JPH02224316A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH02224316A
JPH02224316A JP1046168A JP4616889A JPH02224316A JP H02224316 A JPH02224316 A JP H02224316A JP 1046168 A JP1046168 A JP 1046168A JP 4616889 A JP4616889 A JP 4616889A JP H02224316 A JPH02224316 A JP H02224316A
Authority
JP
Japan
Prior art keywords
molded body
porous molded
film
electrolytic
polypyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1046168A
Other languages
Japanese (ja)
Inventor
Masaharu Sato
正春 佐藤
Masaomi Tanaka
征臣 田中
Kunihiko Imanishi
邦彦 今西
Yutaka Yasuda
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1046168A priority Critical patent/JPH02224316A/en
Publication of JPH02224316A publication Critical patent/JPH02224316A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

PURPOSE:To obtain a large capacitance solid electrolytic capacitor having excellent characteristics as far as to a high frequency region and also having excellent reliability by a method wherein the surface of a porous molded body, made of film-formation metal having an oxide film, is wetted with an electrolyte containing a monomer to be used for electrolytic polymerization, and electrolytic polymerization is conducted using a work electrode provided making contact with said porous molded body. CONSTITUTION:The surface of the porous molded body of a film-forming metal 1, having an oxide film, is wetted with an electrolyte 4 containing a monomer for electrolytic polymerization, an electrolytic polymerization operation is conducted using the work electrode which is provided making contact with the porous molded body, and a resin or reticulate conductive high molecular compound is formed on the surface of the porous molded body. Then, a solid electrolyte is formed by conducting electrolytic polymerization on an aromatic compound using the above-mentioned conductive high molecular compound as the anode. Accordingly, the porous molded body is filled into their fine holes with solid electrolyte having sufficiently high conductivity. As a result, equivalent series resistance is made small, resonance frequency is increased to 1MHz or higher and excellent characteristics are shown as far as to a high frequency region, and a large capacitance solid electrolytic capacitor, having a large maximum allowable current and small leakage current, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性高分子化合物を固体電解質とする固体電
解コンデンサの製造に利用され、特に、電解重合で合成
した高導電性の導電性高分子化合物を固体電解質とする
、高周波特性等に優れた固体電解コ1ンデンサの製造方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to the production of solid electrolytic capacitors using a conductive polymer compound as a solid electrolyte. The present invention relates to a method for manufacturing a solid electrolytic capacitor that uses a molecular compound as a solid electrolyte and has excellent high frequency characteristics.

〔概要〕〔overview〕

本発明は、皮膜形成金属の酸化物を誘電体とし導電性高
分子化合物を固体電解質とする固体電解コンデンサの製
造方法にふいて、 酸化皮膜を有する皮膜形成金属の多孔質成形体の表面を
電解重合用モノマーを含む電解液で濡らし、この多孔質
成形体に接触して設けた作用電極を用いて電解重合を行
い、前記多孔質成形体の表面に樹状あるいは網目状の導
電性高分子化合物を形成させ、次いで、この導電性高分
子化合物を陽極として芳香族化合物の電解重合を行い前
記固体電解質を形成することにより、 コンデンサの特性、特に高周波特性の改善を図ったもの
である。
The present invention provides a method for manufacturing a solid electrolytic capacitor in which an oxide of a film-forming metal is used as a dielectric and a conductive polymer compound is used as a solid electrolyte. The porous molded body is wetted with an electrolytic solution containing a monomer for polymerization, and electrolytically polymerized using a working electrode provided in contact with the porous molded body to form a dendritic or network-like conductive polymer compound on the surface of the porous molded body. The conductive polymer compound is then used as an anode to perform electrolytic polymerization of an aromatic compound to form the solid electrolyte, thereby improving the characteristics of the capacitor, especially the high frequency characteristics.

〔従来の技術〕[Conventional technology]

近年、科学技術の進歩にともなって電子機器の小型化、
信頼性向上が求められており、デジタル機器の発展とも
相まって、コンデンサの分野においても高周波領域まで
良好な特性を有し、しかも信頼性に優れた大容量コンデ
ンサへの要求が高まっている。このような要求に対し、
従来より開発されている固体電解コンデンサは、大容量
で、しかも電解質が固体であるために信頼性にも優れて
いるが、固体電解質の導電率が未だ不十分であり、高周
波領域での良好な特性が得られていない。
In recent years, with advances in science and technology, electronic devices have become smaller and smaller.
BACKGROUND ART There is a need for improved reliability, and in conjunction with the development of digital equipment, there is an increasing demand in the capacitor field for large-capacity capacitors that have good characteristics even in the high frequency range and are highly reliable. For such requests,
The solid electrolytic capacitors that have been developed so far have a large capacity and are excellent in reliability because the electrolyte is solid, but the conductivity of the solid electrolyte is still insufficient, making it difficult to perform well in the high frequency range. Characteristics not obtained.

通常、固体電解コンデンサは、タンタルおよびアルミニ
ウム等の皮膜形成金属の多孔質成形体を第一の電極(陽
極)とし、その表面酸化皮膜を誘電体、二酸化マンガン
および7.7.8.8−テトラシアノキノジメタン錯塩
等の固体電解質を第二の電極(陰極)の一部とする構造
を有している。この場合、固体電解質には多孔質成形体
内部の誘電体全面と電極リード間を電気的に接続する機
能と誘電体皮膜の欠陥に起因する電気的短絡を修復する
機能が要求きれる。その結果、導電率は高いが誘電体修
復機能のない金属は固体電解質として使用できず、短絡
電流による発熱等によって絶縁体に転移する二酸化マン
ガン等が用いられてきた。しかし、従来用いられている
固体電解質は導電率が不十分であり、しかもこれを複雑
な形状の多孔質成形体の細孔内部に完全に充填する技術
も完成されているとは言い難かった。
Usually, a solid electrolytic capacitor uses a porous molded body of film-forming metal such as tantalum or aluminum as the first electrode (anode), and its surface oxide film is used as a dielectric material, manganese dioxide and 7.7.8.8-tetra. It has a structure in which a solid electrolyte such as a cyanoquinodimethane complex salt is part of the second electrode (cathode). In this case, the solid electrolyte is required to have the function of electrically connecting the entire surface of the dielectric inside the porous molded body and the electrode leads, and the function of repairing electrical short circuits caused by defects in the dielectric film. As a result, metals with high electrical conductivity but without a dielectric repair function cannot be used as solid electrolytes, and manganese dioxide and the like, which transfer to insulators due to heat generated by short-circuit current, etc., have been used. However, the solid electrolyte conventionally used has insufficient electrical conductivity, and the technology for completely filling the pores of a porous molded body with a complicated shape has not yet been perfected.

