JP2007180328A - Stacked solid electrolytic capacitor and capacitor module - Google Patents

Stacked solid electrolytic capacitor and capacitor module Download PDF

Info

Publication number
JP2007180328A
JP2007180328A JP2005378036A JP2005378036A JP2007180328A JP 2007180328 A JP2007180328 A JP 2007180328A JP 2005378036 A JP2005378036 A JP 2005378036A JP 2005378036 A JP2005378036 A JP 2005378036A JP 2007180328 A JP2007180328 A JP 2007180328A
Authority
JP
Japan
Prior art keywords
anode
cathode
capacitor
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005378036A
Other languages
Japanese (ja)
Other versions
JP4688676B2 (en
Inventor
Keiichi Ogata
慶一 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005378036A priority Critical patent/JP4688676B2/en
Publication of JP2007180328A publication Critical patent/JP2007180328A/en
Application granted granted Critical
Publication of JP4688676B2 publication Critical patent/JP4688676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked solid electrolytic capacitor excellent in a high-frequecy characteristic with an ESR and an ESL characteristic improved. <P>SOLUTION: The stacked solid electrolytic capacitor comprises a plurality of single plate capacitor elements with an anode part formed on one side of a valve action metal plate on a flat plate having a dielectric oxide film layer on its surface, and a cathode part formed on the other side of the valve action metal plate laminated so that the anode part faces each other centering around the cathode; and each electrode part respectively connected to an anode lead frame and a cathode lead frame. The single plate capacitor element with its lateral size (w) longer than the longitudinal size (l) is selected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な構成の固体電解コンデンサに関する。   The present invention relates to a solid electrolytic capacitor having a novel configuration.

従来、固体電解コンデンサとしては、アルミニウム、タンタルなどの弁作用金属を陽極とし、その陽極上に形成した酸化皮膜層を誘電体とし、その上に固体電解質層を形成して陰極を構成したものが多く使われている。固体電解質としては二酸化マンガン、TCNQ錯体、導電性高分子などが知られている(例えば、特許文献1参照)。   Conventionally, as a solid electrolytic capacitor, a valve action metal such as aluminum or tantalum is used as an anode, an oxide film layer formed on the anode is used as a dielectric, and a solid electrolyte layer is formed thereon to form a cathode. Many are used. Known solid electrolytes include manganese dioxide, a TCNQ complex, and a conductive polymer (see, for example, Patent Document 1).

近年、電子機器の小型・高周波化が進み、コンデンサに対しても高周波領域での低ESR、ESL化が要求されるようになり、高導電率の導電性高分子を固体電解質に用いた固体電解コンデンサが商品化されている。この固体電解コンデンサは、二酸化マンガンを用いた固体電解コンデンサに比べてESRが低いという特徴があるため、広く利用されており、また、さまざまな改良がなされている(例えば、特許文献2参照)。   In recent years, electronic devices have become smaller and higher in frequency, and capacitors have been required to have low ESR and ESL in the high frequency region. Solid electrolysis using a conductive polymer with high conductivity as the solid electrolyte. Capacitors have been commercialized. Since this solid electrolytic capacitor has a feature that the ESR is lower than that of a solid electrolytic capacitor using manganese dioxide, it is widely used and various improvements have been made (for example, see Patent Document 2).

この低ESR化を図るためには、平板状のコンデンサ素子を積層構造とし、その積層枚数を増やす方法が有効であるが(例えば特許文献2参照)、ESRの改善効果は見込めても、低ESL化への寄与が十分ではない。   In order to achieve this low ESR, a method of increasing the number of stacked capacitor elements in the form of a flat plate is effective (see, for example, Patent Document 2). The contribution to the conversion is not enough.

一般に、上記の積層型固体電解コンデンサは、弁作用金属箔表面をエッチングし、多孔質体を形成した後、その表面に誘電体となる酸化皮膜層を形成した陽極素子と、酸化皮膜層上に形成された固体電解質層、カーボン層、銀層からなる陰極部とで構成された単板コンデンサ素子を、導電性接着剤を介して複数枚積層して構成されるため、低背化・低ESR化が期待できるものである。   In general, the above-mentioned multilayer solid electrolytic capacitor is formed by etching the valve-acting metal foil surface to form a porous body, and then forming an oxide film layer on the surface of the anode element and an oxide film layer on the anode element. Low profile and low ESR because a single plate capacitor element composed of the formed solid electrolyte layer, carbon layer, and silver layer is laminated by using a conductive adhesive. Can be expected.

また、本件出願人は、積層型固体電解コンデンサの積層構造として、単板コンデンサ素子を陽極部が陰極部を中心として対向するように交互に積層する新規な構成のコンデンサを開発し、陽極部および陰極部を複数に分岐して引き出すことによって磁界の打ち消し合い効果をもたらし、ESLを下げる構造(以下多端子構造)を提案した(特許文献3参照)。
特許第2969692号公報 特開2003−45753号公報 特願2005−308846
In addition, the present applicant has developed a capacitor having a novel configuration in which a single-plate capacitor element is alternately laminated so that the anode part is opposed to the cathode part as the laminated structure of the multilayer solid electrolytic capacitor. A structure (hereinafter referred to as a multi-terminal structure) has been proposed in which a cathode part is branched into a plurality of parts to bring out a magnetic field canceling effect and lower the ESL (refer to Patent Document 3).
Japanese Patent No. 2996992 JP 2003-45753 A Japanese Patent Application No. 2005-308846

本発明は、上記開発成果を更に発展させ、高周波領域でのESR・ESL特性の更なる向上を図ったもので、特に高周波特性においてより優れた積層型固体電解コンデンサを提供するものである。   The present invention further develops the above-mentioned development results and further improves the ESR / ESL characteristics in the high frequency region, and provides a multilayer solid electrolytic capacitor that is particularly excellent in high frequency characteristics.

上記課題を解決するために、本発明は、表面に誘電体となる酸化皮膜層を有する平板上の弁作用金属板の一方側に陽極部を、他方側に陰極部を形成した単板コンデンサ素子を複数枚積層した固体電解コンデンサにおいて、
前記単板コンデンサ素子の横寸法(w)(陽極部と陰極部が形成される方向に沿った長さ)をその縦寸法(l)より長く選定し、このように選定した単板コンデンサ素子を陰極部を中心として陽極部が互い違いに対向するように積層することを特徴とする積層型固体電解コンデンサである。
In order to solve the above problems, the present invention provides a single plate capacitor element in which an anode part is formed on one side of a valve action metal plate on a flat plate having an oxide film layer serving as a dielectric on the surface, and a cathode part is formed on the other side. In a solid electrolytic capacitor in which a plurality of layers are laminated,
The lateral dimension (w) of the single plate capacitor element (the length along the direction in which the anode part and the cathode part are formed) is selected to be longer than the longitudinal dimension (l). The multilayer solid electrolytic capacitor is characterized in that the anode portions are alternately laminated with the cathode portion as a center.

また、中央の陰極部を陰極端子部材に接合するとともに、陰極部の両側に配置された各陽極部を、両側に各別に設けた陽極端子部材にそれぞれ接合し、両側の陽極端子部材同士を陰極端子部材の側方域に配置した連結部材を介して電気的に導通接続することによって、その電気特性を改善した積層型固体電解コンデンサである。   In addition, the central cathode part is joined to the cathode terminal member, the anode parts arranged on both sides of the cathode part are joined to anode terminal members provided separately on both sides, and the anode terminal members on both sides are joined to the cathode. The multilayer solid electrolytic capacitor has improved electrical characteristics by being electrically connected through a connecting member disposed in a lateral region of the terminal member.

さらに、本発明は、陽極端子部材と陰極端子部材との間に、セラミックコンデンサ(MLCC)を複数個接続・実装することによって高周波領域における電気特性を更に改善したコンデンサモジュールを提供する。   Furthermore, the present invention provides a capacitor module in which electrical characteristics in a high frequency region are further improved by connecting and mounting a plurality of ceramic capacitors (MLCC) between an anode terminal member and a cathode terminal member.

以上の手段により、多端子積層型固体電解コンデンサの低ESR化、低ESL化を図ることができる。   By the above means, it is possible to reduce the ESR and the ESL of the multi-terminal multilayer solid electrolytic capacitor.

本発明の多端子積層型固体電解コンデンサでは、単板コンデンサ素子の形状を、縦寸法が短い横長(w>l)に選定したため、電流の流れる経路(断面積)が実質的に広くなり、低ESR化を図ることができる。   In the multi-terminal multilayer solid electrolytic capacitor of the present invention, the shape of the single-plate capacitor element is selected to be horizontally long (w> l) with a short vertical dimension, so that the current flow path (cross-sectional area) is substantially widened and reduced. ESR can be achieved.

このように、単板コンデンサ素子の縦と横の寸法比を従来と逆の発想としたことにより、陽極を互い違いに対向させて積層するという新しい着想の構造による効果がより有効に助長される。即ち、対向配置された複数の陽極部間同士の距離が短くなり、磁界の発生をさらに抑制できるため、顕著なESL低減効果が達成できる。   As described above, the vertical and horizontal dimensional ratio of the single-plate capacitor element is opposite to the conventional one, and the effect of the new idea structure of stacking the anodes alternately facing each other is more effectively promoted. That is, since the distance between the plurality of anode portions arranged opposite to each other is shortened and the generation of a magnetic field can be further suppressed, a remarkable ESL reduction effect can be achieved.

さらに、高周波特性に優れたMLCCを組み合わせ、モジュール化したことにより、高周波特性も有効に改善したコンデンサモジュールが提供できる。   Furthermore, by combining MLCCs with excellent high frequency characteristics into a module, a capacitor module with improved high frequency characteristics can be provided.

図1、図2、図3は、本発明の積層型固体電解コンデンサの積層される前の単板コンデンサ素子の基本構成を説明する図で、図1は1個の単板コンデンサ素子Cの平面図、図2はその外観斜視図、図3はその詳細構成を示す断面図である。
図3において、1はアルミニウム・タンタルなどの弁作用金属からなる陽極素子、2はその弁金属の酸化皮膜層で誘電体を構成する層である。3はこの酸化皮膜層の表面に形成された陰極部を構成する固体電解質層で、例えばポリエチレンジオキシチオフェン(PEDT)などの導電性高分子を含む電解質を化学重合もしくは電解重合によって形成した層である。4および5は陰極引出し層で、4はカーボン層、5は銀層である。
6は弁金属板の陽極部を構成する層で、この陽極部6と陰極部3・4・5(これら全体をRで示す)との間は、絶縁性マスキング部材7によって完全に絶縁隔離され、1個の単板コンデンサ素子Cを構成する。
1, 2, and 3 are views for explaining a basic configuration of a single plate capacitor element before lamination of the multilayer solid electrolytic capacitor of the present invention. FIG. 1 is a plan view of one single plate capacitor element C. 2 is an external perspective view, and FIG. 3 is a cross-sectional view showing a detailed configuration thereof.
In FIG. 3, 1 is an anode element made of a valve action metal such as aluminum and tantalum, and 2 is a layer constituting a dielectric by an oxide film layer of the valve metal. 3 is a solid electrolyte layer constituting the cathode part formed on the surface of this oxide film layer, and is a layer formed by chemical polymerization or electrolytic polymerization of an electrolyte containing a conductive polymer such as polyethylenedioxythiophene (PEDT). is there. 4 and 5 are cathode lead layers, 4 is a carbon layer, and 5 is a silver layer.
Reference numeral 6 denotes a layer constituting the anode part of the valve metal plate. The anode part 6 and the cathode parts 3, 4, 5 (the whole is indicated by R) are completely insulated and isolated by the insulating masking member 7. One single plate capacitor element C is formed.

本発明では、図1、2に示すように、単板コンデンサ素子Cにおいて、陽極部6、マスキング層7、カーボン層4、銀層5が順次形成される方向の長さを縦寸法(l)とし、これと直角方向の長さを横寸法(w)としたとき、図1、2の例は、(w)=15mm、(l)=10mmとした例である。   In the present invention, as shown in FIGS. 1 and 2, in the single plate capacitor element C, the length in the direction in which the anode portion 6, the masking layer 7, the carbon layer 4, and the silver layer 5 are sequentially formed is expressed as a longitudinal dimension (l). When the length in the direction perpendicular to this is taken as the horizontal dimension (w), the examples in FIGS. 1 and 2 are examples in which (w) = 15 mm and (l) = 10 mm.

次に、本発明の実施例、および比較例について説明する。
(実施例1)
以下に、アルミニウム薄板を弁金属とした場合の実施例に適用する積層型固体電解コンデンサの作製方法の例を示す。
表面を電気化学的に粗面化した厚さ0.1mmの長尺のアルミニウム箔を、アジピン酸アンモニウム水溶液中で10Vの電圧を印加して約60分間陽極酸化を行い、表面に誘電体となる酸化皮膜層を形成する。このようにして酸化皮膜層が形成されたアルミニウム箔を、幅(w)15mm、長さ(l)10mmの寸法に裁断し、図3に示すように、適切な位置に絶縁性樹脂などのマスキング部材7を巻きつけるように塗布して、左右の領域(陽極部と陰極部)を区分する。
その後、前記裁断によって弁金属が露出した端面部を、再度アジピン酸アンモニウム水溶液中で7Vの電圧を印加して約30分間陽極酸化処理を行い、裁断面にも酸化皮膜層を形成する。その後、マスキング部分7より右側部分(図3のR部分)に、固体電解質層3、カーボン層4、銀層5を順次設けて陰極部を形成する。
Next, examples of the present invention and comparative examples will be described.
Example 1
Below, the example of the production method of the lamination type solid electrolytic capacitor applied to the Example at the time of using an aluminum thin plate as a valve metal is shown.
A long aluminum foil having a thickness of 0.1 mm whose surface is electrochemically roughened is anodized for about 60 minutes by applying a voltage of 10 V in an aqueous solution of ammonium adipate to become a dielectric on the surface. An oxide film layer is formed. The aluminum foil thus formed with the oxide film layer is cut into dimensions of width (w) 15 mm and length (l) 10 mm, and as shown in FIG. 3, masking of an insulating resin or the like at an appropriate position. It coat | covers so that the member 7 may be wound, and divides the area | region (anode part and cathode part) on either side.
After that, the end face portion where the valve metal is exposed by the cutting is subjected to anodization for about 30 minutes by applying a voltage of 7 V again in an aqueous solution of ammonium adipate to form an oxide film layer on the cut surface. Thereafter, the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 are sequentially provided on the right side of the masking portion 7 (the R portion in FIG. 3) to form a cathode portion.

次に、この単板コンデンサ素子Cを積層して構成した積層体の構造を示す。
図4は、前記の方法で作製された4枚の単板コンデンサ素子C1、C2、C3、C4を積層した実施例1の積層コンデンサの基本構成を示したもので、陽極部が陰極部を中心に対向するように(6、6’で示す)交互に積層し、陰極部R同士は導電性接着剤により電気的に接続する。図中の符号は図3のものと同じ部材を示す。尚、以下の実施例では、陽極、陰極を外部回路へ接続するための端子部材をリードフレームと称して説明する。図中の点線13は実施例3(図9)の場合の参考図として示したもので、実施例1ではない。
Next, the structure of a laminated body constituted by laminating the single plate capacitor element C is shown.
FIG. 4 shows a basic configuration of the multilayer capacitor of Example 1 in which the four single-plate capacitor elements C1, C2, C3, and C4 manufactured by the above method are stacked. The anode portion is centered on the cathode portion. Are alternately laminated so as to face each other (indicated by 6 and 6 '), and the cathode portions R are electrically connected by a conductive adhesive. The reference numerals in the figure indicate the same members as those in FIG. In the following embodiments, a terminal member for connecting an anode and a cathode to an external circuit will be referred to as a lead frame. A dotted line 13 in the figure is shown as a reference diagram in the case of the third embodiment (FIG. 9) and is not the first embodiment.

図5は、積層型固体電解コンデンサの完成品の側断面図で、両側の陽極部6、6’同士と陽極リードフレーム8、8’とを抵抗溶接等の方法で接合し、中央の陰極部R同士と陰極リードフレーム9とを導電性接着剤を介して接合する。
尚、各層の陽極部は積層したとき単板素子1枚分の厚みだけ離間することになるが、前記リードフレームと接合する際、一緒に抵抗溶接されるため、上下の陽極部は図のように若干曲げられて完全に導通接合される。これら積層体は、各リードフレームの外部回路との接続面だけを除いて全体を樹脂10でモールドして外装する。完成品の定格電圧は2.5V、定格容量は2200μFである。
FIG. 5 is a side cross-sectional view of a finished product of the multilayer solid electrolytic capacitor, in which the anode parts 6 and 6 ′ on both sides are joined to the anode lead frames 8 and 8 ′ by a method such as resistance welding, and the cathode part in the center. Rs are bonded to the cathode lead frame 9 via a conductive adhesive.
In addition, the anode part of each layer is separated by the thickness of one single plate element when laminated, but when joining to the lead frame, resistance welding is performed together, so the upper and lower anode parts are as shown in the figure Are slightly bent and completely conductively joined. These laminates are externally molded with the resin 10 except for only the connection surface of each lead frame with the external circuit. The finished product has a rated voltage of 2.5 V and a rated capacity of 2200 μF.

(実施例2)
図6は、単板コンデンサ素子の形状が横長(w>l)で、また複数の陽極リードフレーム8、8’同士(図では上下)を、陰極部Rの両側領域(図の左右域)で左右の連結部材11、11’によって2箇所で電気的に接続した多端子積層型固体電解コンデンサの実施例である。12は陰極リードフレーム9の電位取り出し用延長部で、陽極リードフレーム8、8’はこの延長部12と接触しないよう略中央で分離されており、この切り離された陽極フレーム間を延長部12が通過するようになる。14はこの延長部12とその上に配置される単板コンデンサ素子の陽極部6、6’との短絡を防ぐために両者間の接触面に塗布された絶縁性樹脂膜である。但し、説明のため、外装モールド樹脂は図示を省略した。
(Example 2)
In FIG. 6, the shape of the single plate capacitor element is horizontally long (w> l), and a plurality of anode lead frames 8 and 8 ′ (up and down in the figure) are arranged in both side areas (left and right areas in the figure) of the cathode portion R. This is an example of a multi-terminal multilayer solid electrolytic capacitor that is electrically connected at two locations by left and right connecting members 11, 11 ′. Reference numeral 12 denotes an extension portion for extracting the potential of the cathode lead frame 9. The anode lead frames 8 and 8 ′ are separated from each other so as not to come into contact with the extension portion 12. The extension portion 12 is provided between the separated anode frames. To pass. Reference numeral 14 denotes an insulating resin film applied to the contact surface between the extension portion 12 and the anode portions 6 and 6 'of the single-plate capacitor element disposed thereon in order to prevent a short circuit. However, the illustration of the exterior mold resin is omitted for the sake of explanation.

図7は、上記実施例のリードフレーム部の配置構造を示す斜視図で、積層体の最下面に陽極リードフレーム8、8’および陰極リードフレーム9を配置し、これらの下面は略面一になるようにそれぞれの陰極、陽極に接合される。
尚、この図7は積層した段階の図で、上下の各陽極同士が抵抗溶接などによって相互に接合される前の状態を示す。また図の符号は図6と同じ部分を示す。
図8は、上記実施例における陰極リードフレームおよび陽極リードフレームの形状を示す平面図で、図中の符号は各実施例と共通である。
FIG. 7 is a perspective view showing the arrangement structure of the lead frame portion of the above embodiment. The anode lead frames 8, 8 ′ and the cathode lead frame 9 are arranged on the lowermost surface of the laminated body, and these lower surfaces are substantially flush with each other. It joins to each cathode and anode so that it may become.
Note that FIG. 7 is a diagram at the stage of lamination, and shows a state before the upper and lower anodes are joined to each other by resistance welding or the like. Moreover, the code | symbol of a figure shows the same part as FIG.
FIG. 8 is a plan view showing the shapes of the cathode lead frame and the anode lead frame in the above embodiment, and the reference numerals in the figure are the same as those in each embodiment.

(実施例3)
図9は、実施例2と同様の積層型固体電解コンデンサにおいて、陽極リードフレーム同士を接続している連結部材11、11’と陰極リードフレーム9との間に、セラミックコンデンサ13、13’を接続した複合コンデンサの構成を示す図で、各セラミックコンデンサの端子は陽極リードフレームと陰極リードフレームにそれぞれ接続される。
この例は、定格電圧6.3V、定格容量1μFのチップ形積層セラミックコンデンサ(MLCC)を4個ずつ陰極フレームの左右にそれぞれ接続し、合計で8個のセラミックコンデンサを内蔵させた複合型積層コンデンサモジュールの例である。
(Example 3)
FIG. 9 shows a multilayer solid electrolytic capacitor similar to that of Example 2, in which ceramic capacitors 13 and 13 ′ are connected between the connecting members 11 and 11 ′ connecting the anode lead frames and the cathode lead frame 9. FIG. 2 is a diagram showing the configuration of the composite capacitor, and the terminals of each ceramic capacitor are connected to an anode lead frame and a cathode lead frame, respectively.
In this example, a chip-type multilayer ceramic capacitor (MLCC) with a rated voltage of 6.3 V and a rated capacity of 1 μF is connected to each of the left and right sides of the cathode frame, and a composite multilayer capacitor with a total of 8 built-in ceramic capacitors. It is an example of a module.

(変形例)
図10は、図9の変形例となる複合コンデンサモジュールの例で、陽極リードフレーム8の端部から直角方向に延長部材11’’を張り出させ、この延長部材11’’と陰極リードフレーム9との間にセラミックコンデンサ(MLCC)13を4個並列に接続した例である。図の例は、コンデンサ素子板が1枚の場合の例で、複数枚積層した場合でもリードフレーム部は同じ構成とすることができる。尚、図では陽極リードフレームに延長部材を設けたが、陰極リードフレームに延長部材を設けて陽極リードフレーム側へ突出させてもよく、又両リードフレームから延長部材を突出させて、この間にMLCCを接続しても効果は同じである。何れの場合であっても、陰極、陽極リードフレーム間にMLCCを接続・実装した状態で全体をモールドして、1個のコンデンサモジュールの完成品とする。尚、これら延長部材、連結部材は、リードフレームとは別材質の導電性部材で構成してもよいことは当然である。
(Modification)
FIG. 10 shows an example of a composite capacitor module which is a modified example of FIG. 9. An extension member 11 ″ is projected from the end of the anode lead frame 8 in a direction perpendicular to the extension member 11 ″ and the cathode lead frame 9. In this example, four ceramic capacitors (MLCC) 13 are connected in parallel. The example in the figure is an example in the case of one capacitor element plate, and the lead frame portion can have the same configuration even when a plurality of capacitor element plates are stacked. Although the extension member is provided on the anode lead frame in the figure, the extension member may be provided on the cathode lead frame so as to protrude toward the anode lead frame, or the extension member is protruded from both lead frames, and the MLCC is interposed therebetween. The effect is the same even if connected. In either case, the whole is molded with the MLCC connected and mounted between the cathode and anode lead frames to complete one capacitor module. Of course, the extending member and the connecting member may be made of a conductive member made of a material different from that of the lead frame.

(比較例)
図11は、前記本発明実施例との電気特性の比較のために作製した比較例で、単板コンデンサ素子の形状が幅10mm、長さ15mmの縦長形状(w<l)のものを用い、これを前記実施例のように、陽極部6、6’を交互に対向配置して積層し、陽極リードフレームを相互に連結することなくそれぞれ独立構造とした以外は、実施例1と同様の製造方法で作製した。
(Comparative example)
FIG. 11 is a comparative example produced for comparison of electrical characteristics with the embodiment of the present invention, and a single plate capacitor element having a vertically long shape (w <l) having a width of 10 mm and a length of 15 mm is used. The same production as in Example 1 except that the anode parts 6 and 6 'are alternately arranged and stacked as in the above example, and the anode lead frames are independent from each other without being connected to each other. It was produced by the method.

表1は上記実施例1〜3と前記比較例の電気特性の比較表で、それぞれの例について、ESR(mΩ)、ESL(pH)を実測した結果を示す。なお、ESRは100kHz、ESLは100MHzで測定した。   Table 1 is a comparison table of electrical characteristics of Examples 1 to 3 and the comparative example, and shows the results of actual measurement of ESR (mΩ) and ESL (pH) for each example. The ESR was measured at 100 kHz, and the ESL was measured at 100 MHz.

表1から明らかなように、上記実施例1〜3の積層型固体電解コンデンサのESR、ESL値は、比較例の積層型固体電解コンデンサと較べて大きく低減した。即ち、本発明により、同じ定格電圧容量でより低いESR、ESLを備えた積層型固体電解コンデンサを提供できることが実証された。   As is clear from Table 1, the ESR and ESL values of the multilayer solid electrolytic capacitors of Examples 1 to 3 were greatly reduced as compared with the multilayer solid electrolytic capacitor of the comparative example. That is, it was demonstrated that the present invention can provide a multilayer solid electrolytic capacitor having lower ESR and ESL with the same rated voltage capacity.

このように、実施例1〜3においてESRを低減できたのは、単板コンデンサ素子の形状を横長(w>l)にしたことで、電流の流れる経路(断面積)を実質的に広くなし得たことによるもので、また、ESLを低減できたのは、コンデンサ素子の形状を横長形状(w>l)としたことで、対向する陽極リードフレーム同士の距離が短くなり、磁界の発生が大幅に抑制されたためと考えられる。   As described above, in Examples 1 to 3, the ESR can be reduced by making the shape of the single-plate capacitor element horizontally long (w> l), thereby substantially widening the current flow path (cross-sectional area). This is due to the fact that the ESL can be reduced because the shape of the capacitor element is a horizontally long shape (w> l), the distance between the opposing anode lead frames is shortened, and a magnetic field is generated. It is thought that it was greatly suppressed.

また、実施例3において、特にESLを顕著に低減できたのは、高周波特性に優れるMLCCを積層コンデンサ素子と共通の陽極リードフレーム、陰極リードフレームに並列に実装したことによる効果である。   Further, in Example 3, the ESL was able to be remarkably reduced due to the effect of mounting the MLCC having excellent high frequency characteristics in parallel on the anode lead frame and cathode lead frame common to the multilayer capacitor element.

さらに、本実施例では、外部回路へ接続する端子部材としてリードフレームを用いたが、外部端子となる貫通孔や導電層を設けた絶縁基板を用いてもよい。   Furthermore, in this embodiment, a lead frame is used as a terminal member connected to an external circuit, but an insulating substrate provided with a through hole or a conductive layer serving as an external terminal may be used.

また、実施例では、固体電解質として導電性高分子を用いたが、二酸化マンガンを用いても同じ効果が得られる。   Moreover, although the conductive polymer was used as the solid electrolyte in the examples, the same effect can be obtained by using manganese dioxide.

なお、上記実施例では、弁作用金属としてアルミニウムの場合について説明したが、タンタルやニオブ箔、またはその焼結体を用いても同じ効果が得られる。   In the above embodiment, the case where aluminum is used as the valve metal has been described. However, the same effect can be obtained by using tantalum, niobium foil, or a sintered body thereof.

なお、実施例では、いずれも4枚の単板コンデンサ素子の積層例について説明したが、積層枚数を変更しても同じ効果が得られ、また実施例は3端子構造のものについて説明したが、端子数を増やしても同様の効果が得られることは当然である。   In each of the examples, the example of the lamination of four single-plate capacitor elements has been described. However, the same effect can be obtained even if the number of laminations is changed, and the example has been described for a three-terminal structure. Naturally, the same effect can be obtained even if the number of terminals is increased.

また、実施例では、定格電圧6.3V、定格容量1μFのMLCCを8個用いたが、これに限るものではなく、定格、個数、実装位置等を変更しても同じ効果が得られる。   In the embodiment, eight MLCCs having a rated voltage of 6.3 V and a rated capacity of 1 μF are used. However, the present invention is not limited to this, and the same effect can be obtained by changing the rating, number, mounting position, and the like.

さらに、実施例では、両側の陽極リードフレーム間を電気的に接続するための連結部材を、陰極部の両側域に2個設けた例について説明したが、一方側だけで連結してもよく、この場合は、セラミックコンデンサも片側域だけに実装することになる。   Furthermore, in the embodiment, the example in which two connecting members for electrically connecting the anode lead frames on both sides are provided on both sides of the cathode portion, but the connecting members may be connected only on one side, In this case, the ceramic capacitor is mounted only on one side.

本発明に使用する単板コンデンサ素子の形状を示す平面図The top view which shows the shape of the single-plate capacitor | condenser element used for this invention 図1の単板コンデンサ素子の斜視図1 is a perspective view of the single-plate capacitor element of FIG. 本発明に使用する単板コンデンサ素子の拡大断面図Enlarged sectional view of a single plate capacitor element used in the present invention 図1の単板コンデンサ素子を4枚積層した実施例1の概略構成を示す斜視図The perspective view which shows schematic structure of Example 1 which laminated | stacked four single plate capacitor | condenser elements of FIG. 実施例1の完成品の側断面図Side sectional view of the finished product of Example 1 実施例2の積層型固体電解コンデンサの上面から見た透視図The perspective view seen from the upper surface of the multilayer solid electrolytic capacitor of Example 2 図6の積層体の概略構成を示す斜視図The perspective view which shows schematic structure of the laminated body of FIG. 各実施のリードフレームの形状を示す平面図Plan view showing the shape of the lead frame of each implementation 実施例3の複合コンデンサモジュールの上面から見た透視図The perspective view seen from the upper surface of the composite capacitor module of Example 3 MLCCを4個接続・実装したコンデンサモジュールの変形例を示す平面透視図Plane perspective view showing a modification of a capacitor module in which four MLCCs are connected and mounted 比較例の積層型固体電解コンデンサの上面から見た透視図A perspective view seen from the top of the multilayer solid electrolytic capacitor of the comparative example

符号の説明Explanation of symbols

C1、C2、C3、C4、単板コンデンサ素子
1 弁作用金属薄板
2 酸化皮膜層
3 固体電解質層
4 カーボン層
5 銀層
6、6’ コンデンサ素子の陽極部
7 マスキング層
8、8’ 陽極リードフレーム
9 陰極リードフレーム
10 樹脂モールド
11、11’ 陽極リードフレームの連結部材
11’’ 陽極リードフレームの延長部材
12 陰極リードフレームの電位取り出し用延長部
13 セラミックコンデンサ
14 絶縁性樹脂
C1, C2, C3, C4, single plate capacitor element 1 valve action metal thin plate 2 oxide film layer 3 solid electrolyte layer 4 carbon layer 5 silver layer 6, 6 'anode portion 7 of capacitor element masking layer 8, 8' anode lead frame 9 Cathode lead frame 10 Resin mold 11, 11 ′ Anode lead frame connecting member 11 ″ Anode lead frame extension member 12 Cathode lead frame potential extraction extension 13 Ceramic capacitor 14 Insulating resin

Claims (4)

表面に誘電体となる酸化皮膜層を有する弁作用金属板の一方側に陽極部を、他方側に陰極部を形成した単板コンデンサ素子を複数枚積層した固体電解コンデンサにおいて、前記単板コンデンサ素子の横寸法(w)をその縦寸法(l)(陽極部と陰極部が形成される方向に沿った長さ)より長くし、この単板コンデンサ素子をその陰極部を中心として陽極部が互い違いに対向するように積層したことを特徴とする積層型固体電解コンデンサ。 A solid electrolytic capacitor in which a plurality of single plate capacitor elements each having an anode portion formed on one side and a cathode portion formed on the other side of a valve metal plate having an oxide film layer serving as a dielectric on the surface thereof are laminated. The lateral dimension (w) of the single plate capacitor element is made longer than the longitudinal dimension (l) (the length along the direction in which the anode part and the cathode part are formed), and the anode parts are staggered around the cathode part. A laminated solid electrolytic capacitor, characterized in that the laminated solid electrolytic capacitor is laminated so as to face the capacitor. 前記構成において、中央の陰極部を陰極端子部材に接合するとともに、陰極部の両側に配置された各陽極部を両側に各別に設けた陽極端子部材にそれぞれ接合し、両側の陽極端子部材同士を陰極端子部材の側方域に配置した連結部材を介して電気的に導通接続したことを特徴とする請求項1に記載の積層型固体電解コンデンサ。   In the above configuration, the central cathode part is joined to the cathode terminal member, and the anode parts arranged on both sides of the cathode part are joined to the anode terminal members respectively provided on both sides, and the anode terminal members on both sides are joined together. The multilayer solid electrolytic capacitor according to claim 1, wherein the multilayer solid electrolytic capacitor is electrically connected through a connecting member disposed in a lateral region of the cathode terminal member. 表面に誘電体となる酸化皮膜層を有する平板状の弁作用金属板の中央部に陰極部を、その一方側または両側に陽極部を形成したコンデンサ素子板の、陰極部を陰極端子部材に、陽極部を陽極端子部材にそれぞれ接合してなるコンデンサにおいて、前記陰極端子部材または陽極端子部材の一方又は双方に導電性延長部材を設け、この延長部材を介して陰極・陽極端子部材間に複数個のセラミックコンデンサを接続したことを特徴とするコンデンサモジュ−ル。   The cathode part of the capacitor element plate in which the cathode part is formed in the central part of the flat valve action metal plate having the oxide film layer serving as a dielectric on the surface and the anode part is formed on one side or both sides thereof, In the capacitor formed by bonding the anode part to the anode terminal member, a conductive extension member is provided on one or both of the cathode terminal member and the anode terminal member, and a plurality of the cathode terminal and the anode terminal member are interposed between the extension members. Capacitor module characterized by connecting a ceramic capacitor. 表面に誘電体となる酸化皮膜層を有する平板状の弁作用金属板の中央部に陰極部を、一方側に陽極部を形成したコンデンサ素子板を複数枚、その陰極部を中心として陽極部が互い違いに対向するように積層し、各陰極部を陰極端子部材に、両側の陽極部を両側に各別に設けた陽極端子部材にそれぞれ接合してなる積層コンデンサにおいて、両側の陽極端子部材同士を陰極端子部材の側方域に配置した連結部材を介して電気的に導通接続し、この連結部材と陰極端子部材との間にセラミックコンデンサを複数個接続したことを特徴とする積層型コンデンサモジュ−ル。   A plurality of capacitor element plates each having a cathode portion at the center and an anode portion on one side of a flat valve metal plate having an oxide film layer serving as a dielectric on the surface. The anode portion is centered on the cathode portion. In a multilayer capacitor formed by stacking layers so as to be opposed to each other and bonding each cathode part to a cathode terminal member and anode parts on both sides separately provided on both sides, the anode terminal members on both sides are cathodes A multilayer capacitor module comprising a plurality of ceramic capacitors connected electrically through a connecting member disposed in a lateral region of the terminal member, and a plurality of ceramic capacitors connected between the connecting member and the cathode terminal member. .
JP2005378036A 2005-12-28 2005-12-28 Multilayer solid electrolytic capacitor and capacitor module Active JP4688676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378036A JP4688676B2 (en) 2005-12-28 2005-12-28 Multilayer solid electrolytic capacitor and capacitor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378036A JP4688676B2 (en) 2005-12-28 2005-12-28 Multilayer solid electrolytic capacitor and capacitor module

Publications (2)

Publication Number Publication Date
JP2007180328A true JP2007180328A (en) 2007-07-12
JP4688676B2 JP4688676B2 (en) 2011-05-25

Family

ID=38305214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378036A Active JP4688676B2 (en) 2005-12-28 2005-12-28 Multilayer solid electrolytic capacitor and capacitor module

Country Status (1)

Country Link
JP (1) JP4688676B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050218A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Laminated three terminal type solid electrolytic capacitor, and method of manufacturing the same
JP2011187483A (en) * 2010-03-04 2011-09-22 Nec Tokin Corp Solid electrolytic capacitor
JP2012033544A (en) * 2010-07-28 2012-02-16 Rubycon Carlit Co Ltd Device including plural capacitor elements
US9058933B2 (en) 2010-12-28 2015-06-16 Industrial Technology Research Institute Decoupling device including a plurality of capacitor unit arrayed in a same plane
US9214284B2 (en) 2012-09-13 2015-12-15 Industrial Technology Research Institute Decoupling device with three-dimensional lead frame and fabricating method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232196A (en) * 1996-02-23 1997-09-05 Hitachi Aic Inc Composite part
WO2003107365A1 (en) * 2002-06-18 2003-12-24 ティーディーケイ株式会社 Solid electrolytic capacitor and production method therefor
JP2004311874A (en) * 2003-04-10 2004-11-04 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2005210024A (en) * 2004-01-26 2005-08-04 Rohm Co Ltd Capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232196A (en) * 1996-02-23 1997-09-05 Hitachi Aic Inc Composite part
WO2003107365A1 (en) * 2002-06-18 2003-12-24 ティーディーケイ株式会社 Solid electrolytic capacitor and production method therefor
JP2004311874A (en) * 2003-04-10 2004-11-04 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2005210024A (en) * 2004-01-26 2005-08-04 Rohm Co Ltd Capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050218A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Laminated three terminal type solid electrolytic capacitor, and method of manufacturing the same
JP2011187483A (en) * 2010-03-04 2011-09-22 Nec Tokin Corp Solid electrolytic capacitor
JP2012033544A (en) * 2010-07-28 2012-02-16 Rubycon Carlit Co Ltd Device including plural capacitor elements
US9058933B2 (en) 2010-12-28 2015-06-16 Industrial Technology Research Institute Decoupling device including a plurality of capacitor unit arrayed in a same plane
US9214284B2 (en) 2012-09-13 2015-12-15 Industrial Technology Research Institute Decoupling device with three-dimensional lead frame and fabricating method thereof

Also Published As

Publication number Publication date
JP4688676B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US6563693B2 (en) Solid electrolytic capacitor
KR101451685B1 (en) Solid electrolytic condenser
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2008187091A (en) Solid-state electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JPH10144573A (en) Solid electrolytic capacitor and its manufacture
JP4986230B2 (en) Multilayer solid electrolytic capacitor
JP2003178933A (en) Capacitor
JP2010226139A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2005191466A (en) Capacitor
JP2008091389A (en) Lead frame member for solid electrolytic capacitor
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP2002050543A (en) Chip-type laminated capacitor
JP2006100295A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP2002050545A (en) Chip-type laminated capacitor
JP4986773B2 (en) Multilayer solid electrolytic capacitor
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP5279019B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250