JP2764938B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2764938B2
JP2764938B2 JP63219062A JP21906288A JP2764938B2 JP 2764938 B2 JP2764938 B2 JP 2764938B2 JP 63219062 A JP63219062 A JP 63219062A JP 21906288 A JP21906288 A JP 21906288A JP 2764938 B2 JP2764938 B2 JP 2764938B2
Authority
JP
Japan
Prior art keywords
conductive polymer
film
solvent
anodized
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63219062A
Other languages
Japanese (ja)
Other versions
JPH0266921A (en
Inventor
健司 倉貫
潤二 尾崎
洋一 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63219062A priority Critical patent/JP2764938B2/en
Publication of JPH0266921A publication Critical patent/JPH0266921A/en
Application granted granted Critical
Publication of JP2764938B2 publication Critical patent/JP2764938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は小型大容量化に適した固体電解コンデンサの
製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor suitable for miniaturization and large capacity.

従来の技術 最近電子機器のデジタル化に伴って、そこに使用され
るコンデンサも高周波領域においてインピーダンスが低
く、小型大容量化したものへの要求が高まっている。従
来、高周波領域用のコンデンサとしてはプラスチックフ
ィルムコンデンサ、マイカコンデンサ、積層セラミック
コンデンサなどが用いられている。またその他にアルミ
ニウム乾式電解コンデンサやアルミニウムまたはタンタ
ル固体電解コンデンサなどがある。アルミニウム乾式電
解コンデンサでは、エッチングを施した陽極箔と陰極箔
をその間にセパレータを介在させて巻回することにより
コンデサ素子を構成し、そしてこのコンデンサ素子に液
状の電解質を含浸させている。また、アルミニウムやタ
ンタル固体電解コンデンサでは前記アルミニウム乾式電
解コンデンサの特性改良のため電解質の固体化がなされ
ている。この固体電解質の形成においては、硝酸マンガ
ン溶液に陽極体を含浸し、250〜350℃前後の高温炉中で
熱分解することにより、二酸化マンガン層を形成してい
る。このコンデンサの場合、電解質が固体であるため、
高温における電解質の流出、低温域での凝固から生じる
機能低下などの欠点がなく、液状の電解質と比べて良好
な周波数特性、温度特性を示す。また、アルミ電解コン
デンサはタンタル固体電解コンデンサと同様誘電体とな
る化成皮膜を非常に薄くできるために大容量を実現でき
る。
2. Description of the Related Art Recently, with the digitization of electronic devices, a capacitor used therein has a low impedance in a high frequency range, and a demand for a small-sized and large-capacity capacitor is increasing. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as capacitors for the high frequency range. Other examples include an aluminum dry electrolytic capacitor and an aluminum or tantalum solid electrolytic capacitor. In an aluminum dry electrolytic capacitor, a capacitor element is formed by winding an etched anode foil and cathode foil with a separator interposed therebetween, and the capacitor element is impregnated with a liquid electrolyte. In the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified to improve the characteristics of the aluminum dry electrolytic capacitor. In the formation of this solid electrolyte, a manganese dioxide layer is formed by impregnating the anode body with a manganese nitrate solution and thermally decomposing it in a high-temperature furnace at about 250 to 350 ° C. In the case of this capacitor, the electrolyte is solid,
There are no drawbacks such as outflow of the electrolyte at a high temperature and functional deterioration caused by solidification in a low temperature range, and it shows better frequency characteristics and temperature characteristics than liquid electrolytes. Further, an aluminum electrolytic capacitor can realize a large capacity because a chemical conversion film serving as a dielectric can be made extremely thin like a tantalum solid electrolytic capacitor.

また、近年では7,7,8,8−テトラシアノキノジメタン
(以下TCNQと記す)塩等の有機半導体を固体電解質とし
て用いた固体電解コンデンサが開発されている。
In recent years, solid electrolytic capacitors using an organic semiconductor such as 7,7,8,8-tetracyanoquinodimethane (hereinafter, referred to as TCNQ) salt as a solid electrolyte have been developed.

