time due to electrolyte leakage, evaporation, etc. At the same time, high frequency characteristics and low temperature characteristics deteriorate significantly due to the ionic conductivity of the electrolyte. It has drawbacks. Furthermore, in aluminum and tantalum solid electrolytic capacitors, manganese dioxide is used as the solid electrolyte in order to improve the drawbacks of the above-mentioned aluminum dry electrolytic capacitors. This solid electrolyte is prepared by immersing the anode element in a manganese nitrate aqueous solution.
It is obtained by thermal decomposition at a temperature of 50 to 350C. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or performance degradation caused by solidification at low temperatures, and it has better frequency and temperature characteristics than capacitors using liquid electrolytes. However, due to damage to the oxide film due to thermal decomposition of manganese nitrate and the high resistivity of manganese dioxide, the impedance or loss in the high frequency range is more than an order of magnitude higher than that of multilayer ceramic capacitors or plastic film capacitors. value.

前記の問題点を解決するために固体電解質として導電性
が高く、陽極酸化性のすぐれた有機半導体(7,7,8
,8−テトラシアノキノジメタン錯体ユリ下TCNQ錯
体と記す)を用いることが提案されている。この有機半
導体は有機溶媒に溶解しだシ、加熱による融解などの手
段を用いて酸化皮膜に含浸塗布することが可能であシ、
MnO□を含浸する際に生ずる熱分解による酸化皮膜の
損傷を防ぐことができる。TCNQCN上導電性が高く
、陽極酸化性のすぐれたもので、高周波特性が良好で大
容量のコンデンサが可能となる。たとえば、丹羽信−氏
によりN−n−プロピルあるいはN−1so−プロピル
イソキノリンとTCNQからなる有機半導体を固体電解
質として用いる発明が出願されている(特開昭58−1
7609号公報)。前記発明によると捲回型アルミニウ
ム電解コンデンサへのTCNQ塩の含浸がTCNQ塩を
加熱溶融することにより行われ、これによりTCNQ塩
と酸化皮膜との強固な結合が達成され、TCNQ塩の高
電導性の寄与にも助けられて、周波数特性および温度特
性が著しく改良されたアルミニウムコンデンサが製造さ
れるとしている。このようなTCNQ塩にもとづく有機
半導体を固体電解質として用いることは、TCNQ塩が
二酸化マンガンに比して高い導電性と高い陽極酸化能力
(修復作用)を有するため二酸化マンガンを用いた固体
電解コンデンサに比して周波数特性と温度特性共に優れ
た性能を可能にする。この発明によるN位をアルキル基
で置換したインキツリウムをカチオンとしたTCNQ塩
を酸化皮膜に加熱溶融することにより含浸することにな
っている。
In order to solve the above problems, organic semiconductors (7, 7, 8
, 8-tetracyanoquinodimethane complex (hereinafter referred to as TCNQ complex) has been proposed. This organic semiconductor dissolves in an organic solvent and can be applied to the oxide film by impregnation using methods such as melting by heating.
Damage to the oxide film due to thermal decomposition that occurs during impregnation with MnO□ can be prevented. TCNQCN has high conductivity and excellent anodic oxidation properties, and has good high frequency characteristics, making it possible to manufacture large capacity capacitors. For example, Mr. Shin Niwa has filed an application for an invention using an organic semiconductor consisting of N-n-propyl or N-1so-propylisoquinoline and TCNQ as a solid electrolyte (Japanese Unexamined Patent Publication No. 58-1
Publication No. 7609). According to the invention, the TCNQ salt is impregnated into the wound aluminum electrolytic capacitor by heating and melting the TCNQ salt, thereby achieving a strong bond between the TCNQ salt and the oxide film, thereby increasing the high conductivity of the TCNQ salt. With the help of this contribution, aluminum capacitors with significantly improved frequency and temperature characteristics will be manufactured. The use of such an organic semiconductor based on TCNQ salt as a solid electrolyte is advantageous for solid electrolytic capacitors using manganese dioxide because TCNQ salt has higher conductivity and higher anodic oxidation ability (repairing action) than manganese dioxide. This enables superior performance in both frequency and temperature characteristics. According to this invention, the oxide film is impregnated by heating and melting the TCNQ salt containing inquiturium as a cation whose N-position is substituted with an alkyl group.