一方、高分子の分野においても新しい材料の開発が進み
、その結果、ポリアセチレン、ポリパラフェニレンおよ
びポリピロール等の共役系ポリマーフィルム、あるいは
これに電子供与性や電子吸引性化合物(ドーパント)を
添加・(ドーピング)した導電性高分子がこれまでに開
発されている。
On the other hand, the development of new materials has progressed in the field of polymers, and as a result, conjugated polymer films such as polyacetylene, polyparaphenylene, and polypyrrole, or films to which electron-donating or electron-withdrawing compounds (dopants) are added ( Conductive polymers (doped) have been developed so far.

この中で、特にポリピロール等の芳香族系導電性高分子
は高導電性で、その経時安定性も良好なため、これを固
体電解質とする固体電解コンデンサが提案されている。
Among these, aromatic conductive polymers such as polypyrrole have particularly high conductivity and good stability over time, so solid electrolytic capacitors using them as solid electrolytes have been proposed.

例えば「特開昭60−37114号公報」にはドープし
た複素五員環式化合物重合体を固体電解質とする固体電
解コンデンサが開示されている。
For example, ``Japanese Unexamined Patent Publication No. 60-37114'' discloses a solid electrolytic capacitor using a doped polymer of a five-membered heterocyclic compound as a solid electrolyte.

ポリピロールの導電率は、その合成法にもよるが、従来
の固体電解質である二酸化マンガン等の0、163/c
mに比べて著しく高く、例えばエム・サトウ(M、5a
toh)らによるrSynthoMet、 、 14.
289(1986) Jに示されているように、条件を
選んで電解重合法で合成したものでは500S/cmに
も達する。ポリピロールの合成法としては前記の電解重
合法のほかに、酸化剤を用いる酸化カチオン重合法、お
よびピロールのジハロゲン化物誘導体のグリニヤール反
応による方法等が知られているが、これらの方法のうち
電解重合法が最も高導電性の導電膜が形成できる。
The electrical conductivity of polypyrrole is 0.163/c compared to conventional solid electrolytes such as manganese dioxide, although it depends on its synthesis method.
For example, M Sato (M, 5a
rSynthoMet by toh) et al., 14.
289 (1986) J, it can reach up to 500 S/cm when synthesized by electrolytic polymerization under selected conditions. In addition to the above-mentioned electrolytic polymerization method, methods for synthesizing polypyrrole include an oxidized cationic polymerization method using an oxidizing agent, and a method using Grignard reaction of dihalide derivatives of pyrrole. Among these methods, electrolytic polymerization is A conductive film with the highest conductivity can be formed if the method is legal.

固体電解コンデンサの高周波領域での特性は、電解質の
導電率に依存して向上することから、電解重合法による
ポリピロールがコンデンサの固体電解質に有利に使用で
きるものと考えられる。ただし、ポリピロールは不溶不
融で、加工性が劣っているために、これをそのまま皮膜
形成金属の多孔質成形体の細孔内部の誘電体皮膜上に付
着させることは難しい。
Since the properties of solid electrolytic capacitors in the high frequency range improve depending on the conductivity of the electrolyte, it is thought that polypyrrole produced by electrolytic polymerization can be advantageously used as the solid electrolyte of capacitors. However, since polypyrrole is insoluble and infusible and has poor processability, it is difficult to directly adhere it onto the dielectric film inside the pores of a porous molded body of film-forming metal.

「特開昭60−244017号公報」には、金属化皮膜
上に電解重合法により複素五員環式化合物のポリマー膜
を形成した固体電解コンデンサが開示されている。ここ
に記載されている製法では、金属酸化皮膜層が絶縁体で
あり、その上に電解重合膜を形成することは不可能か、
または非常に困難である。また、仮に酸化皮膜層の欠陥
部から電解重合が起こったとしても陰極と陽極が短絡し
た構造となり、コンデンサとはなり得ない。さらに、「
特開昭62−118511号公報」には、金属の露出し
た誘電体に電解重合で導電性高分子を形成した後、金属
を陽極酸化する方法が開示されている。この方法によれ
ばポリピロールを多孔質成形体表面に付着させることは
できるが、多孔質成形体の細孔内部を完全には充填でき
ない。また、「特開昭62=165313号公報」には
、酸化皮膜を有する多孔質誘電体を陽極とし、その表面
上の一部に設けた導電物質を開始点として電解重合する
方法が開示されているが、ここに例示されている方法に
よっても多孔質誘電体の細孔内部にまで完全な充填は困
難と思われる。
``Japanese Unexamined Patent Publication No. 60-244017'' discloses a solid electrolytic capacitor in which a polymer film of a five-membered heterocyclic compound is formed on a metallized film by an electrolytic polymerization method. In the manufacturing method described here, the metal oxide film layer is an insulator, and it is impossible to form an electrolytic polymer film on it.
Or very difficult. Further, even if electrolytic polymerization were to occur from a defective portion of the oxide film layer, the structure would be such that the cathode and anode were short-circuited, and the capacitor could not be formed. moreover,"
JP-A-62-118511 discloses a method in which a conductive polymer is formed on a dielectric with exposed metal by electrolytic polymerization, and then the metal is anodized. According to this method, polypyrrole can be attached to the surface of the porous molded body, but the inside of the pores of the porous molded body cannot be completely filled. Furthermore, ``Japanese Unexamined Patent Publication No. 165313/1989'' discloses a method of electrolytic polymerization using a porous dielectric material having an oxide film as an anode and using a conductive material provided on a part of the surface as a starting point. However, even with the method exemplified here, it seems difficult to completely fill the pores of a porous dielectric.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、電解重合法によるポリピロールは電解コ
ンデンサの固体電解質として優れた性能が期待されなが
ら、従来の固体電解コンデンサの製造方法では皮膜形成
金属の多孔質成形体の細孔内部を十分に充填できず、従
って高周波領域まで良好な特性を有し、しかも信頼性に
優れた大容量の固体電解コンデンサを製造することがで
きない問題点があった。
As mentioned above, polypyrrole produced by electrolytic polymerization is expected to have excellent performance as a solid electrolyte for electrolytic capacitors, but conventional solid electrolytic capacitor manufacturing methods do not sufficiently fill the pores of the porous molded body of film-forming metal. Therefore, there was a problem in that it was not possible to manufacture a large-capacity solid electrolytic capacitor that had good characteristics up to a high frequency range and was excellent in reliability.