さらに固体電解質の高電導度化のためにピロール、チ
オフェン、フランなどの重合性モノマーを電解重合させ
て導電性高分子とし、この導電性高分子を固体電解質と
する方法が提案されている。
In addition, a method has been proposed in which a polymerizable monomer such as pyrrole, thiophene, or furan is electrolytically polymerized into a conductive polymer to increase the conductivity of the solid electrolyte, and the conductive polymer is used as a solid electrolyte.

発明が解決しようとする課題 導電性高分子に関しては、その電導度がおよそ1〜10
0S・cm-1のものを用いてコンデンサを構成することが可
能であり、固体のメリットを活かした高周波領域で良好
な周波数特性および広範囲での温度特性を実現すること
が可能となる。電解重合反応では、モノマーの電解酸化
という反応過程により、誘電体となる化成皮膜上へ皮膜
を破壊せずに重合膜をつけることが必要である。この方
法として、特開昭62−165313号公報に示されているよう
に、化成皮膜の一部に導電性物質を重合の開始点として
設けることにより、化成皮膜上に析出・生長させる方法
が提案されている。この特開昭62−165313号公報の実施
例は、ポリエステルフィルムの上に金属を蒸着した導電
フィルムを化成皮膜の外周部(化成皮膜の全面積の0.00
1〜50%)に設け、そこを重合の開始点として電解重合
を行うという方法である。しかしながら、この方法では
導電性物質のごく近傍には電解重合膜が生長するが、化
成皮膜が大面積の場合には化成皮膜上全体に電解重合膜
を生長させることができないという欠点があった。ま
た、化成皮膜上全体に導電性物質として金属粉やグラフ
ァイトなどの電導度の高いものを直接使用した場合には
ショートしてしまうなどの問題点があった。
Problems to be Solved by the Invention Regarding conductive polymers, the conductivity is about 1 to 10
It is possible to constitute a capacitor using a capacitor having a value of 0 S · cm −1 , and it is possible to realize good frequency characteristics in a high frequency region and temperature characteristics over a wide range by taking advantage of the solid. In the electrolytic polymerization reaction, it is necessary to form a polymer film on a chemical conversion film serving as a dielectric without destroying the film by a reaction process of electrolytic oxidation of a monomer. As this method, as disclosed in Japanese Patent Application Laid-Open No. Sho 62-165313, a method has been proposed in which a conductive substance is provided as a starting point of polymerization on a part of a chemical conversion film to precipitate and grow on the chemical conversion film. Have been. In the example of JP-A-62-165313, a conductive film in which a metal is vapor-deposited on a polyester film is applied to the outer peripheral portion of the chemical conversion film (0.00% of the total area of the chemical conversion film).
1 to 50%), and electrolytic polymerization is performed using the polymerization start point as a starting point. However, in this method, the electropolymerized film grows very close to the conductive material, but when the chemical conversion film has a large area, there is a disadvantage that the electropolymerized film cannot be grown on the entire chemical conversion film. In addition, when a highly conductive material such as metal powder or graphite is directly used as a conductive substance over the entire chemical conversion film, there is a problem that a short circuit occurs.

また導電性高分子を化成皮膜上に形成する別な方法と
しては、溶媒可溶性の導電性高分子を用いる方法がある
が、この場合、前記導電性高分子を合成した後、過飽和
に溶解した溶液中に化成皮膜を有する陽極体を数回浸
漬、乾燥する操作を繰り返して前記陽極体に付着させて
形成する必要があり、工程が繁雑になっていた。またそ
ればかりでなく、導電性高分子の電導度も低下するとい
う課題があった。
As another method for forming a conductive polymer on a chemical conversion film, there is a method using a solvent-soluble conductive polymer. In this case, a solution obtained by synthesizing the conductive polymer and dissolving it in supersaturation is used. An operation of dipping and drying the anode body having a chemical conversion film therein several times has to be repeated to adhere to the anode body to form the anode body, and the process is complicated. In addition, there is a problem that the conductivity of the conductive polymer also decreases.