発明が解決しようとする課題 更に、近年、ピロール、チオフェンなどの複素環式化合
物の重合体を陽極体上に形成して、固体電解して利用し
ようとする提案がなされている。
Problems to be Solved by the Invention Furthermore, in recent years, proposals have been made to form polymers of heterocyclic compounds such as pyrrole and thiophene on an anode body and to utilize the polymers by solid electrolysis.

電解重合反応はモノマーの電解酸化という反応過程より
誘電体となる酸化皮膜上へ皮膜を破壊せずには重合膜を
つけることはできない。また、酸化皮膜を形成する前に
、電解重合膜を弁金属上につけてその後、化成反応によ
り、酸化皮膜を形成することができるが、この場合、電
解重合膜を介して化成反応を行うことになるので、電解
重合膜の変質をきたしたり、弁金属との付着性の低下を
生じ、弁金属上に良好な電解重合膜を形成することは困
難であった。
In the electrolytic polymerization reaction, a polymer film cannot be formed on the oxide film that serves as a dielectric without destroying the film due to the reaction process of electrolytic oxidation of monomers. Furthermore, before forming the oxide film, it is possible to apply an electrolytic polymer film on the valve metal and then perform a chemical conversion reaction to form the oxide film. Therefore, it has been difficult to form a good electrolytic polymeric membrane on the valve metal because the quality of the electrolytic polymeric membrane is changed or the adhesion to the valve metal is decreased.

本発明は上記従来の課題を解決するもので、コンデンサ
特性、特に高周波特性及び信頼性特性に優れた、電解重
合膜を用いた固体電解コンデンサの製造方法の提供を目
的とするものである。
The present invention is intended to solve the above-mentioned conventional problems, and aims to provide a method for manufacturing a solid electrolytic capacitor using an electrolytically polymerized film, which has excellent capacitor characteristics, particularly high frequency characteristics and reliability characteristics.

課題を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、弁金属からなる箔の表面に誘電体皮膜を介して二酸化
マンガン膜を形成したものを電解重合液中に浸漬し、二
酸化マンガン膜表面に接触して設けられた電解重合用第
1の電極と、第1の電極と離隔した位置に設けられた電
解重合用第2の電極間に電位を印加し、重合膜を二酸化
マンガン膜上に形成する工程とを少なくとも有する固体
電解コンデンサの製造方法にある。
Means for Solving the Problems The present invention achieves the above object, and its technical means is to apply a manganese dioxide film formed on the surface of a foil made of a valve metal via a dielectric film to an electrolytic polymerization solution. applying a potential between a first electrode for electrolytic polymerization provided in contact with the surface of the manganese dioxide film and a second electrode for electrolytic polymerization provided at a position separated from the first electrode, The method of manufacturing a solid electrolytic capacitor includes at least the step of forming a polymer film on a manganese dioxide film.

作用 本発明は、A−eやTaなどの弁金属などからなる箔の
表面に形成された誘電体被膜上の一部に二酸化マンガン
の核を析出し、電解重合によりこの核から表面方向に重
合膜を成長させることにより、電導性のすぐれた電解重
合膜を成長させることができ、高周波特性や信頼性の優
れたコンデンサ特性を有する固体電解コンデンサが得ら
れる。
Function The present invention deposits manganese dioxide nuclei on a part of the dielectric film formed on the surface of a foil made of valve metal such as A-e or Ta, and polymerizes the core from the core toward the surface by electrolytic polymerization. By growing the film, an electrolytic polymer film with excellent conductivity can be grown, and a solid electrolytic capacitor having capacitor characteristics with excellent high frequency characteristics and reliability can be obtained.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図に本発明の一実施例における固体電解コンデンサ
の製造方法を説明する模式図を示す。第1図(a)に示
すような、弁金属であるA/?の箔1にコンデンサ用陽
極リード電極2を取シ付けたものを準備し、まず表面積
を増大するためにエツチング処理をする。次に第1図(
b)に示すようにアジピン酸水溶液等を用いてA403
からなる酸化皮膜3を形成する。酸化皮膜3は電気化学
的な手段にょυ通常の方法で形成する。その後、硝酸マ
ンガン水溶液に浸漬して、250〜300 cで空気中
で熱分解処理することによ、9MnO2膜4を形成する
。次にこの表面に電解重合膜を形成するわけであるが、
コンデンサの陽極2を重合電極として用いて電圧を印加
しても誘電体皮膜が介在するので電解重合は起こらず膜
の成長はおこらない。そこで第2図に示したように重合
開始をおこす電解重合用電極5をMnO2膜4に接触す
るように外部にもうけ、更に電解重合用対極6を、電解
重合用電極5から離隔して設けた。第2図に示したよう
な重合反応容器7に、ピロール、チオフェン、などの電
解重合可能なモノマーに支持電解質と溶媒からなる重合
溶液8をもうけた。この中に、図のように浸漬して、電
解重合用対極6と電解重合用電極5間に重合電位以上に
電圧を印加することにより重合膜(図示せず)が電極5
にまず形成され、その後、徐々にここを起点に重合膜を
二酸化マンガン膜4の表面方向に成長する。重合膜が二
酸化マンガン膜4の表面を完全におおいつくしだ後、電
解重合反応を終了して、重合膜の表面を洗浄して、乾燥
する。その後図示してないが重合膜に接触してコンデン
サ用陰極のリード電極の取り付けをカーボンペースト及
び銀ペーストなどを用いて行う。そして最後にエボキと
樹脂などを用いて外装処理を行う。電解重合用電極5と
しては複数個設けても良い。また電解重合用対極6は、
電解重合用電極5から離隔した位置であればどこでも良
く、電解重合用電極5は、電解重合用対極6に対してそ
の形状は小さい方が望ましい。
FIG. 1 shows a schematic diagram illustrating a method of manufacturing a solid electrolytic capacitor in an embodiment of the present invention. A/? which is a valve metal as shown in FIG. 1(a). A foil 1 with a capacitor anode lead electrode 2 attached thereto is prepared and first subjected to an etching treatment to increase its surface area. Next, Figure 1 (
A403 using an adipic acid aqueous solution etc. as shown in b)
An oxide film 3 consisting of the following is formed. The oxide film 3 is formed by electrochemical means or by a conventional method. Thereafter, the 9MnO2 film 4 is formed by immersing it in an aqueous manganese nitrate solution and subjecting it to thermal decomposition treatment in air at 250 to 300 c. Next, an electrolytic polymer film is formed on this surface.
Even if a voltage is applied using the anode 2 of the capacitor as a polymerization electrode, electrolytic polymerization does not occur and film growth does not occur because of the presence of the dielectric film. Therefore, as shown in FIG. 2, an electrode 5 for electrolytic polymerization that initiates polymerization was provided externally so as to be in contact with the MnO2 film 4, and a counter electrode 6 for electrolytic polymerization was further provided separated from the electrode 5 for electrolytic polymerization. . In a polymerization reaction vessel 7 as shown in FIG. 2, a polymerization solution 8 consisting of an electrolytically polymerizable monomer such as pyrrole or thiophene, a supporting electrolyte, and a solvent was prepared. The polymer film (not shown) is immersed in this as shown in the figure, and a voltage higher than the polymerization potential is applied between the counter electrode 6 for electrolytic polymerization and the electrode 5 for electrolytic polymerization.
is first formed, and then a polymeric film is gradually grown from this point toward the surface of the manganese dioxide film 4. After the polymer film completely covers the surface of the manganese dioxide film 4, the electrolytic polymerization reaction is terminated, and the surface of the polymer film is washed and dried. Thereafter, although not shown, a lead electrode of a capacitor cathode is attached in contact with the polymer film using carbon paste, silver paste, or the like. Finally, the exterior is treated using epoxy wood and resin. A plurality of electrodes 5 for electrolytic polymerization may be provided. Further, the counter electrode 6 for electrolytic polymerization is
Any position apart from the electrolytic polymerization electrode 5 may be used, and it is preferable that the electrolytic polymerization electrode 5 is smaller in shape than the electrolytic polymerization counter electrode 6.

以下に更に詳しく述べる。More details are provided below.

AA箔としては通常にエツチング処理をされている定格
が16V、10μF用のものを用いた。アジピン酸水溶
液によシ化成皮膜をつけた後、巽%硝酸マンガン水溶液
に浸漬して、270C空気中で5分間熱分解処理を行っ
た。電解重合溶液をピロール(o、sM/−g)、テト
ラエチルアンモニウムバラトルエンスルホネート(0,
1M/−6)アセトニトリルから作製した。電解重合開
始点の電極として白金線を用いて、この電極と陰極間に
5Vを印加して、15分間を反応を行わせた。その後、
アルコール等で洗浄を行って乾燥する。次にアクアダプ
タを電解重合膜上の全面に塗布し、その後、銀ペースト
を用いて、陰極リード電極を取シ付ける。
The AA foil used was one that had been normally etched and had a rating of 16 V and 10 μF. After applying a silicon chemical conversion film using an adipic acid aqueous solution, it was immersed in a Tatsumi % manganese nitrate aqueous solution and subjected to thermal decomposition treatment in air at 270C for 5 minutes. The electropolymerization solution was mixed with pyrrole (o, sM/-g), tetraethylammonium valatoluene sulfonate (0,
1M/-6) made from acetonitrile. Using a platinum wire as an electrode at the starting point of electrolytic polymerization, 5 V was applied between this electrode and the cathode, and the reaction was allowed to proceed for 15 minutes. after that,
Clean with alcohol etc. and dry. Next, Aqua Adapter is applied to the entire surface of the electropolymerized membrane, and then a cathode lead electrode is attached using silver paste.

最後に、エポキシ樹脂で外装を行ったもれ電流が低減し
て0.5μAであった。次に80C1空気中で加Vを2
時間印加のエージング処理をほどこした。
Finally, the leakage current was reduced to 0.5 μA when the device was covered with epoxy resin. Next, apply 2 V in 80C1 air.
Aging treatment was applied for a certain amount of time.

次にこのコンデンサの特性を下記衣に示す(サンプル5
個の平均値を示す、液中容量10.0μF(120Hz
))。
Next, the characteristics of this capacitor are shown below (Sample 5
average value of 10.0μF (120Hz
)).

表  コンデンサ特性 表から明らかなように、例えば120Hzにおける容量
値は9.5μFと非常に高く(通常の固体コンデンサ例
えばTCNQ塩では=7μFである)、500KHzに
おける直列抵抗(ESR)も、A2電解コンデンサのな
かでは30rnΩと非常に小さく、高周波特性が優れて
いる。また漏れ電流も0.5μAと非常に小さい値を示
した。
As is clear from the capacitor characteristics table, for example, the capacitance value at 120Hz is very high, 9.5μF (common solid capacitors, such as TCNQ salt, have a value of 7μF), and the series resistance (ESR) at 500KHz is also as high as that of the A2 electrolytic capacitor. It has a very low resistance of 30 rnΩ, and has excellent high frequency characteristics. The leakage current also showed a very small value of 0.5 μA.

更に125C中に無負荷で500H放置した所、容量が
一2%程度減少するのみで、他の特性は全く変わらなか
った。
Furthermore, when the battery was left at 125C for 500 hours without load, the capacity decreased by only about 12%, and other characteristics did not change at all.

その他、実験としてA、6箔のかわりに通常使用されて
いるTa焼結体を用いて同様な工程で作製したところ、
特性としては二酸化マンガン処理を7回処理をした場合
と同等の特性が得られた。
In addition, as an experiment, a commonly used Ta sintered body was used instead of A, 6 foil and produced in the same process.
As for the characteristics, the same characteristics as those obtained when the manganese dioxide treatment was performed seven times were obtained.

発明の効果 以上要するに本発明は、弁金属からなる箔表面に設けら
れた誘電体皮膜上に二酸化マンガン処理をしたものを重
合溶液中に浸漬し、二酸化マンガン膜の一部に接して外
部に設けられた電解重合用電極を用いて二酸化マンガン
膜上に電解重合膜を形成するものであり、電導性にすぐ
れた電解重合膜を酸化皮膜上に形成することが可能とな
シ、高周波特性、信頼性の優れた固体電解コンデンサを
提供できる利点を有する。
Effects of the Invention In short, the present invention provides a dielectric film formed on the surface of a foil made of a valve metal, which is treated with manganese dioxide, and is immersed in a polymerization solution, and is then applied externally in contact with a part of the manganese dioxide film. This method forms an electrolytic polymer film on a manganese dioxide film using an electrode for electrolytic polymerization.It is possible to form an electrolytic polymer film with excellent conductivity on an oxide film, and has excellent high frequency characteristics and reliability. It has the advantage of being able to provide solid electrolytic capacitors with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例における固体電解
コンデンサの製造方法の手順を示す説明図である。 1・・AA、2・・・陽極リード電極、3・・酸化皮膜
、4・・・M n O2膜、5・・・電解重合用電極、
6・・・電解重合用対極、7・・・重合反応容器、8・
・・重合溶液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIGS. 1 and 2 are explanatory diagrams showing the steps of a method for manufacturing a solid electrolytic capacitor in an embodiment of the present invention. 1...AA, 2...Anode lead electrode, 3...Oxide film, 4...MnO2 film, 5...Electrolytic polymerization electrode,
6... Counter electrode for electrolytic polymerization, 7... Polymerization reaction vessel, 8...
...Polymerization solution. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (5)

【特許請求の範囲】[Claims] (1)弁金属からなる箔の両表面上に誘電体皮膜を形成
する工程と、前記誘電体皮膜上に二酸化マンガン膜を形
成する工程と、前記二酸化マンガン膜を形成させた誘電
体皮膜付の箔を電解重合溶液中に浸漬し、前記二酸化マ
ンガン膜表面に接触して設けられた電解重合用第1の電
極と、前記第1の電極と離隔した位置に電解重合用第2
の電極を設け、この電極間に電位を印加して重合膜を形
成する工程とを具備することを特徴とする固体電解コン
デンサの製造方法。
(1) A step of forming a dielectric film on both surfaces of a foil made of valve metal, a step of forming a manganese dioxide film on the dielectric film, and a step of forming a dielectric film on which the manganese dioxide film is formed. The foil is immersed in an electrolytic polymerization solution, and a first electrode for electrolytic polymerization is provided in contact with the surface of the manganese dioxide film, and a second electrode for electrolytic polymerization is provided at a position separated from the first electrode.
1. A method for manufacturing a solid electrolytic capacitor, comprising the steps of: providing electrodes; and applying a potential between the electrodes to form a polymer film.
(2)誘電体皮膜付の箔を硝酸マンガン水溶液に浸漬し
、250〜300℃の空気中で熱処理を行って二酸化マ
ンガンを析出させることにより二酸化マンガン膜を形成
させる請求項1記載の固体電解コンデンサの製造方法。
(2) The solid electrolytic capacitor according to claim 1, wherein the foil with the dielectric film is immersed in an aqueous manganese nitrate solution and heat-treated in air at 250 to 300°C to precipitate manganese dioxide to form a manganese dioxide film. manufacturing method.
(3)電解重合溶が電解重合可能なモノマーと支持電解
質と溶媒とからなる請求項1記載の固体電解コンデンサ
の製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the electrolytic polymerization solution comprises an electrolytically polymerizable monomer, a supporting electrolyte, and a solvent.
(4)電解重合可能なモノマーがピロール又はチオフェ
ンである請求項3記載の固体電解コンデンサの製造方法
(4) The method for manufacturing a solid electrolytic capacitor according to claim 3, wherein the electrolytically polymerizable monomer is pyrrole or thiophene.
(5)電解重合用第1の電極を複数個設けた請求項1記
載の固体電解コンデンサの製造方法。
(5) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a plurality of first electrodes for electrolytic polymerization are provided.
JP14213688A 1988-03-31 1988-06-09 Manufacture of solid electrolyte capacitor Granted JPH01310529A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14213688A JPH01310529A (en) 1988-06-09 1988-06-09 Manufacture of solid electrolyte capacitor
EP89105640A EP0336299B1 (en) 1988-03-31 1989-03-30 Solid electrolytic capacitor and method for manufacturing the same
DE68918486T DE68918486T2 (en) 1988-03-31 1989-03-30 Solid electrolytic capacitor and process for its manufacture.
US07/331,204 US4943892A (en) 1988-03-31 1989-03-31 Solid electrolytic capacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14213688A JPH01310529A (en) 1988-06-09 1988-06-09 Manufacture of solid electrolyte capacitor

Publications (2)

Publication Number Publication Date
JPH01310529A true JPH01310529A (en) 1989-12-14
JPH0550125B2 JPH0550125B2 (en) 1993-07-28

Family

ID=15308205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14213688A Granted JPH01310529A (en) 1988-03-31 1988-06-09 Manufacture of solid electrolyte capacitor

Country Status (1)

Country Link
JP (1) JPH01310529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140502A (en) * 1990-03-12 1992-08-18 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140502A (en) * 1990-03-12 1992-08-18 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0550125B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH01310529A (en) Manufacture of solid electrolyte capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP3490868B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0274016A (en) Solid electrolytic condenser
JP2730345B2 (en) Manufacturing method of capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH0682594B2 (en) Method for manufacturing solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP2924310B2 (en) Manufacturing method of capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JPH03285321A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070728

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 15

EXPY Cancellation because of completion of term