本発明の目的は、前記の問題点を解消することにより、
良好な高周波特性を有し、しかも信頼性に優れた大容量
の固体電解コンデンサを提供することにある。
The purpose of the present invention is to solve the above-mentioned problems.
An object of the present invention is to provide a large-capacity solid electrolytic capacitor that has good high-frequency characteristics and excellent reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の問題点を解決するために種々検討の
結果、特定の方法を採用することで、導電体高分子化合
物を皮膜形成金属の多孔質成形体の細孔内部にまで十分
に充填できることを見いだし、本発明に至った。
In order to solve the above problems, the present inventors conducted various studies and found that by adopting a specific method, the conductive polymer compound was sufficiently filled into the pores of the porous molded body of the film-forming metal. We have discovered that this can be done, and have come up with the present invention.

すなわち、本発明は、皮膜形成金属の酸化物を誘電体と
し導電性高分子化合物を固体電解質とする固体電解コン
デンサの製造方法において、酸化皮膜を有する皮膜形成
金属の多孔質成形体の表面を電解重合用モノマーを含む
電解液で濡らし、この多孔質成形体に接触して設けた作
用電極を用いて電解重合を行い、前記多孔質成形体の表
面に樹状あるいは網目状の導電性高分子化合物を形成さ
せ、次いで、この導電性高分子化合物を陽極として芳香
族化合物の電解重合を行い前記固体電解質を形成するこ
とを特徴とする。
That is, the present invention provides a method for manufacturing a solid electrolytic capacitor using an oxide of a film-forming metal as a dielectric and a conductive polymer compound as a solid electrolyte, in which the surface of a porous molded body of a film-forming metal having an oxide film is electrolyzed. The porous molded body is wetted with an electrolytic solution containing a monomer for polymerization, and electrolytically polymerized using a working electrode provided in contact with the porous molded body to form a dendritic or network-like conductive polymer compound on the surface of the porous molded body. is formed, and then electrolytic polymerization of an aromatic compound is performed using this conductive polymer compound as an anode to form the solid electrolyte.

本発明における皮膜形成金属は、タンタル、アルミニウ
ムおよびニオブ等が挙げられ、中でもタンタルおよびア
ルミニウムが好ましい。また、これら金属の多孔質成形
体とは、成形体外周面の面積に比べて比表面積を増大し
たタイプの成形体と規定され、例えばタンタルの場合に
は微粉焼結体、アルミニウムの場合にはエツチング箔等
がある。
Film-forming metals in the present invention include tantalum, aluminum, niobium, and the like, with tantalum and aluminum being preferred. In addition, porous molded bodies of these metals are defined as molded bodies of a type in which the specific surface area is increased compared to the area of the outer peripheral surface of the molded body, for example, fine powder sintered bodies in the case of tantalum, and fine powder sintered bodies in the case of aluminum. There are etching foils, etc.

本発明では前記の多孔質成形体の形状および大きさ等は
特に限定されないが、実施の上で好ましい要因としては
多孔質を構成する細孔の全部または少くとも一部が成形
体の一方の面から他の面に連通していることが挙げられ
る。
In the present invention, the shape and size of the porous molded body are not particularly limited, but a preferred factor in practice is that all or at least some of the pores constituting the porous body are located on one side of the molded body. One example is that it is connected to other planes.

本発明においては、酸化皮膜を有する皮膜形成金属の多
孔質成形体の表面にまず樹状あるいは網目状の導電性高
分子化合物を形成し、これを陽極として芳香族化合物の
電解重合を行うことを特徴とするが、この樹状あるいは
網目状の導電性高分子としてはピロール、チオフェンお
よびベンゼンならびにその誘導体をモノマーとして得ら
れる導電性高分子等が挙げられ、これらのモノマーを電
解重合法によって製造する。これらのモノマーはその重
合条件によって種々の形態で重合するが、特定の条件を
選べば樹状あるいは網目状となる。
In the present invention, a dendritic or network-like conductive polymer compound is first formed on the surface of a porous molded body of a film-forming metal having an oxide film, and the aromatic compound is electrolytically polymerized using this as an anode. Characteristically, this dendritic or network-like conductive polymer includes conductive polymers obtained using pyrrole, thiophene, benzene, and their derivatives as monomers, and these monomers are produced by electrolytic polymerization. . These monomers polymerize in various forms depending on the polymerization conditions, but if specific conditions are selected, they will become dendritic or network-like.

次に、多孔質形成体表面に樹状あるいは網目状導電性高
分子を形成させる方法について図を用いて説明する。
Next, a method for forming a dendritic or network-like conductive polymer on the surface of a porous material will be explained using figures.

まず、表面に酸化皮膜を形成した多孔質成形体としての
タンクルペレット1をあらかじめモノマーを含む電解液
で濡らし、その上に作用電極としての金線2を接触させ
、タンクルペレット下部の一部を電解液4中に浸漬し、
その下方に対向電極としてニッケル板3を設ける。この
場合、金線2とニッケル板3とは、電解液4ならびにタ
ンフルペレット1表面に形成された電解液膜層5を介し
て結ばれる。そして、両電極間に所定の電圧を印加して
電解酸化重合を行わせることにより、電解液膜層5の部
分で樹状あるいは網目状の導電性高分子化合物が成長す
る。
First, a tankle pellet 1, which is a porous molded body with an oxide film formed on its surface, is wetted in advance with an electrolytic solution containing a monomer, and a gold wire 2 as a working electrode is brought into contact thereon, and a part of the lower part of the tankle pellet is wetted with an electrolytic solution containing a monomer. immersed in electrolyte 4,
A nickel plate 3 is provided below as a counter electrode. In this case, the gold wire 2 and the nickel plate 3 are connected via the electrolytic solution 4 and the electrolytic solution film layer 5 formed on the surface of the tumble pellet 1. Then, by applying a predetermined voltage between both electrodes to perform electrolytic oxidation polymerization, a dendritic or network-like conductive polymer compound grows in the electrolyte film layer 5.

作用電極2およびタンクルペレッ)lが電解液4に完全
に浸っていると、導電性高分子は塊状に成長する傾向が
ある。
When the working electrode 2 and the tank pellet (1) are completely immersed in the electrolyte 4, the conductive polymer tends to grow in lumps.

ここで用いられる電解液は、モノマーである芳香族化合
物および支持電解質を含有するものであり、溶媒および
溶質の種類や組成については後述のように通常の電解酸
化重合が可能なものであれば特に制限はない。また、多
孔質成形体は必ずしもあらかじめ電解液中に全体を浸漬
しなくとも、その一部を電解液に浸漬しておけば、毛細
管現象で液が浸透して表面を濡らすので本発明の目的は
達し得る。
The electrolytic solution used here contains an aromatic compound as a monomer and a supporting electrolyte, and the type and composition of the solvent and solute may be particularly selected as long as they can be subjected to normal electrolytic oxidative polymerization as described below. There are no restrictions. Furthermore, the object of the present invention is that the porous molded body does not necessarily have to be completely immersed in an electrolytic solution in advance, but if a part of it is immersed in the electrolytic solution, the liquid penetrates through capillary action and wets the surface. can be achieved.

