JP5419546B2 - Surface mount thin capacitor and manufacturing method thereof - Google Patents

Surface mount thin capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5419546B2
JP5419546B2 JP2009125932A JP2009125932A JP5419546B2 JP 5419546 B2 JP5419546 B2 JP 5419546B2 JP 2009125932 A JP2009125932 A JP 2009125932A JP 2009125932 A JP2009125932 A JP 2009125932A JP 5419546 B2 JP5419546 B2 JP 5419546B2
Authority
JP
Japan
Prior art keywords
conductive polymer
layer
polymer layer
thin capacitor
mount thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009125932A
Other languages
Japanese (ja)
Other versions
JP2010278033A (en
Inventor
和弘 小池
健二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009125932A priority Critical patent/JP5419546B2/en
Publication of JP2010278033A publication Critical patent/JP2010278033A/en
Application granted granted Critical
Publication of JP5419546B2 publication Critical patent/JP5419546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面実装薄型コンデンサ及びその製造方法に関し、特に母材として金属箔を用いた表面実装薄型コンデンサ及びその製造方法に関する。   The present invention relates to a surface mount thin capacitor and a method for manufacturing the same, and more particularly to a surface mount thin capacitor using a metal foil as a base material and a method for manufacturing the same.

近年、携帯電話をはじめとする情報電子機器が、世の中に広く用いられている。これらの情報電子機器には、デジタル回路技術が用いられている。最近ではコンピュータや通信関連機器、家庭電化製品や車載用機器にもLSI等のデジタル回路技術が使用されている。さらに、上述したLSIを動作させた場合、高周波電流がLSIの電源ラインに発生することが知られている。この対策には、高周波電流の発生源であるLSIを供給電源系から高周波的に分離すること、すなわち、電源デカップリングの手法が有効である。コンデンサを用いて電気的ノイズの除去を広い周波数帯域に渡って行う場合には、複数種類のコンデンサ、たとえば自己共振周波数が異なるアルミ電解コンデンサ、タンタルコンデンサ、セラミックコンデンサ等の異種のコンデンサをLSI近傍に複数備えることによって行われてきた。   In recent years, information electronic devices such as mobile phones have been widely used in the world. These information electronic devices use digital circuit technology. Recently, digital circuit technology such as LSI is also used in computers, communication-related devices, home appliances, and in-vehicle devices. Furthermore, it is known that when the above-described LSI is operated, a high-frequency current is generated in the power supply line of the LSI. As a countermeasure, it is effective to separate the LSI, which is the source of the high-frequency current, from the power supply system at high frequency, that is, a power supply decoupling technique. When using a capacitor to remove electrical noise over a wide frequency band, multiple types of capacitors, such as different types of capacitors such as aluminum electrolytic capacitors, tantalum capacitors, and ceramic capacitors with different self-resonant frequencies, are located near the LSI. It has been done by providing multiple.

従来より、弁作用金属としてアルミやタンタルなどを用いた固体電解コンデンサには、小型で静電容量が大きく、周波数特性に優れ、CPUデカップリング回路あるいは電源回路などに広く使用されている。特に高周波における低ESR(等価直列抵抗)、低ESL(等価直列インダクタンス)を持つ表面実装型固体電解コンデンサの開発が進んでいる。   Conventionally, solid electrolytic capacitors using aluminum, tantalum, or the like as a valve metal have been widely used in CPU decoupling circuits, power supply circuits, and the like because of their small size, large capacitance, and excellent frequency characteristics. In particular, the development of surface mount type solid electrolytic capacitors having low ESR (equivalent series resistance) and low ESL (equivalent series inductance) at high frequencies is in progress.

従来の表面実装薄型コンデンサに用いられるコンデンサ素子の断面図を図3に示す。   FIG. 3 shows a cross-sectional view of a capacitor element used in a conventional surface mount thin capacitor.

従来の技術について、図3を参照しながら説明する。この種の表面実装薄型コンデンサは、板状又は、箔状の弁作用を有する金属を拡面化した陽極体10の表面に陽極酸化皮膜1を形成し、レジスト層13により、この陽極体10を分離して陽極部を設けるとともに、中央部の陽極酸化皮膜1の上に表面を覆うように、固体電解質として導電性高分子層11を形成した後、その上に陰極層であるグラファイト層15,銀ペースト層16を順次形成してコンデンサ素子17が製作される。この様な表面実装薄型コンデンサの技術は特許文献1に開示されている。   A conventional technique will be described with reference to FIG. In this type of surface-mount thin capacitor, an anodic oxide film 1 is formed on the surface of an anode body 10 obtained by enlarging a plate-like or foil-like metal having a valve action, and the anode body 10 is formed by a resist layer 13. A conductive polymer layer 11 is formed as a solid electrolyte so as to cover the surface of the anodic oxide film 1 at the center and separate the anode portion, and then a graphite layer 15 as a cathode layer is formed thereon. The silver paste layer 16 is sequentially formed to manufacture the capacitor element 17. The technology of such a surface mount thin capacitor is disclosed in Patent Document 1.

しかしながら、このような構造の従来の表面実装薄型コンデンサでは、導電性高分子層11の形成において化学酸化重合を用いた場合、重合液として酸化剤溶液とモノマー液を交互に複数回浸漬する。その際に陽極体10の表面が平滑なため、重合液が陽極体10に付着せずに流れ落ち、重合液が保持しない為に均一な重合層が出来にくく、安定した電気特性を得ることが困難になる。又、これを解消するために多数回の浸漬を繰り返すことにより、製作時間が長時間に渡るといった問題が生じていた。   However, in the conventional surface mount thin capacitor having such a structure, when chemical oxidative polymerization is used in forming the conductive polymer layer 11, an oxidant solution and a monomer solution are alternately immersed a plurality of times as a polymerization solution. At that time, since the surface of the anode body 10 is smooth, the polymerization solution flows down without adhering to the anode body 10, and since the polymerization solution is not retained, it is difficult to form a uniform polymerization layer and it is difficult to obtain stable electrical characteristics. become. In addition, in order to solve this problem, there has been a problem that the manufacturing time is prolonged by repeating the immersion many times.

特開2005−159154号公報JP 2005-159154 A

本発明の技術的課題は、多数回の重合液浸漬を実施することなく、安定した電気特性を持った表面実装薄型コンデンサ及びその製造方法を提供することにある。   A technical problem of the present invention is to provide a surface mount thin capacitor having stable electric characteristics and a method of manufacturing the same without performing a large number of polymerization solution immersions.

本発明によれば、金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る拡面化した弁作用金属を母材として用い、前記拡面化した弁作用金属の表面には、酸化膜からなる誘電体層が形成され、両端部は陽極として使用されるとともに、中央部分の前記誘電体層の表面上の一部に、導電性高分子分散液を印刷することにより規則的なパターンを持って形成された第一の導電性高分子層と、前記第一の導電性高分子層及び前記誘電体層上に、モノマーを化学酸化重合することにより形成された第二の導電性高分子層を備えることを特徴とする表面実装薄型コンデンサが得られる。 According to the present invention, a surface-enhanced valve action metal composed of a metal core part and an etched layer covering both surfaces of the metal core part is used as a base material, A dielectric layer made of an oxide film is formed, both ends are used as anodes, and a conductive polymer dispersion is regularly printed on a part of the surface of the dielectric layer at the central portion. A first conductive polymer layer formed with a pattern, and a second conductive polymer layer formed by chemical oxidative polymerization of monomers on the first conductive polymer layer and the dielectric layer A surface-mount thin capacitor characterized by comprising a polymer layer is obtained.

また、前記第一の導電性高分子層は、厚さ方向に平行な断面が形状であり、前記凸形状が格子状、縞状、及び複数の円状であることを特徴とする表面実装薄型コンデンサが得られる。 Also, the first conductive polymer layer, the surface, characterized in that parallel to the thickness direction cross section Ri convex der, the convex lattice shape, a stripe shape, and a plurality of circular A mounted thin capacitor is obtained.

本発明によれば、金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る拡面化した弁作用金属を母材として用い、前記拡面化した弁作用金属の表面に酸化膜からなる誘電体層を形成する工程と、両端部は陽極として使用されるとともに、コンデンサ素子中央部分の表面上に一部に、導電性高分子分散液を印刷することにより規則的なパターンを持って第一の導電性高分子層が形成される工程と、前記第一の導電性高分子層及び前記誘電体層の上に、モノマーを化学酸化重合することにより第二の導電性高分子層を形成する工程とを含むことを特徴とする表面実装薄型コンデンサの製造方法が得られる。 According to the present invention, an expanded valve action metal composed of a metal core portion and an etched layer covering both surfaces of the metal core portion is used as a base material, and an oxide film is formed on the surface of the expanded valve action metal. Forming a dielectric layer comprising both ends used as anodes and having a regular pattern by printing a conductive polymer dispersion on a part of the surface of the capacitor element central portion. A first conductive polymer layer is formed, and a second conductive polymer layer is formed by chemical oxidative polymerization of a monomer on the first conductive polymer layer and the dielectric layer. The method for manufacturing the surface mount thin capacitor is obtained.

本発明によれば、より少ない重合液の浸漬回数によって、安定した電気特性を有した実装薄型コンデンサを提供することができる。   According to the present invention, it is possible to provide a mounted thin capacitor having stable electrical characteristics with a smaller number of times of immersion of the polymerization liquid.

本発明の実施の形態におけるコンデンサ素子の断面図。Sectional drawing of the capacitor | condenser element in embodiment of this invention. 本発明の実施例における第一重合層形成後の正面図で第一重合層の形状を示すものであり、図2(a)は縞状の形状、図2(b)は格子状の形状、図2(c)は円状の形状を示す正面図。FIG. 2 (a) shows the shape of the first polymerization layer in the front view after the formation of the first polymerization layer in the embodiment of the present invention, FIG. 2 (a) shows a striped shape, FIG. 2 (b) shows a lattice shape, FIG. 2C is a front view showing a circular shape. 従来の表面実装薄型コンデンサに用いられるコンデンサ素子の断面図。Sectional drawing of the capacitor | condenser element used for the conventional surface mount thin capacitor.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態におけるコンデンサ素子の断面図である。Al、Ti、Ta、Nb等の弁作用金属、ここではAlを用いてエッチング等により拡面化された陽極体10に電気化学的方法により化成処理して誘電体層1を形成する。誘電体層1を形成後、陽極と陰極との境界部分の誘電体皮膜及び電解質層を一部除去して、陽極体10の両端を露出させる。しかる後、前記陽極体10の両端の露出部分にスクリーン印刷手法等により、絶縁樹脂を形成しレジスト層13として、陽極と陰極を分離させる。その後乾燥してレジスト層13を乾燥硬化した後、直流電圧にて前記陽極体10を化成する。   FIG. 1 is a cross-sectional view of a capacitor element according to an embodiment of the present invention. A dielectric layer 1 is formed by subjecting the anode body 10 whose surface is enlarged by etching or the like to the valve action metal such as Al, Ti, Ta, Nb, etc., here Al by an electrochemical method. After forming the dielectric layer 1, the dielectric film and the electrolyte layer at the boundary portion between the anode and the cathode are partially removed to expose both ends of the anode body 10. Thereafter, an insulating resin is formed on the exposed portions at both ends of the anode body 10 by a screen printing method or the like to separate the anode and the cathode as the resist layer 13. Thereafter, the resist layer 13 is dried and cured, and then the anode body 10 is formed with a DC voltage.

その後、陽極体10の表面に第一の導電性高分子層12を形成する。形成方法としては、インクジェット方式、もしくは、スクリーン印刷による方法が挙げられ、陽極体10表面には凸形状であり、縞状、格子状、もしくは、円状の導電性高分子層が形成されている箇所と未形成な箇所が規則的に存在する様に形成される。   Thereafter, the first conductive polymer layer 12 is formed on the surface of the anode body 10. Examples of the forming method include an ink jet method or a method by screen printing. The surface of the anode body 10 has a convex shape, and a striped, latticed, or circular conductive polymer layer is formed. It forms so that a location and an unformed location may exist regularly.

その後、スルホン酸鉄塩や過硫酸安アンモニウムなどの酸化剤溶液に浸漬した後、乾燥する。しかる後、3、4−エチレンジオキシチオフェン、又は、ピロールの様なモノマー溶液に浸漬する。前記サイクルを複数回繰り返すことにより、化学酸化重合による第二の導電性高分子層14が形成される。   Then, after dipping in an oxidizer solution such as iron sulfonate and ammonium persulfate, it is dried. Thereafter, it is immersed in a monomer solution such as 3,4-ethylenedioxythiophene or pyrrole. By repeating the cycle a plurality of times, the second conductive polymer layer 14 is formed by chemical oxidative polymerization.

導電性高分子層14を形成後、グラファイト層15及び銀ペースト層16を形成して陰極層としてコンデンサ素子17を得る。   After the formation of the conductive polymer layer 14, a graphite layer 15 and a silver paste layer 16 are formed to obtain a capacitor element 17 as a cathode layer.

実施例を図1及び図2を参照して説明する。図1は実施例に用いるコンデンサ素子17の断面図、図2は第一の導電性高分子層形成後の正面図で第一の導電性高分子層の形状を示すものであり、図2(a)は縞状、図2(b)は格子状、図3(c)は円状の形状を示す正面図である。   An embodiment will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a capacitor element 17 used in the embodiment, and FIG. 2 is a front view after the formation of the first conductive polymer layer, showing the shape of the first conductive polymer layer. FIG. 2A is a front view showing a stripe shape, FIG. 2B is a lattice shape, and FIG. 3C is a circular shape.

図1に示すように、弁作用金属であるアルミニウム箔(幅10mm、長さ15mm、厚さ150μm)を拡面化して陽極体10を形成した後、電気化学的に3Vの直流電圧を印加して誘電体皮膜を形成した。   As shown in FIG. 1, an anode body 10 is formed by expanding an aluminum foil (width 10 mm, length 15 mm, thickness 150 μm), which is a valve action metal, and then a 3 V DC voltage is applied electrochemically. A dielectric film was formed.

誘電体皮膜形成後、図2に示すように、第一の導電性高分子層12を陽極体10に形成する。形成は、図2(a)の様に縞状、図2(b)の様に格子状、図3(c)の様に円状の様に配置してその間隔は任意とする。ここでは、図2(a)の縞状の形成されたパターンについて詳細する。   After the formation of the dielectric film, a first conductive polymer layer 12 is formed on the anode body 10 as shown in FIG. The formation is arranged in a striped manner as shown in FIG. 2A, a lattice shape as shown in FIG. 2B, and a circular shape as shown in FIG. Here, the striped pattern in FIG. 2A will be described in detail.

スクリーン印刷版に縞状の間隔が0.2mm、縞状の幅も0.2mmとして、印刷版を形成した後、導電性高分子粉末を溶液に分散させたスラリーポリマー(粘度400mPa・S)を印刷版に塗布し、陽極体10に印刷後、150℃ 30分で乾燥した。しかる後、残り片面を同様に印刷、乾燥を行い図2(a)に示すような厚み5μmの凸部を有した縞状の第一の導電性高分子層12導電性高分子層を形成した。   After forming a printing plate with a stripe interval of 0.2 mm and a stripe width of 0.2 mm on a screen printing plate, a slurry polymer (viscosity 400 mPa · S) in which a conductive polymer powder is dispersed in a solution is used. It apply | coated to the printing plate and after printing on the anode body 10, it dried at 150 degreeC for 30 minutes. Thereafter, the remaining one surface was printed and dried in the same manner to form a striped first conductive polymer layer 12 having a convex portion having a thickness of 5 μm as shown in FIG. .

しかる後、コンデンサ素子を酸化剤であるベンゼンスルホン酸第二鉄溶液に30秒間浸漬後、5分間乾燥を行った後、モノマーである3、4―エチレンジオキシチオフェンに30秒間浸漬して45分間放置させ、化学酸化重合反応を行い、誘電体層上全体に導電性高分子層としてポリチオフェンを形成した。   Thereafter, the capacitor element is immersed in ferric benzene sulfonate solution for 30 seconds, dried for 5 minutes, and then immersed in monomer 3,4-ethylenedioxythiophene for 30 seconds for 45 minutes. It was allowed to stand and a chemical oxidative polymerization reaction was performed to form polythiophene as a conductive polymer layer on the entire dielectric layer.

前述の浸漬サイクルを5回繰り返し実施して、第二の導電性高分子層14を形成した後、その上にグラファイト層15及び、銀ペースト層16を形成してコンデンサ素子17を得た。   The aforementioned immersion cycle was repeated 5 times to form the second conductive polymer layer 14, and then the graphite layer 15 and the silver paste layer 16 were formed thereon to obtain the capacitor element 17.

(比較例)
比較例として、第二の導電性高分子層14を形成する前の第一の導電性高分子層12を形成せずに、化学酸化重合を17回実施した以外は前述の実施例にコンデンサ素子を得た。
(Comparative example)
As a comparative example, the capacitor element described in the previous example except that the first conductive polymer layer 12 before forming the second conductive polymer layer 14 was not formed and the chemical oxidation polymerization was performed 17 times. Got.

表1に実施例及び比較例の重合回数及び容量、等価直列抵抗(以下ESR)値をそれぞれ示すが、表1からも判る様に本実施例は、重合回数が比較例に比べて少ないにも関わらず、固体電解質である導電性高分子層の厚みは同等であり、且つ比較例同等の安定した電気特性を得ることが出来た。   Table 1 shows the number of polymerizations and the capacities of the examples and comparative examples, and the equivalent series resistance (hereinafter referred to as ESR) values. As can be seen from Table 1, this example has a smaller number of polymerizations than the comparative examples. Regardless, the conductive polymer layer, which is a solid electrolyte, had the same thickness, and stable electrical characteristics equivalent to those of the comparative example could be obtained.

Figure 0005419546
Figure 0005419546

前述の結果から、本発明により重合液浸漬後の引き上げによる重合液付着量を増加させ、さらに重合放置時間における重合液の垂れ下がりを抑制することにより、重合工程1回あたりのコンデンサ素子17に形成される導電性高分子層の形成厚みが増加し、少ない重合回数でも同等以上の電気特性を得ることが出来た。   From the above results, according to the present invention, the amount of the polymer solution adhered by the pulling up after immersion of the polymer solution is increased, and further, the polymerization solution is prevented from sagging during the polymerization standing time, thereby forming the capacitor element 17 per one polymerization step. The thickness of the conductive polymer layer formed increased, and the same or better electrical characteristics could be obtained even with a small number of polymerizations.

以上、この発明の実施の形態を説明したが、この発明は、この実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち、当業者であれば、なし得るであろう各種変形、修正を含むことは勿論である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and design changes within a range not departing from the gist of the present invention are also included in the present invention. That is, it goes without saying that various modifications and corrections that can be made by those skilled in the art are included.

本発明に係る表面実装薄型コンデンサは、電子部品や電気部品のプリント配線基板等の基板に表面実装されるタイプの固体電解コンデンサに適用することができる。   The surface-mount thin capacitor according to the present invention can be applied to a solid electrolytic capacitor of a type that is surface-mounted on a substrate such as a printed wiring board of an electronic component or an electrical component.

1 誘電体層
10 陽極体
11 導電性高分子層
12 第一の導電性高分子層
13 レジスト層
14 第二の導電性高分子層
15 グラファイト層
16 銀ペースト層
17 コンデンサ素子
DESCRIPTION OF SYMBOLS 1 Dielectric layer 10 Anode body 11 Conductive polymer layer 12 1st conductive polymer layer 13 Resist layer 14 2nd conductive polymer layer 15 Graphite layer 16 Silver paste layer 17 Capacitor element

Claims (6)

金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る拡面化した弁作用金属を母材として用い、前記拡面化した弁作用金属の表面には、酸化膜からなる誘電体層が形成され、両端部は陽極として使用されるとともに、中央部分の前記誘電体層の表面上の一部に、導電性高分子分散液を印刷することにより規則的なパターンを持って形成された第一の導電性高分子層と、前記第一の導電性高分子層及び前記誘電体層上に、モノマーを化学酸化重合することにより形成された第二の導電性高分子層を備えることを特徴とする表面実装薄型コンデンサ。 A surface-enhanced valve metal comprising a metal core and an etched layer covering both surfaces of the metal core is used as a base material, and the surface of the surface-enhanced valve metal is a dielectric made of an oxide film. A layer is formed, both ends are used as anodes, and a regular pattern is formed by printing a conductive polymer dispersion on a part of the surface of the dielectric layer in the central part. A first conductive polymer layer, and a second conductive polymer layer formed by chemical oxidative polymerization of a monomer on the first conductive polymer layer and the dielectric layer. Surface mount thin capacitor characterized by 前記第一の導電性高分子層は、厚さ方向に平行な断面が凸形状であることを特徴とする請求項1に記載の表面実装薄型コンデンサ。   The surface-mount thin capacitor according to claim 1, wherein the first conductive polymer layer has a convex cross section parallel to the thickness direction. 前記第一の導電性高分子層が格子状に配置されたことを特徴とする請求項1または2に記載の表面実装薄型コンデンサ。   The surface-mount thin capacitor according to claim 1 or 2, wherein the first conductive polymer layer is arranged in a lattice pattern. 前記第一の導電性高分子層が縞状に配置されたことを特徴とする請求項1または2に記載の表面実装薄型コンデンサ。   The surface-mount thin capacitor according to claim 1 or 2, wherein the first conductive polymer layer is arranged in a striped pattern. 前記第一の導電性高分子層が複数の円状に配置されたことを特徴とする請求項1または2に記載の表面実装薄型コンデンサ。   3. The surface mount thin capacitor according to claim 1, wherein the first conductive polymer layer is arranged in a plurality of circles. 金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る拡面化した弁作用金属を母材として用い、前記拡面化した弁作用金属の表面に酸化膜からなる誘電体層を形成する工程と、両端部は陽極として使用されるとともに、コンデンサ素子中央部分の表面上に一部に、導電性高分子分散液を印刷することにより規則的なパターンを持って第一の導電性高分子層が形成される工程と、前記第一の導電性高分子層及び前記誘電体層の上に、モノマーを化学酸化重合することにより第二の導電性高分子層を形成する工程とを含むことを特徴とする表面実装薄型コンデンサの製造方法。 A valve layer metal having an enlarged surface consisting of a metal core and an etched layer covering both surfaces of the metal core is used as a base material, and a dielectric layer made of an oxide film is formed on the surface of the expanded valve metal. Step of forming and both ends are used as anodes and the first conductive with regular pattern by printing conductive polymer dispersion on part of the surface of the capacitor element central part A step of forming a polymer layer, and a step of forming a second conductive polymer layer by chemical oxidative polymerization of a monomer on the first conductive polymer layer and the dielectric layer. A method of manufacturing a surface mount thin capacitor, comprising:
JP2009125932A 2009-05-26 2009-05-26 Surface mount thin capacitor and manufacturing method thereof Active JP5419546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125932A JP5419546B2 (en) 2009-05-26 2009-05-26 Surface mount thin capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125932A JP5419546B2 (en) 2009-05-26 2009-05-26 Surface mount thin capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010278033A JP2010278033A (en) 2010-12-09
JP5419546B2 true JP5419546B2 (en) 2014-02-19

Family

ID=43424766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125932A Active JP5419546B2 (en) 2009-05-26 2009-05-26 Surface mount thin capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5419546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772763B2 (en) * 2012-08-22 2015-09-02 株式会社村田製作所 Solid electrolytic capacitor
WO2023090141A1 (en) * 2021-11-17 2023-05-25 株式会社村田製作所 Electrolytic capacitor element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764938B2 (en) * 1988-09-01 1998-06-11 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JP4698350B2 (en) * 2004-10-15 2011-06-08 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor
JP5202806B2 (en) * 2006-01-04 2013-06-05 信越ポリマー株式会社 Manufacturing method of solid electrolytic capacitor
JP4845699B2 (en) * 2006-12-08 2011-12-28 三洋電機株式会社 Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP4842231B2 (en) * 2007-09-14 2011-12-21 Necトーキン株式会社 Oxidizing agent and solid electrolytic capacitor using the oxidizing agent

Also Published As

Publication number Publication date
JP2010278033A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP2008244184A (en) Solid-state electrolytic capacitor and manufacturing method therefor
KR20090023581A (en) Solid electrolytic capacitor
EP1683168A1 (en) Solid electrolyte capacitor
JP4635113B2 (en) Manufacturing method of solid electrolytic capacitor
JP5419546B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP4944359B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012199298A (en) Method for manufacturing solid electrolytic capacitor
WO2015198587A1 (en) Electrolytic capacitor
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP4915875B2 (en) Manufacturing method of solid electrolytic capacitor
US7355842B2 (en) Chip solid electrolyte capacitor and production method of the same
JP5892803B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2015220247A (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP2011096746A (en) Surface-mounting thin capacitor
JP2828738B2 (en) Solid electrolytic capacitors
JP5887163B2 (en) Solid electrolytic capacitor
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JP5642508B2 (en) Surface mount thin capacitors
JP2008288310A (en) Manufacturing method for solid electrolytic capacitor
JP2003197471A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010213017A (en) Low-pass filter
EP2442324A1 (en) Method of manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250