そしてまた、化成皮膜を形成する前に、電解重合膜を
弁金属上につけて、その後、化成液中で陽極化成を行う
ことにより化成皮膜を形成することもできるが、この場
合電解重合膜を介して化成反応を行うことになるため、
電解重合膜の変質を来たしたり、弁金属との付着性の低
下を生じていた。したがって、これらの方法によって大
容量のコンデンサを提供することは困難であった。
Further, before forming the chemical conversion film, the electrolytic polymerization film can be formed on the valve metal, and thereafter, the chemical conversion film can be formed by performing anodization in a chemical conversion solution. To perform a chemical reaction,
Deterioration of the electropolymerized film has occurred, and adhesion to the valve metal has been reduced. Therefore, it has been difficult to provide a large-capacity capacitor by these methods.

本発明はこのような課題を解決するもので、電解重合
法により得られる導電性高分子を固体電解質とする固体
電解コンデンサの製造方法において、コンデンサの誘電
体となる化成皮膜上の陰極を取り出す部分全体に効果的
に高電導度の導電性高分子を生長させることが可能とな
り、高周波領域で良好な周波数特性および広範囲での温
度特性を実現することができる大容量の固体電解コンデ
ンサの製造方法を提供することを目的とするものであ
る。
The present invention solves such a problem, and in a method for manufacturing a solid electrolytic capacitor using a conductive polymer obtained by an electrolytic polymerization method as a solid electrolyte, a portion for extracting a cathode on a chemical conversion film serving as a dielectric of the capacitor. A method for manufacturing a large-capacity solid electrolytic capacitor capable of effectively growing a high-conductivity conductive polymer as a whole and achieving good frequency characteristics in a high-frequency region and temperature characteristics in a wide range. It is intended to provide.

課題を解決するための手段 上記課題を解決するために本発明の固体電解コンデン
サの製造方法は、弁金属よりなる陽極体の表面に陽極化
成皮膜を形成した後、前記陽極化成皮膜上の陰極を取り
出す部分全体に、陽極体を溶媒可溶性導電性高分子の飽
和溶液中に1回浸漬、乾燥させることにより溶媒可溶性
導電性高分子を島状または層状に付着させ、その後、補
助電極を少なくとも一つ以上用いて電解重合を行わせる
ことにより前記陽極化成皮膜上に導電性高分子膜を形成
するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a solid electrolytic capacitor of the present invention comprises, after forming an anodized conversion film on the surface of an anode body made of a valve metal, forming a cathode on the anodized conversion film. The anode body is immersed in a saturated solution of the solvent-soluble conductive polymer once and dried on the entire portion to be taken out, whereby the solvent-soluble conductive polymer is attached in the form of islands or layers, and then at least one auxiliary electrode is provided. The conductive polymer film is formed on the anodized chemical film by performing the electrolytic polymerization as described above.

作用 上記製造方法によれば、弁金属よりなる陽極体の表面
に陽極化成皮膜を形成した後、前記陽極化成皮膜上の陰
極を取り出す部分全体に、陽極体を溶媒可溶性導電性高
分子の飽和溶液中に1回浸漬、乾燥させることにより溶
媒可溶性導電性高分子を島状または層状に付着させ、そ
の後、補助電極を少なくとも一つ以上用いて電解重合を
行わせることにより前記陽極化成皮膜上に導電性高分子
膜を形成するようにしたもので、前記溶媒可溶性導電性
高分子を陽極化成皮膜上に付着させることにより、補助
電極を用いて電解重合を行った場合、重合体は前記溶媒
可溶性導電性高分子上の表面全体に生長するため、導電
性高分子膜も効果的に陽極化成皮膜上に形成することが
でき、その結果、高周波領域で良好な周波数特性および
広範囲での温度特性を実現できる大容量の固体電解コン
デンサを得ることができるものである。
According to the above production method, after forming an anodized chemical film on the surface of an anode body made of a valve metal, the anode body is converted to a saturated solution of a solvent-soluble conductive polymer over the entire area where the cathode on the anodized chemical film is taken out. The solvent-soluble conductive polymer is adhered in the form of islands or layers by being immersed and dried once, and then subjected to electropolymerization using at least one auxiliary electrode to form a conductive film on the anodized chemical film. In the case where electrolytic polymerization is performed using an auxiliary electrode by attaching the solvent-soluble conductive polymer on the anodized chemical conversion film, the polymer is formed so as to form a conductive polymer film. Since it grows on the entire surface of the conductive polymer, a conductive polymer film can also be effectively formed on the anodized chemical conversion film. As a result, good frequency characteristics in a high frequency range and a wide temperature range A large-capacity solid electrolytic capacitor capable of realizing characteristics can be obtained.

また前記溶媒可溶性導電性高分子の付着は、陽極体を
溶媒可溶性導電性高分子の飽和溶液中に1回浸漬、乾燥
させるだけで行わせるようにしているため、酸化剤を用
いて化学酸化重合により導電性高分子膜を陽極化成皮膜
上に形成したもののように化学反応を伴うことはなく、
その結果、陽極化成皮膜に化学的な損傷を加えるという
ことはなくなるため、漏れ電流や耐電圧劣化を引き起こ
すということも防止できるものである。
In addition, since the solvent-soluble conductive polymer is attached only by immersing the anode body once in a saturated solution of the solvent-soluble conductive polymer and drying it, chemical oxidative polymerization using an oxidizing agent is performed. With a conductive polymer film formed on an anodized chemical conversion film without involving a chemical reaction,
As a result, no chemical damage is given to the anodized chemical film, so that it is possible to prevent the occurrence of leakage current and deterioration of withstand voltage.

そしてまた前記溶媒可溶性導電性高分子はドーパント
をトービングすることなく、陽極体を溶媒可溶性導電性
高分子の飽和溶液中に1回浸漬、乾燥させることにより
陽極化成皮膜上に付着させた後、そのまま電解重合によ
り陽極化成皮膜上に導電性高分子膜を形成することがで
きるため、製造プロセスを大幅に簡略化することができ
るというすぐれた特長を有するものである。
Further, the solvent-soluble conductive polymer is deposited on the anodized chemical film by immersing the anode body once in a saturated solution of the solvent-soluble conductive polymer and drying it without tobing the dopant, and then as it is. Since the conductive polymer film can be formed on the anodized chemical conversion film by electrolytic polymerization, it has an excellent feature that the manufacturing process can be greatly simplified.

実施例 以下、本発明の一実施例について図面を用いて説明す
る。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

塩酸などで電解エッチングされたアルミニウム箔から
なる陽極体6の一部に陽極引出しリード線7を溶接し、
アジピン酸アンモニウム等の水溶液中で化成反応を行わ
せて陽極体6に陽極化成皮膜8を形成した後、陽極体6
の陽極化成皮膜8上に溶媒可溶性導電性高分子を付着さ
せた。以下、溶媒可溶性導電性高分子の調製法および陽
極化成皮膜8上への形成法について順次説明する。
An anode lead wire 7 is welded to a part of the anode body 6 made of aluminum foil electrolytically etched with hydrochloric acid or the like,
After forming a chemical conversion reaction in an aqueous solution of ammonium adipate or the like to form an anodized chemical film 8 on the anode body 6, the anode body 6
A solvent-soluble conductive polymer was adhered on the anodized chemical film 8. Hereinafter, a method for preparing the solvent-soluble conductive polymer and a method for forming the same on the anodized chemical film 8 will be sequentially described.

前記溶媒可溶性導電性高分子はそれぞれに対応するモ
ノマーを合成した後、第1図に示すような単槽の電解槽
1で電解重合して合成した。すなわち、陽極2として表
面積が30cm2の白金プレート(Pt)またはITO(indium−
tinoxide)を、陰極3としてアルミニウム箔を、支持塩
としてテトラブチルアンモニウムヘキサフルオロフォス
フェイトを用いた重合液4を使用し、窒素雰囲気下、電
流密度1.0〜2.5mA・cm-2、液温10℃で約40分間重合し
た。なお、5はマグネチックスタラーである。モノマー
(構造を構造式1および2に示す)、支持塩および溶媒
等の濃度条件を第1表に示した。
The solvent-soluble conductive polymers were synthesized by synthesizing corresponding monomers and then electrolytically polymerizing in a single electrolytic tank 1 as shown in FIG. That is, a platinum plate (Pt) having a surface area of 30 cm 2 or ITO (indium-
tinoxide), an aluminum foil as a cathode 3, a polymerization solution 4 using tetrabutylammonium hexafluorophosphate as a supporting salt, a nitrogen atmosphere, a current density of 1.0 to 2.5 mA · cm -2 , and a liquid temperature of 10 ° C. For about 40 minutes. In addition, 5 is a magnetic stirrer. Table 1 shows the concentration conditions of the monomer (the structure is shown by Structural Formulas 1 and 2), the supporting salt and the solvent.

以上のような条件で陽極材上に重合した溶媒可溶性導
電性高分子を陽極材から引き剥し、そしてテトラヒドロ
フラン−ジクロロメタン−トリクロロエタンを4:1:1の
割合で混合した混合溶媒に前記溶媒可溶性導電性高分子
を溶解させて溶媒可溶性導電性高分子の飽和溶液を調製
した。
The solvent-soluble conductive polymer polymerized on the anode material under the above conditions was peeled off from the anode material, and the solvent-soluble conductive polymer was mixed in a mixed solvent of tetrahydrofuran-dichloromethane-trichloroethane in a ratio of 4: 1: 1. The polymer was dissolved to prepare a saturated solution of the solvent-soluble conductive polymer.

次にアジピンム酸アンモニウム水溶液などの化成液で
陽極体6の断面を電気化学的に化成処理した後、前記溶
媒可溶性導電性高分子の飽和溶液中に1回浸漬、乾燥さ
せることにより薄膜状の溶媒可溶性導電性高分子層9を
陽極体6の陽極化成皮膜8上に付着形成した。
Next, a section of the anode body 6 is subjected to electrochemical conversion treatment with a chemical conversion solution such as an aqueous solution of ammonium adipate, then immersed once in a saturated solution of the solvent-soluble conductive polymer, and dried to form a thin film solvent. A soluble conductive polymer layer 9 was deposited on the anodized chemical film 8 of the anode body 6.

次に第2図に示すような電解重合槽を使用し、重合液
(水溶液)10としては、モノマーにピロール0.5mol/
を、支持電解質にポリスチレンスルホン酸ナトリウム塩
0.1mol/を用いて重合液(水溶液)を調製した。次に
陽極体6を重合液(水溶液)10中に固定し、φ0.2のア
ルミニウム棒からなる補助陽極11を重合液(水溶液)10
中で溶媒可溶性導電性高分子層9に軽く接触させる。こ
のアルミニウム棒の先端は丸くて溶媒可溶性導電性高分
子層9との接触面積は0.2mm2以下である。このアルミニ
ウム棒を補助陽極11とするのに対し補助陽極12には厚さ
100μmのアルミニウム箔を使用した。このような構成
で補助陽極11と補助陰極12の間に5Vの定電圧を印加する
と、すぐに重合液(水溶液)10中にある補助陽極11であ
るアルミニウム棒の表面全体に導電性高分子膜13が形成
されるもので、その後も電圧を印加し続けると導電性高
分子膜13が溶媒可溶性導電性高分子層9上にも形成され
て次第に生長し、10〜30分後には1.12cm2の導電性高分
子膜13が形成された。次に第3図に示すように導電性高
分子膜13上にグラファイト層14を塗り、その上に導電層
15として銀ペイントを塗り陰極リード線16を取り出す。
そしてエポキシ樹脂17で外装することにより固体電解コ
ンデンサを作成した。
Next, an electrolytic polymerization tank as shown in FIG. 2 was used, and as a polymerization liquid (aqueous solution) 10, pyrrole 0.5 mol /
The supporting electrolyte is polystyrene sulfonic acid sodium salt
A polymerization solution (aqueous solution) was prepared using 0.1 mol /. Next, the anode body 6 is fixed in a polymerization solution (aqueous solution) 10, and an auxiliary anode 11 made of an aluminum rod having a diameter of 0.2 is attached to the polymerization solution (aqueous solution) 10.
Lightly contact the solvent-soluble conductive polymer layer 9 in the inside. The tip of this aluminum rod is round and the contact area with the solvent-soluble conductive polymer layer 9 is 0.2 mm 2 or less. This aluminum rod is used as the auxiliary anode 11, while the auxiliary anode 12 has a thickness
100 μm aluminum foil was used. When a constant voltage of 5 V is applied between the auxiliary anode 11 and the auxiliary cathode 12 in such a configuration, the conductive polymer film is immediately formed on the entire surface of the aluminum rod as the auxiliary anode 11 in the polymerization solution (aqueous solution) 10. When the voltage is continuously applied, the conductive polymer film 13 is also formed on the solvent-soluble conductive polymer layer 9 and grows gradually. After 10 to 30 minutes, the conductive polymer film 13 is 1.12 cm 2. The conductive polymer film 13 was formed. Next, as shown in FIG. 3, a graphite layer 14 is coated on the conductive polymer film 13, and a conductive layer is formed thereon.
15 is painted with silver paint and the cathode lead 16 is taken out.
Then, a solid electrolytic capacitor was prepared by packaging with an epoxy resin 17.

以上のような方法で作成した固体電解コンデンサの諸
特性を測定し、その測定結果を第2表に示した。
Various characteristics of the solid electrolytic capacitor prepared as described above were measured, and the measurement results are shown in Table 2.

但し(1)のポリマーはR=−(CH25CH3での試作
結果である。今回使用したアルミニウム陽極箔の液中容
量は16.1μFであったため、容量達成率は73.9〜96.2%
になる。さらに高周波の1MHzでのインピーダンスが非常
に低い比較的大容量の高性能コンデンサを得ることがで
きた。
However, the polymer of (1) is the result of trial production with R =-(CH 2 ) 5 CH 3 . Since the aluminum anode foil used this time had a liquid capacity of 16.1μF, the capacity achievement rate was 73.9-96.2%.
become. In addition, a relatively large-capacity high-performance capacitor with very low impedance at 1 MHz of high frequency was obtained.

本実施例では、導電性高分子のモノマーとしてピロー
ルを、支持電解質としてポリスチレンスルホンサンナト
リウム塩を用いた重合液により電解重合膜を形成したも
のについて説明したが、これ以外のチオフェン、フラン
やアニリンまたはそれらの誘導体をモノマーとして用
い、かつ支持電解質として他のものを使用した水溶液系
の重合液を用いて電解重合膜を形成しても構わないもの
である。
In the present embodiment, an example in which an electropolymerized film is formed by using a polymer solution using pyrrole as a monomer of a conductive polymer and polystyrenesulfonsan sodium salt as a supporting electrolyte has been described, but other thiophene, furan, aniline, or An electropolymerized film may be formed using an aqueous solution polymerization solution using those derivatives as monomers and using another as a supporting electrolyte.

また電解重合槽の補助陽極および補助陰極はアルミニ
ウムを使用した例で示したが、ステンレス、鉄、ニッケ
ル等の金属であってもその効果は変わらないものであ
る。
Further, although an example is shown in which aluminum is used for the auxiliary anode and the auxiliary cathode of the electrolytic polymerization tank, the effect is not changed even if a metal such as stainless steel, iron or nickel is used.

発明の効果 以上のように本発明の固体電解コンデンサの製造方法
は、弁金属よりなる陽極体の表面に陽極化成皮膜を形成
した後、前記陽極化成皮膜上の陰極を取り出す部分全体
に、陽極体を溶媒可溶性導電性高分子の飽和溶液中に1
回浸漬、乾燥させることにより、溶媒可溶性導電性高分
子を島状または層状に付着させ、その後、補助電極を少
なくとも一つ以上用いて電解重合を行わせることにより
前記陽極化成皮膜上に導電性高分子膜を形成するように
したもので、前記溶媒可溶性導電性高分子を陽極化成皮
膜上に付着させることにより、補助電極を用いて電解重
合を行った場合、重合体は前記溶媒可溶性導電性高分子
上の表面全体に生長するため、導電性高分子膜も効果的
に陽極化成皮膜上に形成することができ、その結果、高
周波領域で良好な周波数特性および広範囲での温度特性
を実現できる大容量の固体電解コンデンサを得ることが
できるものである。
Effect of the Invention As described above, the method for manufacturing a solid electrolytic capacitor of the present invention comprises: forming an anodized film on the surface of an anode body made of a valve metal; In a saturated solution of a solvent-soluble conductive polymer.
By immersion and drying, the solvent-soluble conductive polymer is adhered in the form of islands or layers, and then electropolymerization is performed by using at least one auxiliary electrode, thereby increasing the conductivity on the anodized chemical film. When an electrolytic polymerization is carried out using an auxiliary electrode by depositing the solvent-soluble conductive polymer on the anodized chemical conversion film so as to form a molecular film, the polymer becomes the solvent-soluble conductive high polymer. Since it grows on the entire surface of the molecule, the conductive polymer film can also be effectively formed on the anodized chemical conversion film, and as a result, a large frequency that can achieve good frequency characteristics in a high frequency range and a wide range of temperature characteristics. A solid electrolytic capacitor having a capacity can be obtained.

また前記溶媒可溶性導電性高分子の付着は、陽極体を
溶媒可溶性導電性高分子の飽和溶液中に1回浸漬、乾燥
させるだけで行わせるようにしているため、酸化剤を用
いて化学酸化重合により導電性高分子膜を陽極化成皮膜
上に形成したもののように化学反応を伴うことはなく、
その結果、陽極化成皮膜に化学的な損傷を加えるという
ことはなくなるため、漏れ電流や耐電圧劣化を引き起こ
すということも防止できるものである。
In addition, since the solvent-soluble conductive polymer is attached only by immersing the anode body once in a saturated solution of the solvent-soluble conductive polymer and drying it, chemical oxidative polymerization using an oxidizing agent is performed. With a conductive polymer film formed on an anodized chemical conversion film without involving a chemical reaction,
As a result, no chemical damage is given to the anodized chemical film, so that it is possible to prevent the occurrence of leakage current and deterioration of withstand voltage.

そしてまた前記溶媒可溶性導電性高分子はドーパント
をドーピングすることなく、陽極体を溶媒可溶性導電性
高分子の飽和溶液中に1回浸漬、乾燥させることにより
陽極化成皮膜上に付着させた後、そのまま電解重合によ
り陽極化成皮膜上に導電性高分子膜を形成することがで
きるため、製造プロセスを大幅に簡略化することができ
るというすぐれた特長を有するものである。
Further, the solvent-soluble conductive polymer is not doped with a dopant, and the anode body is immersed once in a saturated solution of the solvent-soluble conductive polymer, and then dried and adhered to the anodized chemical conversion film, and then, as it is. Since the conductive polymer film can be formed on the anodized chemical conversion film by electrolytic polymerization, it has an excellent feature that the manufacturing process can be greatly simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における溶媒可溶性導電性高
分子の合成に使用した電解槽の概略図、第2図は固体電
解コンデンサ製造用電解重合槽の構成を示す断面図、第
3図は同実施例により得られた固体電解コンデンサの概
観図である。 1……電解槽、2……陽極、3……陰極、4……重合
液、5……マグネチックスタラー、6……陽極体、7…
…陽極引出しリード線、8……陽極化成皮膜、9……溶
媒可溶性導電性高分子層、10……重合液(水溶液)、11
……補助陽極、12……補助陰極、13……導電性高分子
膜、14……グラファイト層、15……導電層、16……陰極
リード線、17……エポキシ樹脂。
FIG. 1 is a schematic view of an electrolytic cell used for synthesizing a solvent-soluble conductive polymer in one embodiment of the present invention, FIG. 2 is a cross-sectional view showing the structure of an electrolytic polymerization tank for producing a solid electrolytic capacitor, FIG. 2 is a schematic view of a solid electrolytic capacitor obtained according to the example. DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank, 2 ... Anode, 3 ... Cathode, 4 ... Polymerization liquid, 5 ... Magnetic stirrer, 6 ... Anode body, 7 ...
… Anode lead wire, 8… Anodic conversion coating, 9… Solvent-soluble conductive polymer layer, 10… Polymerization liquid (aqueous solution), 11
... Auxiliary anode, 12 ... Auxiliary cathode, 13 ... Conducting polymer film, 14 ... Graphite layer, 15 ... Conducting layer, 16 ... Cathode lead wire, 17 ... Epoxy resin.

フロントページの続き (56)参考文献 特開 昭63−173313(JP,A) 特開 昭63−80517(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01G 9/025 - 9/028Continuation of front page (56) References JP-A-63-173313 (JP, A) JP-A-63-80517 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01G 9 / 025-9/028

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁金属よりなる陽極体の表面に陽極化成皮
膜を形成した後、前記陽極化成皮膜上の陰極を取り出す
部分全体に、陽極体を溶媒可溶性導電性高分子の飽和溶
液中に1回浸漬、乾燥させることにより、溶媒可溶性導
電性高分子を島状または層状に付着させ、その後、補助
電極を少なくとも一つ以上用いて電解重合を行わせるこ
とにより前記陽極化成皮膜上に導電性高分子膜を形成す
るようにした固体電解コンデンサの製造方法。
After forming an anodized chemical film on the surface of an anode body made of a valve metal, the anode body is placed in a saturated solution of a solvent-soluble conductive polymer over the entire area where the cathode on the anodized film is taken out. By immersion and drying, the solvent-soluble conductive polymer is adhered in the form of islands or layers, and then electropolymerization is performed by using at least one auxiliary electrode, thereby increasing the conductivity on the anodized chemical film. A method for manufacturing a solid electrolytic capacitor in which a molecular film is formed.
【請求項2】溶媒可溶性導電性高分子が次の構造式1ま
たは2で表わされるものである請求項1記載の固体電解
コンデンサの製造方法。 (構造式1) 但しRは R=−(CH2)mCH3〔m=3〜19〕 R=−CH2OCH3 R=−CH2O(CH22OCH3 R=−CH2O(CH22O(CH22OCH3 R=−CH2NHC(O)(CH210CH3 R=−O(CH22O(CH22OCH3 (構造式2) 但し、l=10〜16
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the solvent-soluble conductive polymer is represented by the following structural formula 1 or 2. (Structural formula 1) Wherein R is R = - (CH 2) mCH 3 [m = 3 to 19] R = -CH 2 OCH 3 R = -CH 2 O (CH 2) 2 OCH 3 R = -CH 2 O (CH 2) 2 O (CH 2) 2 OCH 3 R = -CH 2 NHC (O) (CH 2) 10 CH 3 R = -O (CH 2) 2 O (CH 2) 2 OCH 3 ( formula 2) However, l = 10-16
JP63219062A 1988-09-01 1988-09-01 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2764938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219062A JP2764938B2 (en) 1988-09-01 1988-09-01 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219062A JP2764938B2 (en) 1988-09-01 1988-09-01 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0266921A JPH0266921A (en) 1990-03-07
JP2764938B2 true JP2764938B2 (en) 1998-06-11

Family

ID=16729675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219062A Expired - Fee Related JP2764938B2 (en) 1988-09-01 1988-09-01 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2764938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806197B1 (en) * 2004-10-27 2013-08-07 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining power supply apparatus, and small-hole drilling electric discharge machining
JP5062770B2 (en) * 2009-02-20 2012-10-31 Necトーキン株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP5419546B2 (en) * 2009-05-26 2014-02-19 Necトーキン株式会社 Surface mount thin capacitor and manufacturing method thereof
US20230245836A1 (en) * 2020-07-31 2023-08-03 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor element and solid electrolytic capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380517A (en) * 1986-09-24 1988-04-11 日本ケミコン株式会社 Solid electrolytic capacitor
JPS63173313A (en) * 1987-01-13 1988-07-16 日本カーリット株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0266921A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
KR100334918B1 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0831400B2 (en) Solid electrolytic capacitor
JP3478987B2 (en) Method for manufacturing solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
JPH05175082A (en) Manufacture of solid electrolytic capacitor
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JPS61240625A (en) Solid electrolytic capacitor
JP2668975B2 (en) Method for manufacturing solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPS62189714A (en) Formation of semiconductor layer of solid electrolytic capacitor
JP3104241B2 (en) Method for manufacturing solid electrolytic capacitor
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JP2741072B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH0266922A (en) Manufacture of solid electrolytic capacitor
JP2741071B2 (en) Method for manufacturing solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP2728001B2 (en) Solid electrolytic capacitors
JPH0419688B2 (en)
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees