JP5642508B2 - Surface mount thin capacitors - Google Patents

Surface mount thin capacitors Download PDF

Info

Publication number
JP5642508B2
JP5642508B2 JP2010252651A JP2010252651A JP5642508B2 JP 5642508 B2 JP5642508 B2 JP 5642508B2 JP 2010252651 A JP2010252651 A JP 2010252651A JP 2010252651 A JP2010252651 A JP 2010252651A JP 5642508 B2 JP5642508 B2 JP 5642508B2
Authority
JP
Japan
Prior art keywords
layer
silver
capacitor
laminated
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010252651A
Other languages
Japanese (ja)
Other versions
JP2012104690A5 (en
JP2012104690A (en
Inventor
和明 齋藤
和明 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010252651A priority Critical patent/JP5642508B2/en
Publication of JP2012104690A publication Critical patent/JP2012104690A/en
Publication of JP2012104690A5 publication Critical patent/JP2012104690A5/ja
Application granted granted Critical
Publication of JP5642508B2 publication Critical patent/JP5642508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、複数のコンデンサ素子を積層してなる表面実装薄型コンデンサに関し、特に低等価直列抵抗化(低ESR化)のためのコンデンサ素子の電気的な接続構造に関するものである。   The present invention relates to a surface-mount thin capacitor formed by laminating a plurality of capacitor elements, and more particularly to an electrical connection structure of capacitor elements for low equivalent series resistance (low ESR).

半導体素子の高周波化に伴い、電子部品や電気部品のプリント配線基板などに実装される表面実装薄型のデカップリング用コンデンサは、市場から益々低ESR化を要求されるようになってきている。板状または箔状の拡面化した弁作用金属を陽極体とするコンデンサ素子を積層して構成される表面実装薄型コンデンサにおいて、低ESR化を実現するためには、各コンデンサ素子の構成部品や材料の固有抵抗を低減させる必要があり、また、コンデンサ素子を積層して並列接続した場合、各コンデンサ素子の外周の陰極部を、電極全体にわたって低抵抗で接続させる必要がある。   As the frequency of semiconductor devices increases, surface mount thin decoupling capacitors mounted on printed wiring boards for electronic components and electrical components are increasingly required to have low ESR from the market. In order to achieve low ESR in a surface-mounted thin capacitor composed of laminated capacitor elements having a plate-like or foil-like expanded valve metal as an anode body, the components of each capacitor element or It is necessary to reduce the specific resistance of the material, and when capacitor elements are stacked and connected in parallel, the cathode part on the outer periphery of each capacitor element must be connected with low resistance over the entire electrode.

図3は従来の表面実装薄型コンデンサ素子の斜視図であり、内部構造の一例を示している。また、図4は図3に示す従来の表面実装薄型コンデンサ素子の断面図であり、図4(a)はA−A線に沿った断面図、図4(b)はB−B線に沿った断面図である。なお、図3には側面部に塗布した導電性接着剤の部分にハッチングを施している。このような表面実装薄型コンデンサは、例えば、特許文献1に開示されている。図3及び図4において、板状または箔状の拡面化した弁作用金属を陽極体1とし、その陽極体表面に形成された誘電体層と、誘電体層上に形成された固体電解質層である導電性高分子層3と、導電性高分子層3の表面に形成されたグラファイト層4と、グラファイト層4の表面に形成した導電体層である銀層5とからなるコンデンサ素子を複数個積層して構成されている。なお、コンデンサ素子の陽極体1に形成された導電性高分子層3の両側にはレジスト層2が形成され、さらに陽極体1の端部には金属板6が接続され陽極部8が形成されている。   FIG. 3 is a perspective view of a conventional surface-mount thin capacitor element, showing an example of the internal structure. 4 is a cross-sectional view of the conventional surface-mount thin capacitor element shown in FIG. 3. FIG. 4 (a) is a cross-sectional view along the line AA, and FIG. 4 (b) is along the line BB. FIG. In FIG. 3, the portion of the conductive adhesive applied to the side surface is hatched. Such a surface-mount thin capacitor is disclosed in Patent Document 1, for example. 3 and 4, a plate-like or foil-like expanded valve action metal is used as an anode body 1, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer formed on the dielectric layer. A plurality of capacitor elements each including a conductive polymer layer 3, a graphite layer 4 formed on the surface of the conductive polymer layer 3, and a silver layer 5 which is a conductor layer formed on the surface of the graphite layer 4. It is configured by laminating pieces. A resist layer 2 is formed on both sides of the conductive polymer layer 3 formed on the anode body 1 of the capacitor element, and a metal plate 6 is connected to the end of the anode body 1 to form an anode section 8. ing.

