JP5164213B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5164213B2
JP5164213B2 JP2008275624A JP2008275624A JP5164213B2 JP 5164213 B2 JP5164213 B2 JP 5164213B2 JP 2008275624 A JP2008275624 A JP 2008275624A JP 2008275624 A JP2008275624 A JP 2008275624A JP 5164213 B2 JP5164213 B2 JP 5164213B2
Authority
JP
Japan
Prior art keywords
electrode substrate
solid electrolytic
convex portion
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008275624A
Other languages
Japanese (ja)
Other versions
JP2010103420A (en
Inventor
雅典 高橋
勝洋 吉田
哲也 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008275624A priority Critical patent/JP5164213B2/en
Publication of JP2010103420A publication Critical patent/JP2010103420A/en
Application granted granted Critical
Publication of JP5164213B2 publication Critical patent/JP5164213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、電子機器の電源電圧の安定化及び高周波ノイズの低減等に用いる、信頼性に優れた小型・大容量の固体電解コンデンサに関するものである。   The present invention relates to a small-sized and large-capacity solid electrolytic capacitor excellent in reliability and used for stabilizing a power supply voltage of electronic equipment and reducing high-frequency noise.

近年、電子機器の高性能化に伴い、回路駆動周波数の高周波化が進んでいる。これに対応するため、電源電圧の平滑化や高周波ノイズ対策が重要となり、従来の電解液を用いたアルミ電解コンデンサや二酸化マンガンを固体電解質に用いたタンタルコンデンサと比較して、等価直列抵抗(ESR)を大幅に低減可能である導電性高分子を固体電解質に用いた固体電解コンデンサが多く使用されてきている。   In recent years, with the increase in performance of electronic devices, the circuit drive frequency has been increased. In order to cope with this, it is important to smooth the power supply voltage and prevent high frequency noise. Compared to conventional aluminum electrolytic capacitors using electrolytic solution and tantalum capacitors using manganese dioxide as solid electrolyte, equivalent series resistance (ESR) A solid electrolytic capacitor using a conductive polymer as a solid electrolyte that can be greatly reduced) has been used.

また、電子機器の小型・薄型化に伴い、電子部品の小型・薄型化に対する要求も強くなっており、小型・薄型で且つ低インピーダンス・大容量である固体電解コンデンサの需要が高まっている。   In addition, along with the downsizing and thinning of electronic devices, the demand for downsizing and thinning of electronic components has increased, and the demand for solid electrolytic capacitors that are small and thin, low impedance, and large capacity has increased.

図7は、従来の固体電解コンデンサを説明する図で、図7(a)は電極基板の平面図、図7(b)は図7(a)のD−D線断面図、図7(c)は固体電解コンデンサの断面摸式図をそれぞれ示す。固体電解コンデンサ30は、電極基板18にコンデンサ素子17を載置し、導電性接着剤19を介してコンデンサ素子17を熱圧着した後、外装樹脂20でモールドしたものである。
特許文献1には、板状のアルミニウムから構成されるコンデンサ素子を積層し、導電性接着剤を介して電極基板と接続した大容量の積層型固体電解コンデンサが記載されている。
7A and 7B are diagrams illustrating a conventional solid electrolytic capacitor. FIG. 7A is a plan view of an electrode substrate, FIG. 7B is a cross-sectional view taken along the line DD in FIG. 7A, and FIG. ) Shows a schematic cross-sectional view of the solid electrolytic capacitor. The solid electrolytic capacitor 30 is obtained by mounting the capacitor element 17 on the electrode substrate 18, thermocompression bonding the capacitor element 17 through the conductive adhesive 19, and then molding with the exterior resin 20.
Patent Document 1 describes a large-capacity multilayer solid electrolytic capacitor in which capacitor elements made of plate-like aluminum are stacked and connected to an electrode substrate via a conductive adhesive.

特開2008−28298号公報JP 2008-28298 A

小型・薄型で且つ低インピーダンス・大容量を実現するには、コンデンサパッケージ内のコンデンサ素子端部からパッケージ表面までの距離(以下、外装マージンと記載)を小さくして、コンデンサ素子の体積効率を高めることが考えられるが、水分の侵入等による信頼性が低下するという問題があった。   To achieve small size, thinness, low impedance, and large capacity, the distance from the end of the capacitor element in the capacitor package to the package surface (hereinafter referred to as the exterior margin) is reduced to increase the volume efficiency of the capacitor element. However, there is a problem that reliability is reduced due to intrusion of moisture.

特に、外装樹脂と電極基板を組み合わせた構造の製品で外装樹脂が一般的なモールド樹脂の場合、モールド金型との離型性を確保する必要があるため、樹脂にある程度の離型性が付与されている。その結果、本質的に樹脂と電極基板との密着力が低くなり、外装樹脂と電極基板との界面から水分が侵入し易くなる。耐湿信頼性が低いため、外装マージンを小さくすることができず、小型化の阻害となっていた。   In particular, when the exterior resin is a general mold resin in a product with a structure that combines the exterior resin and the electrode substrate, it is necessary to ensure the releasability from the mold mold, so that a certain degree of releasability is imparted to the resin. Has been. As a result, the adhesive force between the resin and the electrode substrate is essentially reduced, and moisture easily enters from the interface between the exterior resin and the electrode substrate. Since the moisture resistance reliability is low, the exterior margin cannot be reduced, which hinders downsizing.

本発明は、上述の課題を解決し、板状又は箔状の弁作用金属から成る薄型の固体電解コンデンサにおいて、耐湿信頼性が高く、小型・薄型で且つ低インピーダンス・大容量を実現できる固体電解コンデンサを提供することにある。   The present invention solves the above-mentioned problems, and is a thin solid electrolytic capacitor made of a plate-like or foil-like valve metal, which has high moisture resistance reliability, can be realized in a small, thin, low impedance, and large capacity. It is to provide a capacitor.

本発明は、上記の課題を解決するため、電極基板のコンデンサ素子搭載面に形成する陽陰極端子の周辺部に凸部又は凹部を設けることによって、外装樹脂と電極基板との界面から浸入する水分の浸入経路を長くして、コンデンサ素子の体積効率を高めるための外装マージンを小さくした場合でも優れた耐湿信頼性を維持できる固体電解コンデンサが得られる。   In order to solve the above-mentioned problem, the present invention provides moisture that permeates from the interface between the exterior resin and the electrode substrate by providing a convex portion or a concave portion in the peripheral portion of the cathode terminal formed on the capacitor element mounting surface of the electrode substrate. Thus, a solid electrolytic capacitor can be obtained that can maintain excellent moisture resistance reliability even when the penetration path of the capacitor is made long and the exterior margin for increasing the volume efficiency of the capacitor element is reduced.

本発明によれば、板状又は箔状の弁作用金属からなる母材の拡面化された表面に、前記弁作用金属の酸化物による誘電体層を形成し、前記誘電体層の上に、固体電解質層を含む陰極導体部を形成し、前記陰極導体部と絶縁部により分離された前記弁作用金属からなる陽極導体部を形成してなるコンデンサ素子と、前記コンデンサ素子を搭載する電極基板を有し、前記コンデンサ素子を導電性接着剤を介して前記電極基板と接合し、外装樹脂で封止してなる固体電解コンデンサであって、前記電極基板の前記コンデンサ素子の搭載面に形成した前記陽極導体部を接続する陽極端子、及び前記陰極導体部を接続する陰極端子の周辺部に、前記陽極端子及び前記陰極端子を共に囲むように、前記陽極端子及び前記陰極端子と同じ材質の部を少なくとも1つ形成したことを特徴とする固体電解コンデンサが得られる。 According to the present invention, a dielectric layer made of an oxide of the valve action metal is formed on the enlarged surface of a base material made of a plate-like or foil-like valve action metal, and the dielectric layer is formed on the dielectric layer. A capacitor element in which a cathode conductor part including a solid electrolyte layer is formed and an anode conductor part made of the valve metal separated from the cathode conductor part and an insulating part is formed; and an electrode substrate on which the capacitor element is mounted A solid electrolytic capacitor in which the capacitor element is bonded to the electrode substrate via a conductive adhesive and sealed with an exterior resin, and is formed on the mounting surface of the capacitor element of the electrode substrate anode terminals for connecting the anode conductor portion and the peripheral portion of the cathode terminal for connecting the cathode conductor portion, said anode terminal and said cathode terminal so as to surround both the convex of the same material as the anode terminal and the cathode terminal a little part Solid electrolytic capacitor being characterized in that also one form is obtained.

本発明によれば、前記凸部の断面形状は、前記凸部の上面側が、前記電極基板の表面側よりそれぞれ大きいことを特徴とする上記の固体電解コンデンサが得られる。 According to the present invention, the sectional shape of the convex portion has an upper surface side is the convex portion, the above-mentioned solid electrolytic capacitor characterized in that each larger than the surface side of the electrode substrate is obtained.

本発明によれば、前記凸部の断面形状は、前記凸部の最小厚が前記凸部の上面側と、前記電極基板の表面側より小さいことを特徴とする上記の固体電解コンデンサが得られる。 According to the present invention, the sectional shape of the convex portion, the minimum thickness of the convex portion, and the upper surface of the convex portion, the above-mentioned solid electrolytic capacitor and is smaller than the surface side of the electrode substrate is obtained It is done.

本発明によれば、前記凸部の断面形状は、前記凸部の最大厚が前記凸部の上面側と、前記電極基板の表面側より大きいことを特徴とする上記の固体電解コンデンサが得られる。 According to the present invention, the sectional shape of the convex portion, the maximum thickness of the convex portion, and the upper surface of the convex portion, the above-mentioned solid electrolytic capacitor being larger than the surface side of the electrode substrate is obtained It is done.

本発明では、電極基板のコンデンサ素子搭載面に形成する陽陰極端子の周辺部に凸部又は凹部を設けることによって、外装樹脂と電極基板との界面から侵入する水分の進入経路が長くなり、コンデンサ素子の体積効率を高めるための外装マージンを小さくした場合でも、優れた耐湿信頼性を実現できる。   In the present invention, by providing a convex portion or a concave portion in the peripheral portion of the cathode terminal formed on the capacitor element mounting surface of the electrode substrate, the ingress path of moisture entering from the interface between the exterior resin and the electrode substrate becomes long, and the capacitor Even when the exterior margin for increasing the volumetric efficiency of the element is reduced, excellent moisture resistance reliability can be realized.

また、上記凸部または凹部の断面形状は、凸部の上面側または凹部の底面側が電極基板の表面側よりそれぞれ大きい形状、あるいは凸部の最小厚または凹部の最小幅が、凸部の上面側または凹部の底面側と、前記電極基板の表面側より小さい形状、あるいは凸部の最大厚または凹部の最大幅が、凸部の上面側または凹部の底面側と、前記電極基板の表面側より大きい形状とすることによって、外装樹脂と電極基板との界面に沿って侵入する水分の侵入経路を更に長くすることができると共に、アンカー効果により外装樹脂と電極基板との接着強度も向上させることができる。   Further, the cross-sectional shape of the convex portion or the concave portion is such that the upper surface side of the convex portion or the bottom surface side of the concave portion is larger than the surface side of the electrode substrate, or the minimum thickness of the convex portion or the minimum width of the concave portion is the upper surface side of the convex portion. Alternatively, the bottom surface side of the concave portion and the shape smaller than the surface side of the electrode substrate, or the maximum thickness of the convex portion or the maximum width of the concave portion is larger than the upper surface side of the convex portion or the bottom surface side of the concave portion and the surface side of the electrode substrate. By adopting the shape, it is possible to further increase the intrusion route of moisture that penetrates along the interface between the exterior resin and the electrode substrate, and it is also possible to improve the adhesive strength between the exterior resin and the electrode substrate due to the anchor effect. .

本発明による実施の形態について、図面を用いて説明する。   Embodiments according to the present invention will be described with reference to the drawings.

図1は本発明の固体電解コンデンサにおける電極基板を説明する図で、図1(a)は平面図、図1(b)は図1(a)のA−A線断面図、図1(c)は図1(b)の円X内のの拡大断面図をそれぞれ示す。図2は本発明の固体電解コンデンサを説明する図で、図2(a)はコンデンサ素子の断面摸式図、図2(b)は固体電解コンデンサの断面摸式図をそれぞれ示す。   1A and 1B are diagrams illustrating an electrode substrate in a solid electrolytic capacitor according to the present invention. FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along line AA in FIG. ) Shows enlarged sectional views in a circle X of FIG. 2A and 2B are diagrams for explaining the solid electrolytic capacitor of the present invention. FIG. 2A is a schematic cross-sectional view of the capacitor element, and FIG. 2B is a schematic cross-sectional view of the solid electrolytic capacitor.

図1に示すように、電極基板18は、基材10のコンデンサ素子搭載面には、素子側陽極端子11と素子側陰極端子12が形成され、更にその周囲に凸部13が形成されている。一方、電極基板18の実装面には、外部陽極端子14と外部陰極端子15とが形成され、素子側陽極端子11と外部陽極端子14が、及び素子側陰極端子12と外部陰極端子15がそれぞれビア16で接続された構造である。   As shown in FIG. 1, the electrode substrate 18 has an element-side anode terminal 11 and an element-side cathode terminal 12 formed on the capacitor element mounting surface of the base material 10, and a protrusion 13 formed around the element-side anode terminal 11. . On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed on the mounting surface of the electrode substrate 18, the element side anode terminal 11 and the external anode terminal 14, and the element side cathode terminal 12 and the external cathode terminal 15 respectively. The structure is connected by vias 16.

凸部13は、図2(b)に示した外装樹脂20と電極基板18との界面から水分が侵入する際の侵入経路を長くして耐湿信頼性を向上させるためのものであり、材質は、樹脂、金属のいずれでもよいが、基材10に密着するものを用いる。また、凸部13は、前記素子側陽極端子11及び素子側陰極端子12と同時に化学エッチングにより形成される。更に、図1(c)に示したように断面形状は、略長方形としている。   The convex portion 13 is for improving the moisture resistance reliability by lengthening the penetration path when moisture enters from the interface between the exterior resin 20 and the electrode substrate 18 shown in FIG. Any of resin, metal and the like may be used. Further, the convex portion 13 is formed by chemical etching simultaneously with the element side anode terminal 11 and the element side cathode terminal 12. Furthermore, as shown in FIG.1 (c), the cross-sectional shape is made into the substantially rectangular shape.

一方、図2(a)に示すように、コンデンサ素子17は、弁作用金属1であるアルミ箔の両面がエッチング処理で拡面化され、陽極酸化により酸化皮膜2を形成されたアルミ箔を所望の素子サイズに切り出す。次に、前記酸化皮膜2上の所定の位置にエポキシ樹脂等の絶縁性樹脂からなる絶縁部3を塗布・形成して、アルミ箔を陽極導体部8と陰極導体部9の領域に区分する。その後、再度陽極酸化を行い、切断面等アルミの芯が露出している部分に酸化皮膜を再形成する。続いて、陰極導体部9を形成する領域の上下面には、導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト等による金属電極層6をそれぞれ順に積層、形成し、陰極導体部9とする。   On the other hand, as shown in FIG. 2 (a), the capacitor element 17 is preferably an aluminum foil in which both surfaces of the aluminum foil that is the valve metal 1 are enlarged by an etching process and an oxide film 2 is formed by anodization. The element size is cut out. Next, an insulating portion 3 made of an insulating resin such as an epoxy resin is applied and formed at a predetermined position on the oxide film 2, and the aluminum foil is divided into regions of the anode conductor portion 8 and the cathode conductor portion 9. Thereafter, anodic oxidation is performed again, and an oxide film is re-formed on a portion where the aluminum core is exposed, such as a cut surface. Subsequently, a solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5, and a metal electrode layer 6 made of a conductive paste or the like are sequentially laminated and formed on the upper and lower surfaces of the region where the cathode conductor portion 9 is formed. The conductor portion 9 is used.

次に、前記陰極導体部9以外の領域では、酸化皮膜2及び拡面化層を除去してアルミの弁作用金属1を露出させる。さらに、Ni、Cu、Ag等のメッキが施されたCuまたはCu合金箔からなるリードフレーム7を、超音波溶接、抵抗溶接、レーザー溶接等により弁作用金属1と接合し、陽極導体部8とする。   Next, in a region other than the cathode conductor portion 9, the oxide film 2 and the surface enlargement layer are removed to expose the aluminum valve metal 1. Further, a lead frame 7 made of Cu or Cu alloy foil plated with Ni, Cu, Ag or the like is joined to the valve metal 1 by ultrasonic welding, resistance welding, laser welding, or the like, To do.

次に、図2(b)に示すように、上記コンデンサ素子17を、銀等を含有する導電性接着剤19を介して、図1に示した電極基板18に接着し、その後、エポキシ樹脂等の外装樹脂20を用いて外装モールドし、固体電解コンデンサ30aを得る。   Next, as shown in FIG. 2 (b), the capacitor element 17 is bonded to the electrode substrate 18 shown in FIG. 1 through a conductive adhesive 19 containing silver or the like, and then an epoxy resin or the like. The exterior resin 20 is used for exterior molding to obtain a solid electrolytic capacitor 30a.

図3は本発明の固体電解コンデンサにおける電極基板を説明する図で、図3(a)は平面図、図3(b)は図3(a)のB−B線断面図、図3(c)は図3(b)の円Y内のの拡大断面図をそれぞれ示す。図4は本発明の固体電解コンデンサを説明する図で、図4(a)はコンデンサ素子の断面摸式図、図4(b)は固体電解コンデンサの断面摸式図をそれぞれ示す。   3A and 3B are diagrams for explaining an electrode substrate in the solid electrolytic capacitor of the present invention. FIG. 3A is a plan view, FIG. 3B is a cross-sectional view taken along the line BB in FIG. ) Respectively show enlarged sectional views in the circle Y of FIG. 4A and 4B are diagrams for explaining the solid electrolytic capacitor of the present invention. FIG. 4A is a schematic sectional view of the capacitor element, and FIG. 4B is a schematic sectional view of the solid electrolytic capacitor.

図3に示すように、電極基板18は、基材10のコンデンサ素子搭載面には、素子側陽極端子11と素子側陰極端子12が形成され、更にその周囲に凸部13が形成されている。一方、電極基板18の実装面には、外部陽極端子14と外部陰極端子15とが形成され、素子側陽極端子11と外部陽極端子14が、及び素子側陰極端子12と外部陰極端子15がそれぞれビア16で接続された構造である。   As shown in FIG. 3, the electrode substrate 18 has an element-side anode terminal 11 and an element-side cathode terminal 12 formed on the capacitor element mounting surface of the base material 10, and a protrusion 13 formed around the element-side anode terminal 11. . On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed on the mounting surface of the electrode substrate 18, the element side anode terminal 11 and the external anode terminal 14, and the element side cathode terminal 12 and the external cathode terminal 15 respectively. The structure is connected by vias 16.

凸部13は、図4(b)に示した外装樹脂20と電極基板18との界面から水分が侵入する際の侵入経路を長くして耐湿信頼性を向上させるためのものであり、材質は、樹脂、金属のいずれでもよいが、基材10に密着するものを用いる。また、凸部13は、前記素子側陽極端子11及び素子側陰極端子12と同時に化学エッチングにより形成され、更に、図3(c)に示したようにサイドエッチングにより断面形状が、凸部13の上面側が電極基板の表面側より大きく、内側に円弧状に窪んだ形状としたものである。このような断面形状とすることで、外装樹脂と電極基板との界面に沿って侵入する水分の侵入経路を更に長くすることができると共に、アンカー効果により、外装樹脂20と電極基板18との接着強度を更に向上させることができる。   The convex part 13 is for improving the moisture resistance reliability by lengthening the penetration path when moisture enters from the interface between the exterior resin 20 and the electrode substrate 18 shown in FIG. Any of resin, metal and the like may be used. The convex portion 13 is formed by chemical etching simultaneously with the element-side anode terminal 11 and the element-side cathode terminal 12, and the cross-sectional shape of the convex portion 13 is further increased by side etching as shown in FIG. The upper surface side is larger than the surface side of the electrode substrate, and the inner surface is recessed in an arc shape. By setting it as such a cross-sectional shape, the penetration | invasion path | route of the water | moisture content which penetrate | invades along the interface of exterior resin and an electrode board | substrate can further be lengthened, and adhesion | attachment of exterior resin 20 and the electrode board | substrate 18 is possible by an anchor effect. The strength can be further improved.

一方、図4(a)に示すように、コンデンサ素子17は、弁作用金属1であるアルミ箔の両面がエッチング処理で拡面化され、陽極酸化により酸化皮膜2を形成されたアルミ箔を所望の素子サイズに切り出す。次に、前記酸化皮膜2上の所定の位置にエポキシ樹脂等の絶縁性樹脂からなる絶縁部3を塗布・形成して、アルミ箔を陽極導体部8と陰極導体部9の領域に区分する。その後、再度陽極酸化を行い、切断面等アルミの芯が露出している部分に酸化皮膜を再形成する。続いて、陰極導体部9を形成する領域の上下面には、導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト等による金属電極層6をそれぞれ順に積層、形成し、陰極導体部9とする。   On the other hand, as shown in FIG. 4 (a), the capacitor element 17 is preferably an aluminum foil in which both surfaces of the aluminum foil that is the valve metal 1 are enlarged by an etching process and an oxide film 2 is formed by anodization. The element size is cut out. Next, an insulating portion 3 made of an insulating resin such as an epoxy resin is applied and formed at a predetermined position on the oxide film 2, and the aluminum foil is divided into regions of the anode conductor portion 8 and the cathode conductor portion 9. Thereafter, anodic oxidation is performed again, and an oxide film is re-formed on a portion where the aluminum core is exposed, such as a cut surface. Subsequently, a solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5, and a metal electrode layer 6 made of a conductive paste or the like are sequentially laminated and formed on the upper and lower surfaces of the region where the cathode conductor portion 9 is formed. The conductor portion 9 is used.

次に、前記陰極導体部9以外の領域では、酸化皮膜2及び拡面化層を除去してアルミの弁作用金属1を露出させる。さらに、Ni、Cu、Ag等のメッキが施されたCuまたはCu合金箔からなるリードフレーム7を、超音波溶接、抵抗溶接、レーザー溶接等により弁作用金属1と接合し、陽極導体部8とする。図2(a)と同じである。   Next, in a region other than the cathode conductor portion 9, the oxide film 2 and the surface enlargement layer are removed to expose the aluminum valve metal 1. Further, a lead frame 7 made of Cu or Cu alloy foil plated with Ni, Cu, Ag or the like is joined to the valve metal 1 by ultrasonic welding, resistance welding, laser welding, or the like, To do. This is the same as FIG.

次に、図4(b)に示すように、上記コンデンサ素子17を、銀等を含有する導電性接着剤19を介して、図3に示した電極基板18に接着し、その後、エポキシ樹脂等の外装樹脂20を用いて外装モールドし、固体電解コンデンサ30bを得る。   Next, as shown in FIG. 4 (b), the capacitor element 17 is bonded to the electrode substrate 18 shown in FIG. 3 through a conductive adhesive 19 containing silver or the like, and then an epoxy resin or the like. The exterior resin 20 is used for exterior packaging to obtain a solid electrolytic capacitor 30b.

図5は本発明の固体電解コンデンサにおける電極基板を説明する図で、図5(a)は平面図、図5(b)は図5(a)のC−C断面図をそれぞれ示す。図6は本発明の固体電解コンデンサを説明する図で、図6(a)はコンデンサ素子の断面摸式図、図6(b)は固体電解コンデンサの断面摸式図をそれぞれ示す。   5A and 5B are diagrams for explaining an electrode substrate in the solid electrolytic capacitor of the present invention. FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line C-C in FIG. 6A and 6B are diagrams for explaining the solid electrolytic capacitor of the present invention. FIG. 6A shows a schematic cross-sectional view of the capacitor element, and FIG. 6B shows a schematic cross-sectional view of the solid electrolytic capacitor.

図5に示すように、電極基板18は、基材10のコンデンサ素子搭載面には、素子側陽極端子11と素子側陰極端子12が形成され、更にその周辺部に凹部21が2つ形成されている。
一方、電極基板18の実装面には、外部陽極端子14と外部陰極端子15とが形成され、素子側陽極端子11と外部陽極端子14が、及び素子側陰極端子12と外部陰極端子15がそれぞれビア16で接続された構造である。
As shown in FIG. 5, the electrode substrate 18 has an element-side anode terminal 11 and an element-side cathode terminal 12 formed on the capacitor element mounting surface of the base material 10, and two recesses 21 formed on the periphery thereof. ing.
On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed on the mounting surface of the electrode substrate 18, the element side anode terminal 11 and the external anode terminal 14, and the element side cathode terminal 12 and the external cathode terminal 15 respectively. The structure is connected by vias 16.

凹部21は、図6(b)に示した外装樹脂20と電極基板18との界面から水分が侵入する際の侵入経路を長くして耐湿信頼性を向上させるためにものであり、基材10のコンデンサ素子搭載面にレーザー加工等により形成される。凹部21の断面形状は、図5(b)に示したように略長方形としているが、凹部21の底面側が電極基板の表面側より大きい形状、あるいは凹部21の最小幅が、凹部21の底面側と、前記電極基板の表面側より小さい形状、すなわち、最小幅の箇所が電極基板表面と凹部底面の間にある形状、あるいは凹部21の最大幅が、凹部21の底面側と、前記電極基板の表面側より大きい形状、すなわち、最大幅の箇所が電極基板表面と凹部底面の間にある形状としてもよい。このような断面形状とすることで、外装樹脂と電極基板との界面に沿って侵入する水分の侵入経路を更に長くすることができると共に、アンカー効果により外装樹脂と電極基板との接着強度も向上させることができる。
また、凹部21の深さは、電極基板18の強度を保持するため、基材10の厚さの約1/2以下とするのが好ましい。更に、凹部21は複数形成してもよい。
The concave portion 21 is provided to lengthen the penetration path when moisture enters from the interface between the exterior resin 20 and the electrode substrate 18 shown in FIG. The capacitor element mounting surface is formed by laser processing or the like. The cross-sectional shape of the recess 21 is substantially rectangular as shown in FIG. 5B, but the bottom surface side of the recess 21 is larger than the surface side of the electrode substrate, or the minimum width of the recess 21 is the bottom surface side of the recess 21. And a shape smaller than the surface side of the electrode substrate, that is, a shape having a minimum width portion between the electrode substrate surface and the bottom surface of the recess, or a maximum width of the recess 21 is set on the bottom surface side of the recess 21 and the electrode substrate. A shape larger than the surface side, that is, a shape in which a portion having the maximum width is located between the electrode substrate surface and the bottom surface of the recess may be employed. By adopting such a cross-sectional shape, it is possible to further increase the intrusion route of moisture that penetrates along the interface between the exterior resin and the electrode substrate, and the anchor effect also improves the adhesive strength between the exterior resin and the electrode substrate. Can be made.
In addition, the depth of the recess 21 is preferably about ½ or less of the thickness of the base material 10 in order to maintain the strength of the electrode substrate 18. Further, a plurality of recesses 21 may be formed.

一方、図6(a)に示すように、コンデンサ素子17は、弁作用金属1であるアルミ箔の両面がエッチング処理で拡面化され、陽極酸化により酸化皮膜2を形成されたアルミ箔を所望の素子サイズに切り出す。次に、前記酸化皮膜2上の所定の位置にエポキシ樹脂等の絶縁性樹脂からなる絶縁部3を塗布・形成して、アルミ箔を陽極導体部8と陰極導体部9の領域に区分する。その後、再度陽極酸化を行い、切断面等アルミの芯が露出している部分に酸化皮膜を再形成する。続いて、陰極導体部9を形成する領域の上下面には、導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト等による金属電極層6をそれぞれ順に積層、形成し、陰極導体部9とする。   On the other hand, as shown in FIG. 6 (a), the capacitor element 17 is preferably an aluminum foil in which both surfaces of the aluminum foil that is the valve metal 1 are expanded by an etching process and an oxide film 2 is formed by anodization. The element size is cut out. Next, an insulating portion 3 made of an insulating resin such as an epoxy resin is applied and formed at a predetermined position on the oxide film 2, and the aluminum foil is divided into regions of the anode conductor portion 8 and the cathode conductor portion 9. Thereafter, anodic oxidation is performed again, and an oxide film is re-formed on a portion where the aluminum core is exposed, such as a cut surface. Subsequently, a solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5, and a metal electrode layer 6 made of a conductive paste or the like are sequentially laminated and formed on the upper and lower surfaces of the region where the cathode conductor portion 9 is formed. The conductor portion 9 is used.

次に、前記陰極導体部9以外の領域では、酸化皮膜2及び拡面化層を除去してアルミの弁作用金属1を露出させる。さらに、Ni、Cu、Ag等のメッキが施されたCuまたはCu合金箔からなるリードフレーム7を、超音波溶接、抵抗溶接、レーザー溶接等により弁作用金属1と接合し、陽極導体部8とする。図2(a)、図4(a)と同じである。   Next, in a region other than the cathode conductor portion 9, the oxide film 2 and the surface enlargement layer are removed to expose the aluminum valve metal 1. Further, a lead frame 7 made of Cu or Cu alloy foil plated with Ni, Cu, Ag or the like is joined to the valve metal 1 by ultrasonic welding, resistance welding, laser welding, or the like, To do. This is the same as FIGS. 2 (a) and 4 (a).

次に、図6(b)に示すように、上記コンデンサ素子17を、銀等を含有する導電性接着剤19を介して、図5に示した電極基板18に接着し、その後、エポキシ樹脂等の外装樹脂20を用いて外装モールドし、固体電解コンデンサ30cを得る。   Next, as shown in FIG. 6 (b), the capacitor element 17 is bonded to the electrode substrate 18 shown in FIG. 5 through a conductive adhesive 19 containing silver or the like, and then an epoxy resin or the like. The exterior resin 20 is used for exterior molding to obtain a solid electrolytic capacitor 30c.

一連の実施の形態で示した母材となる弁作用金属1は、アルミニウム、タンタル、ニオブ、チタンなどの金属製の板状または箔状のものを使用するのが好ましい。   As the valve metal 1 serving as a base material shown in the series of embodiments, it is preferable to use a metal plate or foil such as aluminum, tantalum, niobium or titanium.

酸化皮膜2は、誘電体として作用するもので、前記弁作用金属1を電解液中に漬け、電流を流すことで金属表面に形成される。電解液の種類、電流を適宜調整して製膜するのが好ましい。   The oxide film 2 acts as a dielectric, and is formed on the metal surface by immersing the valve metal 1 in an electrolytic solution and flowing an electric current. It is preferable to form a film by appropriately adjusting the type and current of the electrolyte.

絶縁部3は、材質が高耐熱性を有し、エポキシ系、シリコーン系などの熱硬化性樹脂、ポリイミド系などの熱可塑性樹脂のいずれでもよく、ペースト又は液状のものを用いるのが好ましく、製膜加工性を考慮し、シリコーン系熱硬化性樹脂がより好適である。形成方法は、浸漬、吹き付け、塗布、印刷法などの一般的な工法を用い、レジストの機能を確保するのに十分な厚さである10〜30μmとするのが好ましい。   The insulating part 3 is made of a material having high heat resistance, and may be any one of a thermosetting resin such as epoxy and silicone, and a thermoplastic resin such as polyimide, and it is preferable to use a paste or liquid. In consideration of film processability, a silicone-based thermosetting resin is more preferable. As a forming method, a general method such as dipping, spraying, coating, or printing is used, and the thickness is preferably 10 to 30 μm, which is sufficient to ensure the function of the resist.

固体電解質層4は、ポリチオフェンまたはポリピロールなどの導電性高分子を用いるのが好ましい。   The solid electrolyte layer 4 is preferably made of a conductive polymer such as polythiophene or polypyrrole.

グラファイト層5は、その上層に積層する金属電極層6と、下層に形成する固体電解質層4との結合性を高めるためのものである。   The graphite layer 5 is for enhancing the bonding between the metal electrode layer 6 laminated on the upper layer and the solid electrolyte layer 4 formed on the lower layer.

金属電極層6は、コンデンサ素子17の陰極電極材として汎用的に用いられている銀ペーストをディスペンサ等で塗布し乾燥硬化して形成するのが好ましい。   The metal electrode layer 6 is preferably formed by applying a silver paste generally used as a cathode electrode material of the capacitor element 17 with a dispenser and drying and curing.

リードフレーム7は、銅、アルミニウム、ステンレス、またはそれらの合金などの金属製の導電材を用い、更にその表面を金、銀、錫、ニッケルなどでめっき処理したものを用いるのが好ましい。   The lead frame 7 is preferably made of a conductive material made of metal such as copper, aluminum, stainless steel, or an alloy thereof, and further having its surface plated with gold, silver, tin, nickel or the like.

基材10は、高耐熱性の絶縁材を用いるのが好ましく、ガラスエポキシ材、BTレジン、ポリイミド、液晶ポリマーなどの樹脂系や、アルミナなどのセラミック系等何れを用いてもよいが、薄型化、可とう性、コスト面で有効で、汎用的なガラスエポキシ材を用いるのがより好適である。   The substrate 10 is preferably made of a highly heat-resistant insulating material, and any of a resin system such as a glass epoxy material, a BT resin, a polyimide, a liquid crystal polymer, or a ceramic system such as alumina may be used. It is more preferable to use a general-purpose glass epoxy material that is effective in terms of flexibility and cost.

素子側陽極端子11、素子側陰極端子12は、前記基材10の上面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成する。上記方法に限らず、導電性ペーストを印刷してもよい。   The element-side anode terminal 11 and the element-side cathode terminal 12 are generally used for gravure printing, screen printing, and the like after a conductive foil body made of metal such as copper or aluminum is bonded to the upper surface of the substrate 10. The resist is printed by a simple printing method and is formed by etching. Not only the above method but also a conductive paste may be printed.

凸部13は、素子側陽極端子11と素子側陰極端子12の全体を囲むように周辺部に形成されていればよく、材質は金属、樹脂、またはそれらの混合材のいずれでもよい。形成時は、上記素子側陽極端子11、素子側陰極端子12と同時に行うのが工数、コスト上で有利なため、上記素子側陽極端子11、素子側陰極端子12と同一材質とし、その上にレジスト(絶縁)処置などするのが好適である。
凸部13の電極基板18の上面から見た形状は、方形、円形、楕円形等のいずれでもよく、また、環状に限らず、一部欠損した状態であってもよいが、その場合は電極基板18の外周端部からコンデンサ素子の陽陰極端子までの距離、すなわち水分の浸入経路が比較的長い、電極基板18の4つ角部付近に欠損部を設けるのがより好ましい。
また、凸部13の断面形状は、図1(c)に示した場合は略長方形としているが、図3(c)に示すように、サイドエッチングにより凸部13の上面側が電極基板の表面側より大きい形状、すなわち逆台形状や、あるいは凸部13の最小厚が、凸部13の上面側と、電極基板18の表面側より小さい形状、すなわち、側面が円弧状や楔状に、内側に窪んだ形状、あるいは凸部13の最大厚が、凸部13の上面側と、電極基板18の表面側より大きい形状、すなわち、側面が円弧状や楔状に、外側に張り出した形状とすることで、外装樹脂20と電極基板18との界面に沿って侵入する水分の侵入経路を更に長くすることができると共に、アンカー効果により、外装樹脂20と電極基板18との接着強度を向上させることができる。
The convex part 13 should just be formed in the peripheral part so that the whole of the element side anode terminal 11 and the element side cathode terminal 12 may be enclosed, and a material may be either metal, resin, or those mixed materials. At the time of formation, since it is advantageous in terms of man-hours and costs to be performed simultaneously with the element side anode terminal 11 and the element side cathode terminal 12, the same material as the element side anode terminal 11 and element side cathode terminal 12 is used. It is preferable to perform a resist (insulation) treatment.
The shape of the convex portion 13 as viewed from the upper surface of the electrode substrate 18 may be any of a square shape, a circular shape, an elliptical shape, and the like. It is more preferable to provide a defect portion in the vicinity of the four corners of the electrode substrate 18 where the distance from the outer peripheral end of the substrate 18 to the cathode terminal of the capacitor element, that is, the moisture intrusion path is relatively long.
Moreover, although the cross-sectional shape of the convex part 13 is substantially rectangular in the case shown in FIG. 1 (c), as shown in FIG. 3 (c), the upper surface side of the convex part 13 is the surface side of the electrode substrate by side etching. A larger shape, that is, an inverted trapezoidal shape, or a shape in which the minimum thickness of the convex portion 13 is smaller than the upper surface side of the convex portion 13 and the surface side of the electrode substrate 18, that is, the side surface is recessed in an arc shape or a wedge shape. By forming an elliptical shape or a shape where the maximum thickness of the convex portion 13 is larger than the upper surface side of the convex portion 13 and the surface side of the electrode substrate 18, that is, a shape in which the side surface protrudes outward in an arc shape or a wedge shape, The intrusion path of moisture entering along the interface between the exterior resin 20 and the electrode substrate 18 can be further lengthened, and the adhesive strength between the exterior resin 20 and the electrode substrate 18 can be improved by the anchor effect.

外部陽極端子14、外部陰極端子15は、前記基材10の下面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成する。上記方法に限らず、導電性ペーストを印刷してもよい。   The external anode terminal 14 and the external cathode terminal 15 are formed by attaching a conductive foil made of metal such as copper or aluminum to the lower surface of the base material 10 and attaching it to general printing such as gravure printing or screen printing. Resist printing is performed by a construction method, and it is formed by etching. Not only the above method but also a conductive paste may be printed.

電極基板18は、上記基材10と、その上下面に形成した上記素子側陽極端子11、素子側陰極端子12及び外部陽極端子14、外部陰極端子15、更にそれらを互いに接合するビア16から構成されたものである。   The electrode substrate 18 includes the base material 10, the element-side anode terminal 11, the element-side cathode terminal 12, the external anode terminal 14 and the external cathode terminal 15 formed on the upper and lower surfaces thereof, and vias 16 that join them together. It has been done.

導電性接着剤19は、金、銀、銅などの金属粉末を含むエポキシ系などのペースト状の樹脂をディスペンサを用いて塗布するのが好ましい。   The conductive adhesive 19 is preferably applied by using a dispenser with an epoxy-based paste resin containing metal powder such as gold, silver or copper.

外装樹脂20は、汎用の封止用樹脂で、使用環境に耐えうるものであればどんなものでもよく、エポキシ系、フェノール系などの熱硬化性樹脂やポリプロピレン(PP)、ポリスチレン(PS)などの熱可塑性樹脂の何れでもよいが、耐熱性、加工性を考慮し適宜選定するのが好ましい。電源基板での半田リフロー実装性を考慮し、エポキシ系熱硬化性樹脂がより好適である。また、封止方法はインジェクション法、トランスファー法など何れの工法でもよい。   The exterior resin 20 is a general-purpose sealing resin and may be any resin that can withstand the use environment, such as an epoxy-based or phenol-based thermosetting resin, polypropylene (PP), polystyrene (PS), or the like. Any of thermoplastic resins may be used, but it is preferable to select them appropriately in consideration of heat resistance and workability. In consideration of solder reflow mounting property on the power supply board, an epoxy-based thermosetting resin is more preferable. The sealing method may be any method such as an injection method or a transfer method.

凹部21は、外装樹脂20と電極基板18との界面から水分が侵入する際の侵入経路を長くして耐湿信頼性を向上させるためのものであり、基材10の上面に、素子側陽極端子11及び素子側陰極端子12とを共に囲むように周囲にエッチング工法等により形成する。凹部21の電極基板18の上面から見た形状は、方形、円形、楕円形のいずれでもよく、また、環状に限らず、一部凹部のない状態であってもよいが、その場合は電極基板18の外周端部からコンデンサ素子の陽陰極端子までの距離、すなわち水分の浸入経路が比較的長い、電極基板18の4つ角部付近に凹部のない箇所を設けるのがより好ましい。
また、凹部21の断面形状は、図5(c)に示した場合は略長方形としているが、内側面が、円弧状や楔状に内側に窪んだり、外側に張り出したりした形成でもよく、そのようにすることで、外装樹脂20と電極基板18との界面に沿って侵入する水分の侵入経路を更に長くすることができると共に、アンカー効果により、外装樹脂20と電極基板18との接着強度を向上させることができる。
形成する数は1以上とし、電極基板18の外周端までの隙間と溝幅により適宜調整するのが好ましい。数を多くすると水分の侵入経路を長くできるので耐湿信頼性上良好であるが、小型化により前記隙間を小さくなると溝数を増やすことが困難になるので適宜調整するのが好ましい。
また、凹部21の深さは、電極基板18の強度との兼ね合いから、基材10の厚さの約1/2程度が好ましい。
The recess 21 is for increasing the moisture penetration reliability by increasing the penetration path when moisture enters from the interface between the exterior resin 20 and the electrode substrate 18. 11 and the element-side cathode terminal 12 are formed around the periphery by an etching method or the like. The shape of the concave portion 21 viewed from the upper surface of the electrode substrate 18 may be any of a square shape, a circular shape, and an elliptical shape, and is not limited to an annular shape, and may be in a state without a partial concave portion. More preferably, the distance from the outer peripheral edge of the capacitor 18 to the cathode terminal of the capacitor element, that is, the location where there is no recess in the vicinity of the four corners of the electrode substrate 18 where the water infiltration path is relatively long.
In addition, the cross-sectional shape of the concave portion 21 is substantially rectangular in the case shown in FIG. 5C, but the inner surface may be formed in an arc shape or a wedge shape inwardly or projecting outwardly. By doing so, the intrusion route of moisture entering along the interface between the exterior resin 20 and the electrode substrate 18 can be further lengthened, and the adhesive strength between the exterior resin 20 and the electrode substrate 18 is improved by the anchor effect. Can be made.
The number to be formed is preferably 1 or more, and is suitably adjusted according to the gap and groove width to the outer peripheral edge of the electrode substrate 18. Increasing the number makes it possible to lengthen the moisture intrusion route, which is favorable in terms of moisture resistance reliability. However, it is difficult to increase the number of grooves when the gap is reduced due to downsizing, and thus it is preferable to adjust appropriately.
The depth of the recess 21 is preferably about ½ of the thickness of the base material 10 in view of the strength of the electrode substrate 18.

なお、上述した凸部13、凹部21は、基材10の上面に適宜組み合わせて形成してもよい。   In addition, you may form the convex part 13 and the recessed part 21 mentioned above in combination on the upper surface of the base material 10 suitably.

以下、実施例を用いて詳述する。   Hereinafter, it explains in full detail using an Example.

(実施例1)
本発明の固体電解コンデンサに用いるコンデンサ素子17として、まず、薄板状の弁作用金属1の表面に多孔質部を形成して拡面化し、陽極酸化させて酸化皮膜2を形成した。ここではアルミ電解コンデンサ用に市販されているもので、単位平方センチメートル当たりの容量が450μF、酸化皮膜を形成する上での公称化成電圧3V、厚みが150μmのアルミ箔を選択した。このアルミ箔を幅2.6mm、長さ5.4mmの形状に切り出し、そのアルミ箔の長さ方向端部から幅2.6mm、長さ4.4mmの領域を陰極形成部とし、反対側のアルミ箔の長さ方向端部から幅2.6mm、長さ0.5mmの領域を陽極形成部とした。
Example 1
As the capacitor element 17 used in the solid electrolytic capacitor of the present invention, first, a porous portion was formed on the surface of the thin plate-like valve metal 1 to enlarge the surface, and anodized to form the oxide film 2. Here, an aluminum foil having a capacitance of 450 μF per unit square centimeter, a nominal formation voltage of 3 V for forming an oxide film, and a thickness of 150 μm was selected, which is commercially available for aluminum electrolytic capacitors. This aluminum foil was cut into a shape having a width of 2.6 mm and a length of 5.4 mm, and a region having a width of 2.6 mm and a length of 4.4 mm from the end in the length direction of the aluminum foil was defined as a cathode formation portion, A region having a width of 2.6 mm and a length of 0.5 mm from the end in the length direction of the aluminum foil was defined as an anode forming portion.

続いて、陽極と陰極を分断するための絶縁部3として、エポキシ樹脂を主成分とする樹脂を用い、陽極形成部側長さ方向端部から0.65mmの位置に、幅2.6mm、長さ0.3mm、厚さ20μmで塗布、硬化させて形成した。絶縁部3の形成後、10%のアジピン酸二アンモニウム水溶液に浸漬し、30分間、5Vの電圧を印加することでアルミ露出部に再度酸化皮膜を形成した。   Subsequently, as the insulating portion 3 for separating the anode and the cathode, a resin mainly composed of an epoxy resin is used, and the width is 2.6 mm and the length is 0.65 mm from the anode forming portion side lengthwise end portion. It was formed by coating and curing at a thickness of 0.3 mm and a thickness of 20 μm. After the formation of the insulating part 3, it was immersed in a 10% aqueous solution of diammonium adipate and a voltage of 5V was applied for 30 minutes to form an oxide film again on the exposed aluminum part.

次に、陰極形成部の酸化皮膜2上に、モノマーとして3、4−エチレンジオキシチオフェン、酸化剤としてペルオキソ二硫酸アンモニウムと、ドーパントとしてパラトルエンスルホン酸を、それぞれ6:1:2の組成比で反応させた導電性高分子からなる固体電解質層4を形成し、その上に、スクリーン印刷でグラファイト層5を15μmの厚さで形成した。さらに、グラファイト層5の上に銀含有の導電性ペーストを25μmの厚さで塗布し、150℃で乾燥・硬化させて金属電極層6を形成し、陰極導体部9とした。その後、陽極形成部の酸化皮膜2を除去し、Niメッキを施された幅2.6mm、長さ0.5mm、厚さ80μmのCu合金箔からなるリードフレーム7を、陽極導体部8の下面に超音波溶接して、図2(a)に示したコンデンサ素子17を得た。   Next, 3,4-ethylenedioxythiophene as a monomer, ammonium peroxodisulfate as an oxidant, and paratoluenesulfonic acid as a dopant at a composition ratio of 6: 1: 2 on the oxide film 2 of the cathode forming portion. A solid electrolyte layer 4 made of a reacted conductive polymer was formed, and a graphite layer 5 having a thickness of 15 μm was formed thereon by screen printing. Further, a conductive paste containing silver was applied on the graphite layer 5 to a thickness of 25 μm, and dried and cured at 150 ° C. to form the metal electrode layer 6, thereby forming the cathode conductor portion 9. Thereafter, the oxide film 2 in the anode forming portion is removed, and a lead frame 7 made of Cu alloy foil having a width of 2.6 mm, a length of 0.5 mm, and a thickness of 80 μm plated with Ni is formed on the lower surface of the anode conductor portion 8. The capacitor element 17 shown in FIG. 2A was obtained by ultrasonic welding.

次に、電極基板18として、基材10が100μm厚のFR−4材を使用し、基材10のコンデンサ素子搭載面には、外周端から0.3mm内側に素子側陽極端子11と素子側陰極端子12を、化学エッチング法で厚さ50μmの銅箔で形成し、その周囲0.15mmの位置に幅100μm、高さ60μmの銅箔の凸部13を長方形状に形成した。一方で、基材10の実装面には外部陽極端子14と外部陰極端子15を厚さ50μmの銅箔で形成し、素子側陽極端子11と外部陽極端子14、及び素子側陰極端子12と外部陰極端子15とをそれぞれビア16を介して接合し、図1に示した電極基板18を得た。   Next, as the electrode substrate 18, an FR-4 material having a base material 10 with a thickness of 100 μm is used. The cathode terminal 12 was formed of a copper foil having a thickness of 50 μm by a chemical etching method, and a convex portion 13 of a copper foil having a width of 100 μm and a height of 60 μm was formed in a rectangular shape around the periphery thereof. On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed on the mounting surface of the substrate 10 with a copper foil having a thickness of 50 μm, and the element side anode terminal 11 and the external anode terminal 14 and the element side cathode terminal 12 and the external side are externally formed. The cathode terminal 15 was joined to each other through the via 16 to obtain the electrode substrate 18 shown in FIG.

次に、図2(b)に示すように、銀含有のエポキシ系接着剤からなる導電性接着剤19を電極基板18の素子側陽極端子11と素子側陰極端子12の各上面に、スクリーン印刷により70μmの厚さで塗布し、前記コンデンサ素子17を熱圧着した。続いてエポキシ樹脂を主成分とした外装樹脂20で、トランスファモールドを行い、図2(b)に示した本発明の固体電解コンデンサ30aを得た。   Next, as shown in FIG. 2 (b), a conductive adhesive 19 made of a silver-containing epoxy adhesive is screen-printed on the upper surfaces of the element-side anode terminal 11 and the element-side cathode terminal 12 of the electrode substrate 18. The capacitor element 17 was thermocompression bonded by coating with a thickness of 70 μm. Subsequently, transfer molding was performed with the exterior resin 20 mainly composed of an epoxy resin to obtain the solid electrolytic capacitor 30a of the present invention shown in FIG.

(実施例2)
本発明の固体電解コンデンサの実施例2として、上記実施例1に記載の固体電解コンデンサと形状・寸法、構成、製法が共に同一で、電極基板18のみが異なり、図3に示した電極基板18を用いたものを作製した。
(Example 2)
As Example 2 of the solid electrolytic capacitor of the present invention, the shape, dimensions, configuration and manufacturing method are the same as those of the solid electrolytic capacitor described in Example 1 above, but only the electrode substrate 18 is different. The electrode substrate 18 shown in FIG. The thing using was produced.

図3に示した電極基板18は、実施例1における凸部13の断面形状が異なるものである。凸部13は、基材10のコンデンサ素子搭載面に、素子側陽極端子11と素子側陰極端子12の外周端から0.15mmの位置に、化学エッチング法で幅100μm、高さ60μmの銅箔の凸部13を長方形状に形成し、更に、サイドエッチングにより、凸部13の断面形状が基板側よりも表面側の方が広い逆台形状とした。一方で、電極基板18の実装面には外部陽極端子14と外部陰極端子15を厚さ50μmで形成し、素子側陽極端子11と外部陽極端子14、及び素子側陰極端子12と外部陰極端子15とをそれぞれビア16を介して接合した。
上記電極基板18の上面に、実施例1と同一製法によりコンデンサ素子17を搭載して、図4(b)に示した本発明の固体電解コンデンサ30bを得た。
The electrode substrate 18 shown in FIG. 3 differs in the cross-sectional shape of the convex part 13 in Example 1. FIG. The convex portion 13 is a copper foil having a width of 100 μm and a height of 60 μm formed by chemical etching at a position 0.15 mm from the outer peripheral ends of the element-side anode terminal 11 and the element-side cathode terminal 12 on the capacitor element mounting surface of the substrate 10. The convex portion 13 was formed in a rectangular shape, and further, by side etching, the cross-sectional shape of the convex portion 13 was changed to an inverted trapezoidal shape that was wider on the surface side than on the substrate side. On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed with a thickness of 50 μm on the mounting surface of the electrode substrate 18, and the element side anode terminal 11 and the external anode terminal 14, and the element side cathode terminal 12 and the external cathode terminal 15. Were joined via vias 16 respectively.
The capacitor element 17 was mounted on the upper surface of the electrode substrate 18 by the same manufacturing method as in Example 1 to obtain the solid electrolytic capacitor 30b of the present invention shown in FIG. 4B.

(実施例3)
本発明の固体電解コンデンサの実施例3として、上記実施例1に記載の固体電解コンデンサと形状・寸法、構成、製法が共に同一で、電極基板18のみが異なり、図5に示した電極基板18を用いたものを作製した。
(Example 3)
As Example 3 of the solid electrolytic capacitor of the present invention, the shape, dimensions, configuration, and manufacturing method are the same as those of the solid electrolytic capacitor described in Example 1 above, but only the electrode substrate 18 is different. The electrode substrate 18 shown in FIG. The thing using was produced.

図5に示した電極基板18は、上記実施例1、実施例2における凸部13の代わりに、凹部21を形成したものである。凹部21は、基材10のコンデンサ素子搭載面に、素子側陽極端子11と素子側陰極端子12の外周端から0.09mmと、0.18mmの位置にそれぞれレーザー加工で、幅60μm、深さ約50μmの長方形状で、断面形状を略長方形として2つ形成した。一方で、電極基板18の実装面には外部陽極端子14と外部陰極端子15を厚さ50μm形成し、素子側陽極端子11と外部陽極端子14、及び素子側陰極端子12と外部陰極端子15とをそれぞれビア16を介して接合した。
上記電極基板18の上面に、実施例1と同一製法によりコンデンサ素子17を搭載して、図6(b)に示した本発明の固体電解コンデンサ30cを得た。
The electrode substrate 18 shown in FIG. 5 has a concave portion 21 formed in place of the convex portion 13 in the first and second embodiments. The concave portion 21 is formed on the capacitor element mounting surface of the substrate 10 by laser processing at positions of 0.09 mm and 0.18 mm from the outer peripheral ends of the element-side anode terminal 11 and the element-side cathode terminal 12, and has a width of 60 μm and a depth. Two rectangular shapes with a cross-sectional shape of approximately 50 μm were formed. On the other hand, the external anode terminal 14 and the external cathode terminal 15 are formed to a thickness of 50 μm on the mounting surface of the electrode substrate 18, and the element side anode terminal 11 and the external anode terminal 14, and the element side cathode terminal 12 and the external cathode terminal 15 Were joined via vias 16 respectively.
The capacitor element 17 was mounted on the upper surface of the electrode substrate 18 by the same manufacturing method as in Example 1 to obtain the solid electrolytic capacitor 30c of the present invention shown in FIG. 6B.

(比較例)
比較例として、上記実施例1〜3と形状・寸法、構成、製法が同一であるが、図7に示した、凸部13又は凹部21を設けない電極基板18を用いた従来の固体電解コンデンサを作製した。
(Comparative example)
As a comparative example, a conventional solid electrolytic capacitor using the electrode substrate 18 having the same shape, dimensions, configuration, and manufacturing method as those of Examples 1 to 3 but without the convex portion 13 or the concave portion 21 shown in FIG. Was made.

実施例1〜3及び比較例による固体電解コンデンサを各n=10ずつ、65℃、95%RHの恒温恒湿槽に炉入し、500時間放置試験を行う事で耐湿信頼性の比較を行った。放置試験前後の100kHzにおける等価直列抵抗(ESR)の平均値を表1に示した。   The solid electrolytic capacitors according to Examples 1 to 3 and the comparative example were each placed in a constant temperature and humidity chamber of 65 ° C. and 95% RH at n = 10, and the humidity resistance reliability was compared by performing a standing test for 500 hours. It was. Table 1 shows the average value of the equivalent series resistance (ESR) at 100 kHz before and after the standing test.

Figure 0005164213
Figure 0005164213

本発明による実施例1〜3の固体電解コンデンサでは、比較例の固体電解コンデンサと比較して、放置試験前後の等価直列抵抗(ESR)変化が小さく、耐湿信頼性が改善されていることが判る。   It can be seen that in the solid electrolytic capacitors of Examples 1 to 3 according to the present invention, the equivalent series resistance (ESR) change before and after the standing test is small and the moisture resistance reliability is improved as compared with the solid electrolytic capacitor of the comparative example. .

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の固体電解コンデンサにより、小型化、大容量化、高性能化、高品質化が可能となり、今後益々小型化、高性能化要求が厳しくなる多種多用な電子機器市場への対応も可能となる。   With the solid electrolytic capacitor of the present invention, it is possible to reduce the size, increase the capacity, improve the performance, and improve the quality, and respond to the increasingly diverse electronic equipment market where demands for further downsizing and higher performance become stricter in the future. Become.

本発明の固体電解コンデンサにおける電極基板を説明する図、図1(a)は平面図、図1(b)は図2(a)のA−A線断面図、図1(c)は図1(b)の円X内のの拡大断面図。FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 1C is a diagram illustrating an electrode substrate in a solid electrolytic capacitor of the present invention. The expanded sectional view in the circle | round | yen X of (b). 本発明の固体電解コンデンサを説明する図、図2(a)はコンデンサ素子の断面摸式図、図2(b)は固体電解コンデンサの断面摸式図。The figure explaining the solid electrolytic capacitor of this invention, Fig.2 (a) is a cross-sectional schematic diagram of a capacitor | condenser element, FIG.2 (b) is a cross-sectional schematic diagram of a solid electrolytic capacitor. 本発明の固体電解コンデンサにおける電極基板を説明する図、図3(a)は平面図、図3(b)は図3(a)のB−B線断面図、図3(c)は図3(b)の円Y内のの拡大断面図。FIG. 3A is a plan view, FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 3C is a diagram illustrating an electrode substrate in the solid electrolytic capacitor of the present invention. The expanded sectional view in the circle Y of (b). 本発明の固体電解コンデンサを説明する図、図4(a)はコンデンサ素子の断面摸式図、図4(b)は固体電解コンデンサの断面摸式図。The figure explaining the solid electrolytic capacitor of this invention, Fig.4 (a) is a cross-sectional schematic diagram of a capacitor | condenser element, FIG.4 (b) is a cross-sectional schematic diagram of a solid electrolytic capacitor. 本発明の固体電解コンデンサにおける電極基板を説明する図、図5(a)は平面図、図5(b)は図5(a)のC−C線断面図。The figure explaining the electrode substrate in the solid electrolytic capacitor of this invention, Fig.5 (a) is a top view, FIG.5 (b) is CC sectional view taken on the line of Fig.5 (a). 本発明の固体電解コンデンサを説明する図、図6(a)はコンデンサ素子の断面摸式図、図6(b)は固体電解コンデンサの断面摸式図。The figure explaining the solid electrolytic capacitor of this invention, Fig.6 (a) is a cross-sectional schematic diagram of a capacitor | condenser element, FIG.6 (b) is a cross-sectional schematic diagram of a solid electrolytic capacitor. 従来の固体電解コンデンサを説明する図、図7(a)は電極基板の平面図、図7(b)は図7(a)のD−D線断面図、図7(c)は固体電解コンデンサの断面摸式図。FIG. 7 (a) is a plan view of an electrode substrate, FIG. 7 (b) is a cross-sectional view taken along the line DD of FIG. 7 (a), and FIG. 7 (c) is a solid electrolytic capacitor. FIG.

符号の説明Explanation of symbols

1 弁作用金属
2 酸化皮膜
3 絶縁部
4 固体電解質層
5 グラファイト層
6 金属電極層
7 リードフレーム
8 陽極導体部
9 陰極導体部
10 基材
11 素子側陽極端子
12 素子側陰極端子
13 凸部
14 外部陽極端子
15 外部陰極端子
16 ビア
17 コンデンサ素子
18 電極基板
19 導電性接着剤
20 外装樹脂
21 凹部
30、30a、30b、30c 固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Valve metal 2 Oxide film 3 Insulation part 4 Solid electrolyte layer 5 Graphite layer 6 Metal electrode layer 7 Lead frame 8 Anode conductor part 9 Cathode conductor part 10 Base material 11 Element side anode terminal 12 Element side cathode terminal 13 Convex part 14 External Anode terminal 15 External cathode terminal 16 Via 17 Capacitor element 18 Electrode substrate 19 Conductive adhesive 20 Exterior resin 21 Recesses 30, 30a, 30b, 30c Solid electrolytic capacitor

Claims (4)

板状又は箔状の弁作用金属からなる母材の拡面化された表面に、前記弁作用金属の酸化物による誘電体層を形成し、前記誘電体層の上に、固体電解質層を含む陰極導体部を形成し、前記陰極導体部と絶縁部により分離された前記弁作用金属からなる陽極導体部を形成してなるコンデンサ素子と、前記コンデンサ素子を搭載する電極基板を有し、前記コンデンサ素子を導電性接着剤を介して前記電極基板と接合し、外装樹脂で封止してなる固体電解コンデンサであって、前記電極基板の前記コンデンサ素子の搭載面に形成した前記陽極導体部を接続する陽極端子、及び前記陰極導体部を接続する陰極端子の周辺部に、前記陽極端子及び前記陰極端子を共に囲むように、前記陽極端子及び前記陰極端子と同じ材質の部を少なくとも1つ形成したことを特徴とする固体電解コンデンサ。 A dielectric layer made of an oxide of the valve action metal is formed on the surface of the base material made of a plate-like or foil-like valve action metal, and a solid electrolyte layer is included on the dielectric layer A capacitor element formed by forming a cathode conductor part and forming an anode conductor part made of the valve metal separated by the cathode conductor part and the insulating part; and an electrode substrate on which the capacitor element is mounted, the capacitor A solid electrolytic capacitor in which an element is bonded to the electrode substrate via a conductive adhesive and sealed with an exterior resin, and the anode conductor portion formed on the mounting surface of the capacitor element of the electrode substrate is connected anode terminal is, and the periphery of the cathode terminal for connecting the cathode conductor portion, wherein the anode terminal and to surround both the cathode terminal, at least one convex portion of the same material as the anode terminal and the cathode terminal forming did The solid electrolytic capacitor according to claim and. 前記凸部の断面形状は、前記凸部の上面側が、前記電極基板の表面側よりそれぞれ大きいことを特徴とする請求項1に記載の固体電解コンデンサ。 2. The solid electrolytic capacitor according to claim 1, wherein a cross-sectional shape of the convex portion is such that an upper surface side of the convex portion is larger than a front surface side of the electrode substrate. 前記凸部の断面形状は、前記凸部の最小厚が前記凸部の上面側と、前記電極基板の表面側より小さいことを特徴とする請求項1に記載の固体電解コンデンサ。 Cross-sectional shape of the convex portion, the minimum thickness of the convex portion, the solid electrolytic capacitor according to claim 1, characterized in that the upper surface of the convex portion is smaller than the surface side of the electrode substrate. 前記凸部の断面形状は、前記凸部の最大厚が前記凸部の上面側と、前記電極基板の表面側より大きいことを特徴とする請求項1に記載の固体電解コンデンサ。 Cross-sectional shape of the convex portion, the maximum thickness of the convex portion, the solid electrolytic capacitor according to claim 1, wherein the upper surface of the convex portion, is greater than the surface side of the electrode substrate.
JP2008275624A 2008-10-27 2008-10-27 Solid electrolytic capacitor Active JP5164213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008275624A JP5164213B2 (en) 2008-10-27 2008-10-27 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008275624A JP5164213B2 (en) 2008-10-27 2008-10-27 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010103420A JP2010103420A (en) 2010-05-06
JP5164213B2 true JP5164213B2 (en) 2013-03-21

Family

ID=42293790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008275624A Active JP5164213B2 (en) 2008-10-27 2008-10-27 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5164213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001969A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal type flowmeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548344U (en) * 1991-11-29 1993-06-25 日本ケミコン株式会社 Semiconductor device
JPH1145961A (en) * 1997-05-26 1999-02-16 Seiko Epson Corp Semiconductor device
JP4197140B2 (en) * 2003-06-19 2008-12-17 パナソニック株式会社 Semiconductor device
JP2007273502A (en) * 2006-03-30 2007-10-18 Tdk Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2010103420A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5152946B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5466722B2 (en) Solid electrolytic capacitor
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
US20090116173A1 (en) Solid electrolytic capacitor
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5120026B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100623804B1 (en) Solid electrolytic capacitor and manufacturing method for the same
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
JP2002299161A (en) Composite electronic component
JP2007180328A (en) Stacked solid electrolytic capacitor and capacitor module
JP5164213B2 (en) Solid electrolytic capacitor
JP5007678B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009224688A (en) Solid electrolytic capacitor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP2006032880A (en) Solid electrolytic capacitor and manufacturing method for the same
JP2005158903A (en) Solid electrolytic capacitor
JP5210672B2 (en) Capacitor parts
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP2002110458A (en) Solid electrolytic chip capacitor
JP5120025B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2011176067A (en) Solid-state electrolytic capacitor
JP4574544B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250