作用電極としては、通常の電極反応に用いられる全ての
金属、半導体および導電性高分子が挙げられ、誘電体損
傷の危険防止の面からその形態としてはしなやかなファ
イバー状あるいはフィルム状が好ましく、例えば、金線
、ステンレス製メツシュ、カーボンファイバー、および
導電性高分子フィルム等が使用できる。これらの中でも
導電性高分子としてポリピロールまたは置換基を有する
ポリピロールが好ましい。
Examples of the working electrode include all metals, semiconductors, and conductive polymers used in ordinary electrode reactions, and from the viewpoint of preventing damage to the dielectric, it is preferably in the form of a flexible fiber or film, such as , gold wire, stainless steel mesh, carbon fiber, conductive polymer film, etc. can be used. Among these, polypyrrole or polypyrrole having a substituent is preferred as the conductive polymer.

また、対向電極の種類は特に限定されず、通常の電極反
応に用いられる全ての金属、半導体ふよび導電性高分子
等を使用できる。
Further, the type of counter electrode is not particularly limited, and all metals, semiconductors, conductive polymers, etc. used in ordinary electrode reactions can be used.

また、電圧を印加するに際しては、多孔質成形体表面の
電解液膜層における電位勾配がIV/cm以上、好まし
くは5〜100V/cmとなるようにすればよい。IV
/cm未満の場合、生成するポリマーは樹状あるいは網
目状とならず塊状になりやすい。
Furthermore, when applying a voltage, the potential gradient in the electrolyte film layer on the surface of the porous molded body may be IV/cm or more, preferably 5 to 100 V/cm. IV
/cm, the resulting polymer does not have a dendritic or network shape and tends to be lumpy.

本発明では、このようにして第1段階で多孔質成形体上
に樹状あるいは網目状の導電性高分子を形成し、次に第
2段階としてこの形成された導電性高分子を実質的な陽
極として電解重合を行い、固体電解コンデンサの固体電
解質層を形成する。
In the present invention, in the first step, a dendritic or network-like conductive polymer is formed on the porous molded body, and then in the second step, the formed conductive polymer is substantially Electrolytic polymerization is performed as an anode to form a solid electrolyte layer of a solid electrolytic capacitor.

まず、前記第1段階を経た多孔質成形体および対向電極
を電解重合用溶液中に浸漬し、誘電体の細孔内部に電解
重合用溶液を導入する。ここで電解重合用溶液は、樹状
あるいは網目状導電性高分子の形成時に用いたものと同
じでもよく、また別のものでもよい。さらに、多孔質成
形体はその全部を電解液中に浸漬しなくとも、一部浸漬
したままでもよい場合がある。
First, the porous molded body and the counter electrode that have undergone the first step are immersed in an electrolytic polymerization solution, and the electrolytic polymerization solution is introduced into the pores of the dielectric. Here, the solution for electrolytic polymerization may be the same as that used in forming the dendritic or network conductive polymer, or may be a different solution. Furthermore, the porous molded body does not have to be entirely immersed in the electrolytic solution, but may be partially immersed.

次いで、通常の方法に従って電解酸化重合を行うと、樹
状あるいは網目状導電性高分子が実質的な作用電極(陽
極)となり、導電性高分子が、まず樹状あるいは網目状
導電性高分子上に形成され、多孔質成形体の表面を被覆
すると同時に、細孔内部も侵入していく。このようにし
て一定時間反応を行うことにより、細孔内部が電解重合
による導電性高分子によって充填されたペレットあるい
は箔が得られる。これを電解液中から引き上げ、洗浄お
よび乾燥後、−船釣に用いられる導電性カーボンおよび
銀ペースト等によって対極リードを取り出し、エポキシ
樹脂等により外装すると固体電解コンデンサとなる。
Next, when electrolytic oxidative polymerization is carried out according to a conventional method, the dendritic or network conductive polymer becomes a substantial working electrode (anode), and the conductive polymer is first formed on the dendritic or network conductive polymer. It is formed to cover the surface of the porous molded body and at the same time invade the inside of the pores. By carrying out the reaction for a certain period of time in this manner, a pellet or foil whose pores are filled with a conductive polymer produced by electrolytic polymerization can be obtained. This is pulled out of the electrolytic solution, washed and dried, and then the counter electrode lead is taken out using conductive carbon or silver paste used for boat fishing, and then covered with epoxy resin or the like to form a solid electrolytic capacitor.

本発明における電解重合用電解液は、基本的には極性溶
媒にモノマーである芳香族化合物と支持電解質塩が添加
されたものであり、必要に応じて他の成分を含むことも
できる。本発明において、電解重合に用いられる芳香族
化合物としては置換基を有することもあるベンゼン、ピ
ロール、チオフェンおよびフラン等が挙げられ、好まし
くはピロールまたは置換基を有するピロールが挙げられ
る。極性溶媒としては、例えば、水、アセトニトリル、
ベンゾニトリル、テトラヒドロフラン、ニトロベンゼン
、ニトロメタンおよび炭酸プロピレン等が挙げられるが
、これらに限定されず、また2種以上の溶媒を組み合わ
せて使用することもできる。支持電解質塩を構成するア
ニオンとしては、例えばI−、F−およびCド等のハロ
ゲンイオン、BF、−1C104−およびAsF6−等
の各種ハロゲン化合物、ルチル硫酸イオン、置換ベンゼ
ンスルホン酸イオンおよびポリスチレンスルホン酸イオ
ン等が挙げられる。また、カチオンとしては、アルカリ
金属、アルカリ土類金属および4級アンモニウムが代表
的なものである。
The electrolytic solution for electrolytic polymerization in the present invention is basically a polar solvent to which an aromatic compound as a monomer and a supporting electrolyte salt are added, and may contain other components as necessary. In the present invention, examples of the aromatic compound used in electrolytic polymerization include benzene, pyrrole, thiophene, and furan, which may have a substituent, and preferably pyrrole or pyrrole having a substituent. Examples of polar solvents include water, acetonitrile,
Examples include, but are not limited to, benzonitrile, tetrahydrofuran, nitrobenzene, nitromethane, and propylene carbonate, and two or more types of solvents can also be used in combination. Examples of anions constituting the supporting electrolyte salt include halogen ions such as I-, F-, and C-do, various halogen compounds such as BF, -1C104-, and AsF6-, rutile sulfate ion, substituted benzenesulfonate ion, and polystyrene sulfone. Examples include acid ions. Furthermore, typical cations include alkali metals, alkaline earth metals, and quaternary ammonium.

本発明では、電解重合電圧は通常行われる電気化学反応
で用いられる方法によって制御され、般には0.1〜5
00Vの範囲の直流電圧が用いられ、必要に応じてこれ
に交流を重ねることもできる。
In the present invention, the electrolytic polymerization voltage is controlled by a method used in commonly performed electrochemical reactions, and is generally 0.1 to 5.
A direct current voltage in the range of 00V is used, which can be superimposed with an alternating current if desired.

ただし、第1段階において、樹状あるいは網目状の導電
性高分子を形成する場合には前記のように制限される。
However, in the first step, when forming a dendritic or network-like conductive polymer, the above-mentioned restrictions apply.

以上のようにして得られた、皮膜形成金属の酸化物を誘
電体とし、導電性高分子化合物を固体電解質とする固体
電解コンデンサは、固体電解質が電解重合法で合成され
た導電性高分子であるので、導電率が高く、例えば、ポ
リピロールの場合には500 S/cmにも達し、その
ため良好な高周波特性を有している。この導電率は従来
の固体電解質である二酸化マンガンの0.163/cm
に比べて著しく大きく、また、酸化カチオン重合法によ
るポリピロールのLOO3/cm 、グリニヤール法に
よるQ、137cm 1.:比べても大きい。
In the solid electrolytic capacitor obtained as described above, which has a film-forming metal oxide as a dielectric and a conductive polymer compound as a solid electrolyte, the solid electrolyte is a conductive polymer synthesized by an electrolytic polymerization method. Therefore, it has a high electrical conductivity, reaching 500 S/cm in the case of polypyrrole, and therefore has good high frequency characteristics. This conductivity is 0.163/cm of manganese dioxide, a conventional solid electrolyte.
In addition, the LOO3/cm of polypyrrole produced by the oxidized cationic polymerization method, and the Q of polypyrrole produced by the Grignard method, 137 cm 1. : It's big compared to others.

〔作用〕[Effect]

本発明は、前述のように2段階の電解重合工程よりなる
が、第1段階で形成される導電性高分子は、多孔質成形
体の細孔内部に侵入しやすい樹状あるいは網目状の形状
のものとなる。そして第2段階では、十分に細孔「[部
まで導電性高分子化合物が侵入し、はぼ完全な、7′で
の固体電解質が形成される。
The present invention consists of a two-stage electrolytic polymerization process as described above, but the conductive polymer formed in the first stage has a dendritic or network-like shape that easily penetrates into the pores of the porous molded body. Becomes the property of In the second stage, the conductive polymer compound sufficiently penetrates into the pores, forming an almost complete solid electrolyte at 7'.

従って、前記多孔質成形鉢土その細孔内部まで十分に導
電率が高い固体電解質で満たされるので、等価直列抵抗
が小さく、共振周波数もI MHz以上と高周波数領域
まで良好な特性を示し、さらに、tlanδが小さく、
最大許容電流も大きく、特性が向上し、かつもれ電流の
小さい信頼性の優れた大容量の固体電解コンデンサを得
ることが可能となる。
Therefore, the inside of the pores of the porous molded potting soil are sufficiently filled with a solid electrolyte with high conductivity, so the equivalent series resistance is small, and the resonance frequency shows good characteristics up to a high frequency range of I MHz or higher. , tlanδ is small,
It becomes possible to obtain a highly reliable, large-capacity solid electrolytic capacitor with a large maximum allowable current, improved characteristics, and low leakage current.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明するが、本
発明はこれら実施例にのみ限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 直径5 mm、高さ5mmの円柱状のタンタル微粉焼結
体ペレット(空隙率50%)を硝酸水溶液中で100V
で陽極酸化し、洗浄および乾燥後、このペレット上面に
金線を接触させ、1.25Mのピロール、および0.3
Mのパラトルエンスルホン酸テトラエチルアンモニウム
を含むアセトニトリル溶液中に一度浸漬して引き上げ、
下部の一部を同溶液中に浸漬したままにした。この状態
で陰極としてペレット下方に配置したニッケル板−金属
との間に5.8Vの電圧を印加したところ、Iちに金線
表面からポリピロールが生長し、ペレット面上で樹状の
ポリピロールが生成して約2分後にペレットの側面およ
びペレットの反対面に達した。ここで反応を停止し、次
に、金線を含めて全体を同溶液中に浸漬し、1.8Vの
電圧を印加して4時間反応したところ、空隙がポリピロ
ールで充填されたペレットが得られた。反応前後の重量
変化から求めたこのペレットの空隙へのポリピロール充
填率は80%であった。
Example 1 A cylindrical fine tantalum powder sintered pellet (50% porosity) with a diameter of 5 mm and a height of 5 mm was heated at 100 V in an aqueous nitric acid solution.
After anodizing, washing and drying, a gold wire was brought into contact with the top surface of the pellet, and 1.25M pyrrole and 0.3
Once immersed in an acetonitrile solution containing tetraethylammonium paratoluenesulfonate of M and pulled up,
A portion of the lower portion was left immersed in the same solution. In this state, when a voltage of 5.8 V was applied between the metal and the nickel plate placed below the pellet as a cathode, polypyrrole immediately grew from the surface of the gold wire, and dendritic polypyrrole was formed on the pellet surface. After about 2 minutes, the side of the pellet and the opposite side of the pellet were reached. The reaction was stopped at this point, and the entire body including the gold wire was immersed in the same solution, and a voltage of 1.8V was applied to react for 4 hours, resulting in pellets in which the voids were filled with polypyrrole. Ta. The filling rate of polypyrrole into the voids of this pellet, determined from the weight change before and after the reaction, was 80%.

次に、このペレット表面のポリピロールから銀ペースト
を用いてリードを引き出し、エポキシ樹脂で外装してコ
ンデンサを完成させた。得られたコンデンサは120H
zにおいて静電容量4.8μF1損失角の正接(tha
nδ)は0.008であった。このコンデンサの静電容
量の変化率はl MHzまで10%以下、またt:an
δも600kHzまで0.1以下であり、IMHz以上
の共振周波数を有する高周波特性の良好なものであった
Next, leads were drawn out from the polypyrrole on the surface of the pellet using silver paste, and the capacitor was completed by covering it with epoxy resin. The obtained capacitor is 120H
The tangent of the capacitance 4.8μF1 loss angle (tha
nδ) was 0.008. The capacitance change rate of this capacitor is less than 10% up to l MHz, and t: an
δ was also 0.1 or less up to 600 kHz, and the high frequency characteristics were good with a resonant frequency of IMHz or more.

実施例2 0.25Mのビロール、および0.2Mのパラトルエン
スルホン酸ナトリウムを含む水溶液を用いて、白金板を
陽極とする電解酸化反応にて膜厚20μmのポリピロー
ルフィルムを得た。次に、このフィルムを幅1 mm、
長さ30n+mの短冊状に切り出し、実施例1の金線に
代えて作用電極として使用し、実施例1のタンタル微粉
焼結体ペレットに実施例1と同様の方法で電圧を印加す
ると、実施例1と同様にペレット面上で樹状のポリピロ
ールが生成して約1分40秒後にペレットの側面および
ペレットの反対面に達した。ここで反応を停止し、次に
、1.8ゾの電圧を印加して4時間反応したところ、ペ
レット空隙の85%がポリピロールで充填された試料が
得られた。
Example 2 A polypyrrole film with a thickness of 20 μm was obtained by an electrolytic oxidation reaction using a platinum plate as an anode using an aqueous solution containing 0.25 M of virol and 0.2 M of sodium paratoluenesulfonate. Next, this film was made into a width of 1 mm.
When a voltage was applied to the fine tantalum powder sintered pellet of Example 1 by cutting it into a strip with a length of 30n+m and using it as a working electrode in place of the gold wire of Example 1, Example 1 was obtained. Similarly to 1, dendritic polypyrrole was generated on the pellet surface and reached the side surface of the pellet and the opposite surface of the pellet after about 1 minute and 40 seconds. The reaction was stopped here, and then a voltage of 1.8 zo was applied and the reaction was continued for 4 hours, resulting in a sample in which 85% of the pellet voids were filled with polypyrrole.

この試料から、実施例1の方法でリードを引き出し、外
装してコンデンサを完成させた。得られたコンデンサは
120Hzにふいて静電容量5.0μF、損失角の正接
(tlanδ)は0.012であった。このコンデンサ
の静電容量の変化率はI MHzまで10%以下、また
tAnδも600kHzまで0.1以下であり、IMH
z以上の共振周波数を有する高周波特性の良好なもので
あった。
Leads were drawn out from this sample using the method of Example 1 and packaged to complete a capacitor. The obtained capacitor had a capacitance of 5.0 μF at 120 Hz, and a loss angle tangent (tlan δ) of 0.012. The capacitance change rate of this capacitor is less than 10% up to I MHz, and tAnδ is less than 0.1 up to 600 kHz.
It had good high frequency characteristics with a resonance frequency of z or more.

実施例3 エツチングしたアルミニウム箔をほう酸アンモニウム中
で100 Vで電解酸化し、洗浄および乾燥後、その上
面に実施例2の方法で製造した短冊状ポリピロールフィ
ルムを接触させ、もう一方の面を1.25Mのピロール
、および0.3Mのパラトルエンスルホン酸テトラエチ
ルアンモニウムを含むアセトニトリル溶液中に浸漬して
、同溶液中に設けたニッケル板陰極と前記短冊状ポリピ
ロールフィルムとの間に5.8V の電圧を印加したと
ころは、アルミニウム箔表面ふよび、エツチング部分内
部に樹状のポリピロールが生成した。50分後反応を停
止し、次に、1.8vの電圧を印加して4時間反応した
ところ、アルミニウム箔表面およびエツチング部分内部
がポリピロールで充填された試料が得られた。
Example 3 An etched aluminum foil was electrolytically oxidized in ammonium borate at 100 V, washed and dried, and then the top surface of the foil was brought into contact with a strip of polypyrrole film produced by the method of Example 2, and the other surface was exposed to 1. The rectangular polypyrrole film was immersed in an acetonitrile solution containing 25 M pyrrole and 0.3 M tetraethylammonium paratoluenesulfonate, and a voltage of 5.8 V was applied between the nickel plate cathode provided in the same solution and the strip-shaped polypyrrole film. Where the voltage was applied, dendritic polypyrrole was generated on the surface of the aluminum foil and inside the etched portion. After 50 minutes, the reaction was stopped, and then a voltage of 1.8 V was applied to react for 4 hours, yielding a sample in which the surface of the aluminum foil and the inside of the etched portion were filled with polypyrrole.

次に、このアルミニウム箔表面のポリピロールから銀ペ
ーストを用いてリードを引き出し、エポキシ樹脂で外装
してコンデンサを完成させた。得られたコンデンサは1
20Hzにおいて静電容量1.6μF1損失角の正接(
tanδ)は0.009であった。
Next, leads were drawn out from the polypyrrole on the surface of the aluminum foil using silver paste, and the capacitor was completed by covering the capacitor with epoxy resin. The obtained capacitor is 1
At 20Hz, capacitance 1.6μF1 loss angle tangent (
tan δ) was 0.009.

このコンデンサの静電容量の変化率はI MHzまで1
0%以下、またtanδも600kHzまで0.1以下
であり、1 M)Iz以上の共振周波数を有する高周波
特性の良好なものであった。
The rate of change of capacitance of this capacitor is 1 up to I MHz.
0% or less, tan δ was also 0.1 or less up to 600 kHz, and the high frequency characteristics were good with a resonance frequency of 1 M)Iz or more.

実施例4 実施例3において、第1段階のモノマー溶液として2.
5Mのベンゼンならびに0.1Mの塩化第2銅およびL
iAsF5を含むニトロベンゼン溶液を用い、20Vの
電圧を印加してアルミニウム箔表面およびエツチング部
分内部に樹状のポリパラフェニレンが生成せしめた。5
0分後反応を停止して、前記モノマー液から引き上げ、
続いて1.25Mのピロールおよび0.3Mのパラトル
エンスルホン酸テトラエチルアンモニウムを含むアセト
ニトリル溶液に一部浸漬し、1.8Vの電圧を印加して
4時間反応したところ、アルミニウム箔表面およびエツ
チング部分内部がポリピロールで充填された試料が得ら
れた。
Example 4 In Example 3, 2.
5M benzene and 0.1M cupric chloride and L
A nitrobenzene solution containing iAsF5 was used and a voltage of 20 V was applied to generate dendritic polyparaphenylene on the surface of the aluminum foil and inside the etched portion. 5
Stop the reaction after 0 minutes and withdraw from the monomer solution,
Subsequently, the aluminum foil was partially immersed in an acetonitrile solution containing 1.25M pyrrole and 0.3M tetraethylammonium paratoluenesulfonate, and a voltage of 1.8V was applied to react for 4 hours. A sample filled with polypyrrole was obtained.

次に、このアルミニウム育表面のポリピロールから銀ペ
ーストを用いてリードを引き出し、エポキシ樹脂で外装
してコンデンサを完成させた。得られたコンデンサは、
120Hzにおいて静電容量1.6μF1損失角の正接
(tanδ)は0.019であった。
Next, the leads were drawn out from the polypyrrole on the aluminum grown surface using silver paste and then covered with epoxy resin to complete the capacitor. The resulting capacitor is
At 120 Hz, the capacitance was 1.6 μF and the loss angle tangent (tan δ) was 0.019.

このコンデンサの静電容量の変化率はI MHzまで1
0%以下、またtanδも500kHzまで0.1以下
であり、I M)lz以上の共振周波数を有する高周波
特性の良好なものであった。
The rate of change of capacitance of this capacitor is 1 up to I MHz.
0% or less, tan δ was also 0.1 or less up to 500 kHz, and the high frequency characteristics were good with a resonance frequency of IM)lz or more.

実施例5 幅10mm長さ25mmの多孔性アルミニウム箔を、゛
ホウ酸アンモニウム水溶液中、100Vで化成処理を行
い酸化皮膜を形成させた後に、洗浄および乾燥させた。
Example 5 A porous aluminum foil having a width of 10 mm and a length of 25 mm was subjected to a chemical conversion treatment in an aqueous ammonium borate solution at 100 V to form an oxide film, and then washed and dried.

0.25Mのピロールおよび2Mのパラトルエンスルホ
ン酸ナトリウムを含む水溶液を用いて、白金板を陽極と
する電解酸化反応にて膜厚20μmのポリピロールフィ
ルムを得た後、これを幅1 mm長さ30mmの短冊状
に切り出した。先の化成処理を行った化成アルミニウム
箔の上端から10mmの部分に先のポリピロールフィル
ムの一端を接触させ固定した状態で、アルミニウム箔の
下端の5 mmを電解液(IMのピロール、0.1Mの
ドデシルベンゼンスルホン酸および0.1Mのトリエチ
ルアミンを含むアセトニトリル溶液)に浸漬させる。陰
極としてニッケル板を前記アルミニウム箔とほぼ平行に
、かつポリピロールフィルムを取り付けたのと反対側1
 cmの位置で電解液中に浸漬し、これとポリピロール
フィルムの間に20Vの電圧を印加したところ、化成ア
ルミニウム箔上を、陽極としたポリピロールフィルムか
ら電解液の液面に向かってポリピロールが樹状に成長し
、約20分でアルミニウム箔の片側のほぼ全面が樹状ポ
リピロールで覆われた。このときのアルミニウム箔表面
の電解液の液膜層における電位勾配は約20V/cmで
あった。
Using an aqueous solution containing 0.25M pyrrole and 2M sodium para-toluenesulfonate, a polypyrrole film with a thickness of 20 μm was obtained by electrolytic oxidation reaction using a platinum plate as an anode, and then this was made into a film with a width of 1 mm and a length of 30 mm. Cut out into strips. While fixing one end of the polypyrrole film in contact with 10 mm from the upper end of the chemical aluminum foil that has undergone the chemical conversion treatment, add an electrolytic solution (IM's pyrrole, 0.1 M (acetonitrile solution containing dodecylbenzenesulfonic acid and 0.1M triethylamine). Place a nickel plate as a cathode almost parallel to the aluminum foil and on the opposite side to where the polypyrrole film was attached.
When the polypyrrole film was immersed in an electrolytic solution at a position of 1.5 cm, and a voltage of 20 V was applied between it and the polypyrrole film, the polypyrrole formed a tree on the chemical aluminum foil toward the surface of the electrolytic solution from the polypyrrole film that served as an anode. After approximately 20 minutes, almost the entire surface of one side of the aluminum foil was covered with dendritic polypyrrole. At this time, the potential gradient in the liquid film layer of the electrolytic solution on the surface of the aluminum foil was about 20 V/cm.

次いで、このアルミニウム箔をポリピロールフィルムを
取り付けたままで液状ポリピロール部分上端まで浸漬し
、ポリピロールフィルムとニッケル板との間に2.5V
の電圧を印加した。約2時間後にはアルミニウム箔の両
面がポリピロールで覆われた。反応前後の重量変化より
求めたアルミニウム箔細孔内へのポリピロールの充填率
は90%であった。
Next, this aluminum foil was immersed up to the upper end of the liquid polypyrrole portion with the polypyrrole film still attached, and 2.5V was applied between the polypyrrole film and the nickel plate.
voltage was applied. After about 2 hours, both sides of the aluminum foil were covered with polypyrrole. The filling rate of polypyrrole into the pores of the aluminum foil, determined from the weight change before and after the reaction, was 90%.

次に、このアルミニウム箔表面のポリピロールから銀ペ
ーストを用いてリードを引き出し、エポキシ樹脂で外装
してコンデンサを完成させた。得られたコンデンサは、
120Hzにおいて静電容量2.7μF、損失角の正接
(tanδ)は0.01以下であった。
Next, leads were drawn out from the polypyrrole on the surface of the aluminum foil using silver paste, and the capacitor was completed by covering the capacitor with epoxy resin. The resulting capacitor is
At 120 Hz, the capacitance was 2.7 μF and the loss angle tangent (tan δ) was 0.01 or less.

このコンデンサの静電容量の変化率は500 kHzま
で10%以下、またtanδも300kHzまで0.1
以下であり、IMflz以上の共振周波数を有する高周
波特性の良好なものであった。
The capacitance change rate of this capacitor is less than 10% up to 500 kHz, and tan δ is 0.1 up to 300 kHz.
It had good high frequency characteristics with a resonant frequency higher than IMflz.

実施例6 実施例5のポリピロールフィルムに代えて金線を作用電
極として用い、実施例5と同様の操作を行いアルミニウ
ム箔にポリピロールの箔膜を形成させた。細孔内へのポ
リピロールの充填率は80%であった。これから、実施
例5と同様の方法によりリード線の引き出しおよび外装
を行いコンデンサを完成させた。得られたコンデンサは
、120H2において静電容量2.4μF1損失角の正
接(tanδ)はo、 oog以下であった。このコン
デンサの静電容量の変化率は800kHzまで10%以
下、またtanδも500k)Izまで0.1以下であ
り、I MHz以上の共振周波数を有する高周波特性の
良好なものであった。
Example 6 A gold wire was used as the working electrode in place of the polypyrrole film of Example 5, and the same operation as in Example 5 was performed to form a polypyrrole foil film on the aluminum foil. The filling rate of polypyrrole into the pores was 80%. From this, the lead wires were drawn out and sheathed in the same manner as in Example 5 to complete the capacitor. The obtained capacitor had a capacitance of 2.4 μF at 120H2 and a loss angle tangent (tan δ) of less than o, oog. The capacitance change rate of this capacitor was 10% or less up to 800 kHz, and the tan δ was 0.1 or less up to 500 kHz, and it had good high frequency characteristics with a resonance frequency of I MHz or higher.

比較例 実施例1において、ペレット上面に金線を接触させ、こ
の全体を電解液中に浸漬した状態で、1,8Vの電圧を
印加して4時間反応したところ、ペレットの上面にのみ
ポリピロール膜が形成された。
Comparative Example In Example 1, a gold wire was brought into contact with the top surface of the pellet, the whole was immersed in the electrolyte, and a voltage of 1.8 V was applied to react for 4 hours. As a result, a polypyrrole film was formed only on the top surface of the pellet. was formed.

実施例1と同様にコンデンサを組立て、静電容量を測定
したところ、100nFと極めて小さなものであった。
When a capacitor was assembled in the same manner as in Example 1 and the capacitance was measured, it was found to be extremely small at 100 nF.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば1、高周波領域まで
良好な特性を有し、しかも信頼性に優れた大容量の固体
電解コンデンサを容易に製造することができ、その効果
は大である。
As explained above, according to the present invention, it is possible to easily manufacture a large capacity solid electrolytic capacitor that has good characteristics up to a high frequency range and is excellent in reliability, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の構成の一例の要部を示す説明図。 1・・・タンクルペレット (皮膜形成金属)、2・・
・金線(作用電極)、3・・・ニッケル板(対向電極)
、4・・・電解液、5・・・電解液膜層。
The figure is an explanatory diagram showing a main part of an example of the configuration of the present invention. 1... Tankle pellet (film-forming metal), 2...
・Gold wire (working electrode), 3...nickel plate (counter electrode)
, 4... Electrolyte solution, 5... Electrolyte solution membrane layer.

Claims (3)

【特許請求の範囲】[Claims] 1.皮膜形成金属の酸化物を誘電体とし導電性高分子化
合物を固体電解質とする固体電解コンデンサの製造方法
において、 酸化皮膜を有する皮膜形成金属の多孔質成形体の表面を
電解重合用モノマーを含む電解液で濡らし、この多孔質
成形体に接触して設けた作用電極を用いて電解重合を行
い、前記多孔質成形体の表面に樹状あるいは網目状の導
電性高分子化合物を形成させ、次いで、この導電性高分
子化合物を陽極として芳香族化合物の電解重合を行い前
記固体電解質を形成する ことを特徴とする固体電解コンデンサの製造方法。
1. In a method for manufacturing a solid electrolytic capacitor using an oxide of a film-forming metal as a dielectric and a conductive polymer compound as a solid electrolyte, the surface of a porous molded body of a film-forming metal having an oxide film is coated with an electrolytic polymer containing a monomer for electrolytic polymerization. Wet the porous molded body with a liquid and perform electrolytic polymerization using a working electrode provided in contact with the porous molded body to form a dendritic or network-like conductive polymer compound on the surface of the porous molded body, and then, A method for manufacturing a solid electrolytic capacitor, which comprises forming the solid electrolyte by electrolytically polymerizing an aromatic compound using the conductive polymer compound as an anode.
2.前記電解重合用モノマーが、ピロール、チオフェン
およびベンゼンならびにその誘導体である請求項1記載
の固体電解コンデンサの製造方法。
2. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the monomer for electrolytic polymerization is pyrrole, thiophene, benzene, or a derivative thereof.
3.前記芳香族化合物が、ピロール、チオフェンおよび
ベンゼンならびにその誘導体である請求項1記載の固体
電解コンデンサの製造方法。
3. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the aromatic compound is pyrrole, thiophene, benzene, or a derivative thereof.
JP1046168A 1989-02-27 1989-02-27 Manufacture of solid electrolytic capacitor Pending JPH02224316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046168A JPH02224316A (en) 1989-02-27 1989-02-27 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046168A JPH02224316A (en) 1989-02-27 1989-02-27 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02224316A true JPH02224316A (en) 1990-09-06

Family

ID=12739490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046168A Pending JPH02224316A (en) 1989-02-27 1989-02-27 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02224316A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483415A (en) * 1993-02-26 1996-01-09 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6239965B1 (en) 1998-05-22 2001-05-29 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method of producing the same
JP2007095507A (en) * 2005-09-29 2007-04-12 Shin Etsu Polymer Co Ltd Conductive porous body and its manufacturing method, and electrochemical device
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
WO2022118785A1 (en) * 2020-12-01 2022-06-09 日本ケミコン株式会社 Electrolytic capacitor and method for manufacturing electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483415A (en) * 1993-02-26 1996-01-09 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6361572B1 (en) 1997-06-03 2002-03-26 Matsushita Electric Industrial Co., Ltd. Method of making an electrolytic capacitor having a conductive polymer formed on the inner surface of micropores of the anodes
US6239965B1 (en) 1998-05-22 2001-05-29 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method of producing the same
US6989289B1 (en) 1998-05-22 2006-01-24 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method of producing the same
JP2007095507A (en) * 2005-09-29 2007-04-12 Shin Etsu Polymer Co Ltd Conductive porous body and its manufacturing method, and electrochemical device
JP4732101B2 (en) * 2005-09-29 2011-07-27 信越ポリマー株式会社 Conductive porous separator, method for producing the same, and electrochemical device
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
WO2022118785A1 (en) * 2020-12-01 2022-06-09 日本ケミコン株式会社 Electrolytic capacitor and method for manufacturing electrolytic capacitor

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
EP0437857B1 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
JPH0474853B2 (en)
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPS63158829A (en) Solid electrolytic capacitor
US6515848B1 (en) Solid electrolytic capacitors and method for manufacturing the same
JPH0458165B2 (en)
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPH10340829A (en) Solid electrolytic capacitor and manufacture thereof
JPH0362298B2 (en)
JPS61240625A (en) Solid electrolytic capacitor
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0378222A (en) Manufacture of solid tantalum capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JPH0346215A (en) Manufacture of tantalum solid electrolytic capacitor
JPH0563009B2 (en)
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH02224314A (en) Manufacture of solid electrolytic capacitor
JPH0722068B2 (en) Capacitor manufacturing method
JPH02224315A (en) Manufacture of solid electrolytic capacitor