この表面実装薄型コンデンサの製造工程を図4を用いて説明する。まず、板状または箔状の拡面化した弁作用金属を陽極体1とし、この表面に誘電体層となる酸化皮膜を陽極酸化法などを用いて形成する。この陽極体1の中央部分1aには、表面酸化皮膜を覆うように、導電性高分子層3を形成する。その後、導電性高分子層3の表面にグラファイト層4、銀ペーストによる銀層5を順次形成して陰極導体層とする。   The manufacturing process of this surface mount thin capacitor will be described with reference to FIG. First, a plate-shaped or foil-shaped expanded valve metal is used as the anode body 1, and an oxide film serving as a dielectric layer is formed on the surface using an anodic oxidation method or the like. A conductive polymer layer 3 is formed on the central portion 1a of the anode body 1 so as to cover the surface oxide film. Thereafter, a graphite layer 4 and a silver layer 5 made of silver paste are sequentially formed on the surface of the conductive polymer layer 3 to form a cathode conductor layer.

一方、陽極体1の両端部の陰極導体層を形成していない部分については、先ず、絶縁性樹脂を主成分とするレジスト層2を導電性高分子層3の両端に隣接する隣接部分1bに形成する。その後、レジスト層2が形成された部分のさらに外側に延在する陽極体1の両端部分1cに金属板6を溶接にて接続して陽極部8を形成し、コンデンサ素子を得る。   On the other hand, with respect to the portions where the cathode conductor layers at both ends of the anode body 1 are not formed, first, the resist layer 2 mainly composed of an insulating resin is applied to the adjacent portions 1b adjacent to both ends of the conductive polymer layer 3. Form. Thereafter, a metal plate 6 is connected by welding to both end portions 1c of the anode body 1 extending further outward from the portion where the resist layer 2 is formed to form an anode portion 8 to obtain a capacitor element.

次に、このコンデンサ素子を複数個積み重ねて積層構造にするが、各コンデンサ素子の銀層5の間には導電性接着剤9が塗布され、各々が電気的に接続した状態となっている。このとき、銀層5の積層する方向の対向した面だけではなく側面部にも導電性接着剤9を塗布し、各コンデンサ素子を電気的に接続する。陽極部8についても、互いに重なった各コンデンサ素子の両端部の陽極体1と金属板6を溶接などで接続することで、図4に示す積層構造が完成し、その後、陽極端子、陰極端子をそれぞれ、外部端子に接続し、外装ケースなどを設置して表面実装薄型コンデンが完成する。   Next, a plurality of capacitor elements are stacked to form a laminated structure, and a conductive adhesive 9 is applied between the silver layers 5 of each capacitor element, and each is electrically connected. At this time, the conductive adhesive 9 is applied not only to the opposing surfaces in the direction in which the silver layers 5 are laminated, but also to the side surfaces to electrically connect the capacitor elements. For the anode portion 8 as well, the laminated body shown in FIG. 4 is completed by connecting the anode body 1 and the metal plate 6 at both ends of each capacitor element overlapped with each other by welding or the like. Each is connected to an external terminal and an exterior case is installed to complete a surface mount thin condenser.

特開2006−128247号公報JP 2006-128247 A

しかしながら、従来技術は前述したように各コンデンサ素子の銀層の積層する方向の対向した面だけではなく側面部にも導電性接着剤を塗布するもので、各コンデンサ素子の銀層同士の並列接続における低ESR化に対しては不十分であるという課題があった。本発明は、このような状況にあって、ESRをさらに低減した表面実装薄型コンデンサを供給することにある。   However, as described above, the conventional technique applies a conductive adhesive not only to the opposing surfaces in the stacking direction of the silver layers of each capacitor element, but also to the side surfaces, so that the silver layers of each capacitor element are connected in parallel. There is a problem that it is insufficient for lowering ESR. In this situation, the present invention is to provide a surface mount thin capacitor further reducing ESR.

上記の課題を解決するために、本発明の表面実装薄型コンデンサは、板状または箔状の拡面化した弁作用金属を陽極体とし、前記陽極体の表面に形成した誘電体層と、前記誘電体層の表面に形成した固体電解質層となる導電性高分子層と、前記導電性高分子層の表面に形成したグラファイト層と、前記グラファイト層の表面に形成した導電体層である銀層とからなるコンデンサ素子を積層した表面実装薄型コンデンサであって、前記積層した前記銀層の間は空隙の状態であり、前記銀層の外周部の少なくとも一部を導電性テープにて覆い、前記銀層同士を電気的に接続したことを特徴とする。 In order to solve the above-mentioned problems, the surface mount thin capacitor of the present invention has a plate-like or foil-like expanded valve action metal as an anode body, a dielectric layer formed on the surface of the anode body, A conductive polymer layer to be a solid electrolyte layer formed on the surface of the dielectric layer, a graphite layer formed on the surface of the conductive polymer layer, and a silver layer which is a conductor layer formed on the surface of the graphite layer A thin-film surface-mounted capacitor in which capacitor elements are stacked, wherein the stacked silver layers are in a gap state, and at least a part of the outer periphery of the silver layer is covered with a conductive tape, The silver layers are electrically connected to each other.

本発明の表面実装薄型コンデンサでは、コンデンサ素子を積層し銀層を電気的に接続する際に、積層したコンデンサ素子の銀層の外周部の少なくとも一部を帯状の導電性部材にて覆い接続することで、各コンデンサ素子の接続抵抗を低減でき、そのため従来技術の表面実装薄型コンデンサに比べ、低ESRの表面実装薄型コンデンサを得ることが可能となる。   In the surface mount thin capacitor of the present invention, when capacitor elements are stacked and the silver layers are electrically connected, at least a part of the outer peripheral portion of the silver layer of the stacked capacitor elements is covered and connected with a strip-shaped conductive member. Thus, the connection resistance of each capacitor element can be reduced, so that a surface mount thin capacitor having a low ESR can be obtained as compared with the surface mount thin capacitor of the prior art.

また、各コンデンサ素子の接続抵抗を低減できることから、導電性部材は金属箔に導電性の粘着剤を備えた導電性テープや導電性接着剤を塗布した金属箔等を用いることが望ましい。   Further, since the connection resistance of each capacitor element can be reduced, it is desirable to use a conductive tape provided with a conductive adhesive on a metal foil or a metal foil obtained by applying a conductive adhesive to the conductive member.

さらに、積層した銀層の間は空隙の状態とし、銀層の外周部の少なくとも一部を前述の導電性テープを用いて覆い、銀層を電気的に接続したことにより、各コンデンサ素子の接続抵抗を低減でき、そのため従来技術の表面実装薄型コンデンサに比べ、低ESRの表面実装薄型コンデンサを得ることが可能となる。また、銀層の間に導電性接着剤を塗布しないことで、使用材料、製品コストの削減が可能となる。   Furthermore, a gap is formed between the laminated silver layers, and at least a part of the outer periphery of the silver layer is covered with the above-described conductive tape, and the silver layers are electrically connected, thereby connecting each capacitor element. The resistance can be reduced, so that a surface mount thin capacitor with low ESR can be obtained as compared to the surface mount thin capacitor of the prior art. Further, by not applying a conductive adhesive between the silver layers, it is possible to reduce materials used and product costs.

本発明の第一の実施の形態における三端子型の表面実装薄型コンデンサ素子を示した斜視図。1 is a perspective view showing a three-terminal surface-mount thin capacitor element according to a first embodiment of the present invention. 図1の表面実装薄型コンデンサ素子の断面図であり、図2(a)はA−A線に沿った断面図、図2(b)はB−B線に沿った断面図。2A and 2B are cross-sectional views of the surface-mount thin capacitor element of FIG. 1, in which FIG. 2A is a cross-sectional view along the line AA, and FIG. 2B is a cross-sectional view along the line BB. 従来の表面実装薄型コンデンサ素子を示した斜視図。The perspective view which showed the conventional surface mount thin capacitor | condenser element. 図3の表面実装薄型コンデンサ素子の断面図であり、図4(a)はA−A線に沿った断面図、図4(b)はB−B線に沿った断面図。4A and 4B are cross-sectional views of the surface-mounted thin capacitor element of FIG. 3, in which FIG. 4A is a cross-sectional view along the line AA, and FIG. 4B is a cross-sectional view along the line BB.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施の形態1)
図1は本発明の第一の実施の形態における三端子型の表面実装薄型コンデンサ素子を示した斜視図であり、図2(a)はA−A線に沿った断面図、図2(b)はB−B線に沿った断面図である。なお、図1には導電性テープ7の部分にハッチングを施している。図1および図2において、従来の表面実装薄型コンデンサと同様に、板状または箔状の拡面化した弁作用金属を陽極体1とし、その陽極体表面に形成された誘電体層と、誘電体層の表面に形成された固体電解質層である導電性高分子層3と、導電性高分子層3の表面に形成されたグラファイト層4と、グラファイト層4の表面に形成した導電体層である銀層5とからなるコンデンサ素子を複数個積層し、積層したコンデンサ素子の銀層5の外周部を導電性テープ7で覆い、電気的に接続して構成されている。なお、各コンデンサ素子の陽極体1の外側の両端には金属板6が接続されている。
(Embodiment 1)
FIG. 1 is a perspective view showing a three-terminal surface-mount thin capacitor element according to the first embodiment of the present invention. FIG. 2 (a) is a sectional view taken along the line AA, and FIG. ) Is a cross-sectional view along the line BB. In FIG. 1, the conductive tape 7 is hatched. In FIG. 1 and FIG. 2, a plate-like or foil-like expanded valve action metal is used as an anode body 1 as in a conventional surface-mount thin capacitor, and a dielectric layer formed on the anode body surface, A conductive polymer layer 3 which is a solid electrolyte layer formed on the surface of the body layer, a graphite layer 4 formed on the surface of the conductive polymer layer 3, and a conductor layer formed on the surface of the graphite layer 4. A plurality of capacitor elements composed of a certain silver layer 5 are laminated, and the outer peripheral portion of the silver layer 5 of the laminated capacitor elements is covered with a conductive tape 7 and electrically connected. Note that metal plates 6 are connected to both outer ends of the anode body 1 of each capacitor element.

本実施の形態のコンデンサは次のようにして製造される。まず、板状または箔状の弁作用金属を、塩酸などの塩化物水溶液にいれて化学的あるいは電気化学的にエッチングを行い、無数の空孔を形成して表面積を大きくする拡面化を施す方法、もしくは、板状、箔状に加工した弁作用金属を、同じ弁作用の金属の微粉末により両側から挟みこんでプレス成型した後に、高温真空中で焼結する方法により、厚さ方向の中央部に厚さ10〜300μmの多孔質層を備えた陽極体1を形成する。ここで、弁作用金属としてはアルミニウム、タンタル、ニオブ等を用いることができる。   The capacitor of the present embodiment is manufactured as follows. First, a plate-like or foil-like valve action metal is chemically or electrochemically etched in a chloride aqueous solution such as hydrochloric acid to form an infinite number of pores to increase the surface area. By the method or by pressing and molding the valve metal processed into a plate or foil shape from both sides with the same metal powder of the same valve action and then sintering in high temperature vacuum, An anode body 1 having a porous layer having a thickness of 10 to 300 μm at the center is formed. Here, aluminum, tantalum, niobium, or the like can be used as the valve metal.

本発明の三端子型の固体電解コンデンサに用いるコンデンサ素子について、おもに図2を用いて説明する。厚み100〜200μmのアルミニウム箔を塩酸の槽に投入し、電気化学的エッチングすることにより、表面積を200倍程度に大きくする拡面化を行い、表面に深さ40μm程度の多孔質層を備えた箔状の陽極体1を形成する。   A capacitor element used in the three-terminal solid electrolytic capacitor of the present invention will be described mainly with reference to FIG. An aluminum foil having a thickness of 100 to 200 μm was put into a hydrochloric acid bath and subjected to electrochemical etching to enlarge the surface area to about 200 times, and a porous layer having a depth of about 40 μm was provided on the surface. A foil-like anode body 1 is formed.

次に、上記陽極体1の中央部分1aの多孔質層の表面に、誘電体層となる酸化皮膜を陽極酸化法などを用いて形成する。例えば、電気化学的方法を用いることで化成処理を行い、誘電体層となる酸化皮膜を形成することができる。次に、この中央部分1aの両側の隣接部分1bの表面に、絶縁性樹脂を用いてレジスト層2を形成する。レジスト層2の形成には、例えば、エポキシ樹脂をベースとする絶縁性樹脂を用いることができる。   Next, an oxide film to be a dielectric layer is formed on the surface of the porous layer of the central portion 1a of the anode body 1 by using an anodic oxidation method or the like. For example, a chemical conversion treatment can be performed by using an electrochemical method to form an oxide film serving as a dielectric layer. Next, a resist layer 2 is formed on the surface of the adjacent portion 1b on both sides of the central portion 1a using an insulating resin. For the formation of the resist layer 2, for example, an insulating resin based on an epoxy resin can be used.

さらに、上記の酸化皮膜が表面に形成された陽極体1の中央部分1aを覆うように、導電性高分子層3を形成し、更にその表面にグラファイト層4を形成する。例えば、ポリピロールからなる導電性高分子層3を化学重合により形成し、さらに、その表面にグラファイト層4をスクリーン印刷により形成することができる。   Further, the conductive polymer layer 3 is formed so as to cover the central portion 1a of the anode body 1 on which the oxide film is formed, and the graphite layer 4 is further formed on the surface. For example, the conductive polymer layer 3 made of polypyrrole can be formed by chemical polymerization, and the graphite layer 4 can be formed on the surface by screen printing.

つづいて、グラファイト層4が形成された部分を覆うように、銀ペーストを用いて印刷、転写などの方法により銀層5を形成する。   Subsequently, the silver layer 5 is formed by a method such as printing or transfer using a silver paste so as to cover a portion where the graphite layer 4 is formed.

さらに、陽極体1の両端部分1cに金属板6を、抵抗溶接、レーザー溶接、超音波溶接などの方法で接続して陽極部8を形成し、コンデンサ素子を得る。ここで金属板6としては、銅、銅系合金等を用いることができるが、電子部品の端子として用いることのできる材料からなる板材であるならば、これに限定されるものではない。   Furthermore, the metal plate 6 is connected to both end portions 1c of the anode body 1 by a method such as resistance welding, laser welding, or ultrasonic welding to form the anode portion 8 to obtain a capacitor element. Here, copper, a copper-based alloy, or the like can be used as the metal plate 6, but the metal plate 6 is not limited to this as long as it is a plate material made of a material that can be used as a terminal of an electronic component.

その後、それぞれのコンデンサ素子を接続させる銀層5の面に、銀ペースト等の導電性接着剤9を塗布して複数個積層し、積層した銀層5の外周部を導電性テープ7を用いて覆い、銀層5を電気的に接続する。その後、積層体を積層方向に加圧しながら100〜300℃の加熱を行い、積層したコンデンサ素子の銀層5の間に塗布した導電性接着剤を硬化させる。   Thereafter, a plurality of conductive adhesives 9 such as silver paste are applied and laminated on the surface of the silver layer 5 to which each capacitor element is connected, and the outer peripheral portion of the laminated silver layer 5 is used with the conductive tape 7. Cover and electrically connect the silver layer 5. Thereafter, heating is performed at 100 to 300 ° C. while pressing the stacked body in the stacking direction, and the conductive adhesive applied between the silver layers 5 of the stacked capacitor elements is cured.

なお、銀層5の外周部を導電性テープ7で覆う割合は、ESR低減に寄与させる点から出来るだけ大きくすることが望ましい。ここで、導電性テープは銅、銀、アルミニウム等の金属の箔に導電性の粘着剤を塗布したものであり、導電性が優れ、加熱条件、接着力等が満たされれば材質等は問わない。   In addition, it is desirable to make the ratio which covers the outer peripheral part of the silver layer 5 with the conductive tape 7 as large as possible from the point of contributing to ESR reduction. Here, the conductive tape is obtained by applying a conductive pressure-sensitive adhesive to a metal foil such as copper, silver, and aluminum, and any material can be used as long as it has excellent conductivity and satisfies heating conditions, adhesive strength, and the like. .

さらに、陽極部8については、積層したコンデンサ素子の両端において陽極体1同士を金属板6を介して接続する。ここで、陽極体1と金属板6の接続方法は、レーザー溶接、電子ビーム溶接、抵抗溶接などがある。その後、陽極端子、陰極端子を外部端子に接続し、外装ケースなどを設置する。   Furthermore, with respect to the anode portion 8, the anode bodies 1 are connected to each other via the metal plate 6 at both ends of the laminated capacitor elements. Here, the connecting method of the anode body 1 and the metal plate 6 includes laser welding, electron beam welding, resistance welding, and the like. Then, an anode terminal and a cathode terminal are connected to an external terminal, and an exterior case is installed.

以上のようにして、積層したコンデンサ素子の銀層の外周部を導電性テープで覆い、銀層を電気的に接続することによって、従来技術で積層したコンデンサよりESRをさらに低減した表面実装薄型コンデンサが完成する。   As described above, the outer peripheral portion of the silver layer of the laminated capacitor element is covered with a conductive tape, and the silver layer is electrically connected, so that the ESR is further reduced as compared with the conventional laminated capacitor. Is completed.

(実施の形態2)
つぎに、積層した銀層の外周部を金属箔で覆い、銀層を電気的に接続する形態を説明する。
(Embodiment 2)
Next, a mode in which the outer peripheral portion of the laminated silver layers is covered with a metal foil and the silver layers are electrically connected will be described.

陽極体に前述の処理を施して陰極部を形成し、コンデンサ素子の銀層を導電性接着剤を介して積層するまでは、実施の形態1と同様の工程をとる。金属箔としては金、銀、銅、アルミニウム等など展延性がよく導電性の優れたものを用いる。   The same process as in the first embodiment is performed until the anode body is subjected to the above-described treatment to form the cathode portion and the silver layer of the capacitor element is laminated via the conductive adhesive. As the metal foil, a gold foil, silver, copper, aluminum, or the like having good spreadability and excellent conductivity is used.

銀層と金属箔の接続は、電気的接続を十分にするために、あらかじめ金属箔の接続面に、導電性のフィラーを分散した導電性接着剤を塗布した状態で行う。この導電性接着剤を塗布した金属箔を用いて、積層した銀層の外周部を覆い、銀層を電気的に接続し、最終的に加熱により固定させる。なお、導電性接着剤は、積層した銀層の外周面に塗布しておいても構わない。導電性接着剤としては、銀、金、銅、カーボン等の導電性のフィラーを有したものを用いる。よって、積層した銀層の間を接続させるのに用いた導電性接着剤と同様のものを用いても構わない。   The connection between the silver layer and the metal foil is performed in a state where a conductive adhesive in which a conductive filler is dispersed is applied to the connection surface of the metal foil in advance in order to ensure sufficient electrical connection. The metal foil coated with the conductive adhesive is used to cover the outer periphery of the laminated silver layers, the silver layers are electrically connected, and finally fixed by heating. The conductive adhesive may be applied to the outer peripheral surface of the laminated silver layer. As the conductive adhesive, one having a conductive filler such as silver, gold, copper, or carbon is used. Therefore, you may use the same thing as the electroconductive adhesive used for connecting between the laminated | stacked silver layers.

つづいて、実施の形態1と同様に金属板を配置し、溶接により陽極部を形成した後、陽極端子、陰極端子を外部端子に接続し、外装ケースなどを設置する。   Subsequently, a metal plate is disposed in the same manner as in the first embodiment, and after forming an anode portion by welding, the anode terminal and the cathode terminal are connected to an external terminal, and an outer case or the like is installed.

このようにして、積層したコンデンサ素子の銀層の外周部を導電性接着剤を塗布した金属箔で覆い、銀層を電気的に接続することによって、従来技術で積層したコンデンサより、ESRをさらに低減した表面実装薄型コンデンサが完成する。   In this way, by covering the outer periphery of the silver layer of the laminated capacitor element with a metal foil coated with a conductive adhesive and electrically connecting the silver layer, the ESR can be further increased than the conventional laminated capacitor. A reduced surface mount thin capacitor is completed.

(実施の形態3)
つぎに、積層した銀層の間は空隙の状態とし、銀層の外周部の少なくとも一部を前述の導電性テープを用いて覆い、銀層を電気的に接続する形態を説明する。
(Embodiment 3)
Next, a description will be given of a mode in which gaps are formed between the laminated silver layers, and at least a part of the outer peripheral portion of the silver layer is covered with the above-described conductive tape to electrically connect the silver layers.

陽極体に前述の処理を施して陰極部を形成し、コンデンサ素子を得るまでは実施の形態1と同様の工程をとる。その後、コンデンサ素子を積層させる構造としては陽極体の端部に金属板を配置し溶接により陽極部を形成し固定した状態であり、積層する銀層の間には導電性接着剤を介さず空隙のままとする。   The same processes as those in the first embodiment are performed until the anode portion is subjected to the above-described treatment to form a cathode portion and a capacitor element is obtained. After that, the capacitor element is laminated by placing a metal plate at the end of the anode body and forming and fixing the anode part by welding. Between the silver layers to be laminated, there is no gap between the conductive adhesives. Leave as it is.

次に、積層した銀層5の外周部を実施の形態1と同様の導電性テープを用いて覆い、銀層を電気的に接続する。その後、積層体を積層方向に加圧することによって、積層したコンデンサ素子の銀層と導電性テープの密着性を高め、固定する。   Next, the outer peripheral portion of the laminated silver layer 5 is covered with the same conductive tape as in the first embodiment, and the silver layers are electrically connected. Thereafter, the laminated body is pressurized in the laminating direction to enhance and fix the adhesion between the silver layer of the laminated capacitor element and the conductive tape.

つづいて、実施の形態1と同様に金属板を配置し溶接により陽極部を形成した後、陽極端子、陰極端子を外部端子に接続し、外装ケースなどを設置する。   Subsequently, after arranging the metal plate and forming the anode part by welding in the same manner as in the first embodiment, the anode terminal and the cathode terminal are connected to the external terminal, and the exterior case and the like are installed.

このようにして、積層したコンデンサ素子の銀層銀層の間は空隙の状態で、銀層の外周部の少なくとも一部を前述の導電性テープを用いて覆い、銀層を電気的に接続し、従来技術で積層したコンデンサよりESRをさらに低減した表面実装薄型コンデンサが完成する。   In this way, with the gap between the silver layers of the laminated capacitor elements, the silver layer is electrically connected by covering at least part of the outer periphery of the silver layer with the conductive tape described above. Thus, a surface mount thin capacitor with a further reduced ESR than the capacitor laminated by the conventional technology is completed.

ここまで、3つの形態を説明したが、実施の形態3の構造における導電性テープを金属箔に置き換えることも可能であり、これらの構造や導電性テープ、金属箔の選択は製品に必要とされるESRのレベル、コスト等を考慮し決定することが望ましい。   Up to this point, three forms have been described, but it is possible to replace the conductive tape in the structure of Embodiment 3 with metal foil, and the selection of these structures, conductive tape, and metal foil is required for the product. It is desirable to decide in consideration of the ESR level and cost.

(実施例1)
本発明の三端子型の固体電解コンデンサに用いるコンデンサ素子について、おもに図2を用いて具体的に説明する。
Example 1
The capacitor element used in the three-terminal solid electrolytic capacitor of the present invention will be specifically described mainly with reference to FIG.

長さ15mm、幅10mm、厚み150μmのアルミニウム箔を塩酸の槽に投入し、電気化学的エッチングすることにより、多孔質層を備えた箔状の陽極体1を形成した。 An aluminum foil having a length of 15 mm, a width of 10 mm, and a thickness of 150 μm was placed in a hydrochloric acid bath and electrochemically etched to form a foil-like anode body 1 having a porous layer.

次に、上記陽極体1の中央部分1aの多孔質層の表面に、誘電体層となる酸化皮膜を陽極酸化法を用いて形成し、両側の隣接部分1bの表面にエポキシ樹脂を用いてレジスト層2を形成した。   Next, an oxide film serving as a dielectric layer is formed on the surface of the porous layer of the central portion 1a of the anode body 1 by using an anodic oxidation method, and an epoxy resin is used on the surfaces of the adjacent portions 1b on both sides. Layer 2 was formed.

そして、導電性高分子層3を形成し、さらに、その表面にグラファイト層4と銀層5を順次形成した。   Then, the conductive polymer layer 3 was formed, and the graphite layer 4 and the silver layer 5 were sequentially formed on the surface.

つづいて、陽極体1の両端部分1cに金属板6を、抵抗溶接で接続して陽極部8を形成し、コンデンサ素子を得た。さらに、それぞれのコンデンサ素子の銀層5の対向する面に銀ペーストの導電性接着剤9を塗布して積層させた。   Subsequently, a metal plate 6 was connected to both end portions 1c of the anode body 1 by resistance welding to form an anode portion 8 to obtain a capacitor element. Further, a conductive adhesive 9 of silver paste was applied and laminated on the opposing surfaces of the silver layer 5 of each capacitor element.

そして、銅箔の基材と導電性の粘着剤からなる、厚み70μmで幅3.0mmの導電性テープ7を用いて、積層した銀層5の外周部を覆い、銀層5を電気的に接続した。その後、積層方向に加圧しながら150℃で1時間加熱し、銀層5の導電性接着剤を硬化させた。なお、銀層5の外周部を導電性テープ7で覆った割合は外周部の面積の30%とした。   And the outer peripheral part of the laminated | stacked silver layer 5 is covered using the electrically conductive tape 7 which consists of a copper foil base material and a conductive adhesive and is 70 micrometers in thickness and 3.0 mm in width, and the silver layer 5 is electrically Connected. Then, it heated at 150 degreeC for 1 hour, pressing in the lamination direction, and the electroconductive adhesive of the silver layer 5 was hardened. In addition, the ratio which covered the outer peripheral part of the silver layer 5 with the conductive tape 7 was 30% of the area of the outer peripheral part.

その後、それぞれの陽極体1と金属板6を抵抗溶接で接続し、最後に、陽極端子、陰極端子を外部端子に接続し、外装ケースを設置した。   Then, each anode body 1 and the metal plate 6 were connected by resistance welding, and finally, the anode terminal and the cathode terminal were connected to external terminals, and an exterior case was installed.

以上のようにして、積層したコンデンサ素子の銀層の外周部を導電性テープで覆い、銀層を電気的に接続し、ESRをさらに低減した表面実装薄型コンデンサが完成した。作製したサンプル数は50個である。   As described above, the surface mount thin capacitor in which the outer peripheral portion of the silver layer of the laminated capacitor element was covered with the conductive tape, the silver layer was electrically connected, and the ESR was further reduced was completed. The number of samples produced is 50.

(実施例2)
つづいて、厚み5μmの銅箔を用いて、積層した積層体の銀層の外周部を覆い、銀層を電気的に接続したサンプルを作製した。なお、銀層と銅箔は電気的接続を十分にするために銅箔の接続面にあらかじめ導電性接着剤を塗布していた。その他の製造条件や構成部材は実施例1と同様とした。このサンプルも50個作製した。
(Example 2)
Subsequently, using a copper foil having a thickness of 5 μm, a sample in which the outer peripheral portion of the silver layer of the laminated body was covered and the silver layer was electrically connected was produced. The silver layer and the copper foil were previously coated with a conductive adhesive on the connection surface of the copper foil in order to ensure sufficient electrical connection. Other manufacturing conditions and components were the same as in Example 1. 50 samples were also produced.

(実施例3)
つづいて、積層したコンデンサ素子の銀層の間は空隙の状態で、銀層の外周部の少なくとも一部を実施例1と同様の導電性テープを用いて覆い、銀層を電気的に接続したサンプルを作製した。その後、積層体を積層方向に加圧することによって、積層したコンデンサ素子の銀層と導電性テープの密着性を高め、固定した。その他の製造条件や構成部材は実施例1と同様とした。このサンプルも50個作製した。
Example 3
Subsequently, at least a part of the outer periphery of the silver layer was covered with the same conductive tape as in Example 1 in a state of a gap between the silver layers of the laminated capacitor elements, and the silver layers were electrically connected. A sample was made. Then, the adhesiveness of the laminated | stacked capacitor | condenser element silver layer and an electroconductive tape was improved and fixed by pressing a laminated body in the lamination direction. Other manufacturing conditions and components were the same as in Example 1. 50 samples were also produced.

(比較例)
比較用として、積層した銀層の側面部にも導電性接着剤を塗布した、従来の構造を持った固体電解コンデンサを50個作製した。なお、積層した銀層の外周部を導電性テープや金属箔で接続しない以外は実施例と同じとした。比較例のサンプルは50個作製した。
(Comparative example)
For comparison, 50 solid electrolytic capacitors having a conventional structure in which a conductive adhesive was applied to the side surface of the laminated silver layer were prepared. In addition, it was set as the Example except the outer peripheral part of the laminated | stacked silver layer not connecting with an electroconductive tape or metal foil. 50 samples of comparative examples were produced.

本発明による実施例と比較例とのESRの測定結果を表1に示す。なお、ESRは公知の方法を用いて測定した。測定数は各50個とした。   Table 1 shows the ESR measurement results of the examples according to the present invention and the comparative examples. ESR was measured using a known method. The number of measurements was 50 each.

Figure 0005642508
Figure 0005642508

以上の方法にて試作した実施例および比較例のサンプルのESRを比較すると、実施例でもっともESRの大きい実施例3でも比較例と同等以上のESRの平均値が得られ、さらにESRの最も小さい実施例1では、比較例よりESRの平均値を10%減少させることが可能となった。   When the ESR of the sample of the example and the comparative example prototyped by the above method is compared, the average value of ESR equal to or higher than that of the comparative example is obtained even in the example 3 having the largest ESR in the example, and the ESR is smallest In Example 1, it became possible to reduce the average value of ESR by 10% compared with the comparative example.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 陽極体
1a 中央部分
1b 隣接部分
1c 両端部分
2 レジスト層
3 導電性高分子層
4 グラファイト層
5 銀層
6 金属板
7 導電性テープ
8 陽極部
9 導電性接着剤
DESCRIPTION OF SYMBOLS 1 Anode body 1a Center part 1b Adjacent part 1c Both-ends part 2 Resist layer 3 Conductive polymer layer 4 Graphite layer 5 Silver layer 6 Metal plate 7 Conductive tape 8 Anode part 9 Conductive adhesive

Claims (1)

板状または箔状の拡面化した弁作用金属を陽極体とし、前記陽極体の表面に形成した誘電体層と、前記誘電体層の表面に形成した固体電解質層となる導電性高分子層と、前記導電性高分子層の表面に形成したグラファイト層と、前記グラファイト層の表面に形成した導電体層である銀層とからなるコンデンサ素子を積層した表面実装薄型コンデンサであって、前記積層した前記銀層の間は空隙の状態であり、前記銀層の外周部の少なくとも一部を導電性テープにて覆い、前記銀層同士を電気的に接続したことを特徴とする表面実装薄型コンデンサ。   A plate-like or foil-like expanded valve metal is used as an anode body, a dielectric layer formed on the surface of the anode body, and a conductive polymer layer serving as a solid electrolyte layer formed on the surface of the dielectric layer A surface mount thin capacitor in which a capacitor element comprising a graphite layer formed on the surface of the conductive polymer layer and a silver layer which is a conductor layer formed on the surface of the graphite layer is laminated. A surface mount thin capacitor characterized in that a gap is formed between the silver layers, and at least a part of the outer peripheral portion of the silver layer is covered with a conductive tape, and the silver layers are electrically connected to each other. .
JP2010252651A 2010-11-11 2010-11-11 Surface mount thin capacitors Expired - Fee Related JP5642508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252651A JP5642508B2 (en) 2010-11-11 2010-11-11 Surface mount thin capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252651A JP5642508B2 (en) 2010-11-11 2010-11-11 Surface mount thin capacitors

Publications (3)

Publication Number Publication Date
JP2012104690A JP2012104690A (en) 2012-05-31
JP2012104690A5 JP2012104690A5 (en) 2013-10-31
JP5642508B2 true JP5642508B2 (en) 2014-12-17

Family

ID=46394734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252651A Expired - Fee Related JP5642508B2 (en) 2010-11-11 2010-11-11 Surface mount thin capacitors

Country Status (1)

Country Link
JP (1) JP5642508B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624993B2 (en) * 1996-04-16 2005-03-02 日立エーアイシー株式会社 Chip-type electronic components
JP2003077764A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Multilayer solid electrolytic capacitor and its manufacturing method
JP4645490B2 (en) * 2006-03-16 2011-03-09 日本電気株式会社 High frequency filter

Also Published As

Publication number Publication date
JP2012104690A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
EP3226270B1 (en) Solid electrolytic capacitor
JP4060657B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
US8320106B2 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP4743896B2 (en) Solid electrolytic capacitor
JP2008078312A (en) Solid electrolytic capacitor
JP2003332173A (en) Capacitor element, solid electrolytic capacitor, and substrate with built-in capacitor
US10655241B2 (en) Electrode foil production method and capacitor production method
WO2019176723A1 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP5642508B2 (en) Surface mount thin capacitors
JP4737773B2 (en) Surface mount thin capacitors
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP5176697B2 (en) Solid electrolytic capacitor
JP4756649B2 (en) Surface mount thin capacitors
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
US20180261393A1 (en) Electrode foil production method and capacitor production method
JP5164213B2 (en) Solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
WO2024043279A1 (en) Solid electrolytic capacitor and production method for solid electrolytic capacitor
JP2010040960A (en) Solid-state electrolytic capacitor
JP3976055B2 (en) Solid electrolytic capacitor
JP2010213017A (en) Low-pass filter
JP5770444B2 (en) Solid electrolytic capacitor
JP2009231337A (en) Solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees