JP5120025B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5120025B2
JP5120025B2 JP2008092832A JP2008092832A JP5120025B2 JP 5120025 B2 JP5120025 B2 JP 5120025B2 JP 2008092832 A JP2008092832 A JP 2008092832A JP 2008092832 A JP2008092832 A JP 2008092832A JP 5120025 B2 JP5120025 B2 JP 5120025B2
Authority
JP
Japan
Prior art keywords
layer
metal plate
forming
metal
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008092832A
Other languages
Japanese (ja)
Other versions
JP2009246234A (en
Inventor
進 安藤
博和 市原
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008092832A priority Critical patent/JP5120025B2/en
Publication of JP2009246234A publication Critical patent/JP2009246234A/en
Application granted granted Critical
Publication of JP5120025B2 publication Critical patent/JP5120025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、薄型で部品配置の自由度が大きく、特性に加え製造の精度や接合強度の優れた多端子型の固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a multi-terminal solid electrolytic capacitor that is thin and has a high degree of freedom in component arrangement, and has excellent manufacturing accuracy and bonding strength in addition to characteristics, and a manufacturing method thereof.

現代では、さまざまな電子回路の分野において、多様なコンデンサが用いられ、その一種として、等価直列抵抗(ESR)が小さく周波数特性に優れた固体電解コンデンサが広く利用されている。特許文献1及び2は、従来の固体電解コンデンサとその製造方法の一例を示すもので、この例は、陽極体となる金属板に設けた凹部に固体電解質層などを設け個片に切断したもの二つで陰極体をサンドイッチするとともに陽極端子を取り付けるものである。
特開平3−284818号 特開平4−5813号 特開平2−301118号
At present, various capacitors are used in various electronic circuit fields, and as one of them, solid electrolytic capacitors having a small equivalent series resistance (ESR) and excellent frequency characteristics are widely used. Patent Documents 1 and 2 show an example of a conventional solid electrolytic capacitor and a manufacturing method thereof. In this example, a solid electrolyte layer or the like is provided in a recess provided in a metal plate serving as an anode body and is cut into individual pieces. Two cathode bodies are sandwiched and an anode terminal is attached.
JP-A-3-284818 JP-A-4-5813 JP-A-2-301118

しかし、近年、パーソナルコンピュータなどデジタル機器の分野においては、低ESL(等価直列インダクタンス)など特性改善の点で多端子型の固体電解コンデンサが求められるとともに、機器の小型化や、高速動作に対応した優れた過渡応答性の要請ともあいまって、より薄型で部品配置の自由度に優れた固体電解コンデンサが求められている。さらに、増大する需要への対応やコストなどの面から、製造効率をより一層改善する要請も大きい。   However, in recent years, in the field of digital equipment such as personal computers, multi-terminal type solid electrolytic capacitors have been demanded from the viewpoint of improving characteristics such as low ESL (equivalent series inductance), and the equipment has been adapted to downsizing and high speed operation. Combined with the demand for excellent transient response, there is a need for a solid electrolytic capacitor that is thinner and has a high degree of freedom in component placement. Furthermore, there is a great demand for further improvement in production efficiency from the viewpoint of meeting increasing demand and costs.

この点、上記のような従来の固体電解コンデンサは、個片二つで陰極体をサンドイッチしたり陽極端子を取り付ける構造であり、製造効率の改善やサイズ上の薄型化にも限界があった。また、上記のような従来の固体電解コンデンサでは、サイズや形状の制約から、電流供給対象となるLSIとは水平方向のずれた位置で基板へ実装することが必須となることから過渡応答性の改善に限界があり、この点からも、部品配置における自由度の増大が希求されていた。   In this regard, the conventional solid electrolytic capacitor as described above has a structure in which a cathode body is sandwiched between two pieces and an anode terminal is attached, and there is a limit to improvement in manufacturing efficiency and reduction in size. Also, in the conventional solid electrolytic capacitor as described above, due to size and shape restrictions, it is essential to mount it on the board at a position shifted in the horizontal direction from the LSI that is the current supply target. There is a limit to the improvement, and from this point, an increase in the degree of freedom in component arrangement has been desired.

また、基板上に、平面状の固体電解質層や、開口を設けた絶縁層などを積層して各電極を引き出す固体電解コンデンサの製造方法において、基板を切込みにより櫛歯状の行や列に分割し製造を効率化する提案は存在するが(例えば、特許文献3参照。特に第1図(B))、一端のみがつながった状態の基板は不安定で加工の精度や効率に限界があった。   In addition, in a method of manufacturing a solid electrolytic capacitor in which a flat solid electrolyte layer or an insulating layer having openings is laminated on a substrate to draw out each electrode, the substrate is divided into comb-like rows and columns by cutting. Although there are proposals to improve the manufacturing efficiency (for example, refer to Patent Document 3, especially FIG. 1 (B)), the substrate in which only one end is connected is unstable and the accuracy and efficiency of processing are limited. .

本発明は、上記のような課題を解消するために提案されたものであって、その目的は、薄型かつ小型で部品配置の自由度が大きく、特性に加え製造の精度や接合強度、さらには安全性に優れた多端子型の固体電解コンデンサ及びその製造方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems, and its purpose is thin and small and has a high degree of freedom in component placement, in addition to characteristics, manufacturing accuracy and bonding strength, An object of the present invention is to provide a multi-terminal solid electrolytic capacitor excellent in safety and a method for manufacturing the same.

上記の目的を達成するため、本発明の一態様である固体電解コンデンサは、弁金属からなる金属板の片面に補強層を形成し、前記補強層と反対の面より切削加工することで、前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、前記補強層と反対の面に対して、前記穴を充填すると共に当該面を被覆する保護層を形成し、隣接する前記穴の間の前記保護層が形成された金属板の面に、所定間隔で凹部を形成することで、当該凹部の内面に弁金属の地金を露出させ、前記凹部内面の前記弁金属の地金を、拡面処理し、その表面に酸化皮膜層を形成し、前記凹部内の前記酸化皮膜層の上に、固体電解質層を形成し、前記固体電解質層の上に、陰極端子部を形成し、陽極端子部を設けるために、前記凹部周辺の前記保護層を部分的に除去することで金属板の地金を露出させ、当該露出した金属板の地金の上に前記陽極端子部を形成し、前記穴の部分で、前記金属板、前記補強層及び前記保護層を切断することにより、個片の固体電解コンデンサとしたことを特徴とする。   In order to achieve the above object, the solid electrolytic capacitor according to one aspect of the present invention is formed by forming a reinforcing layer on one surface of a metal plate made of a valve metal and cutting the surface opposite to the reinforcing layer. Forming a plurality of groove-shaped holes that penetrate the metal plate but do not penetrate the reinforcing layer, and form a protective layer that covers the surface while filling the hole with respect to the surface opposite to the reinforcing layer, By forming recesses at predetermined intervals on the surface of the metal plate on which the protective layer between adjacent holes is formed, a valve metal ingot is exposed on the inner surface of the recess, and the valve on the inner surface of the recess Metal base metal is subjected to surface expansion treatment, an oxide film layer is formed on the surface, a solid electrolyte layer is formed on the oxide film layer in the recess, and a cathode terminal is formed on the solid electrolyte layer. In order to form a part and provide an anode terminal part, And removing the metal plate to expose the metal plate, to form the anode terminal portion on the exposed metal plate, and at the hole portion, the metal plate, the reinforcing layer, and the protection By cutting the layer, a solid electrolytic capacitor of individual pieces is obtained.

本発明の他の態様は、上記態様を方法の観点から捉えた固体電解コンデンサの製造方法であって、弁金属からなる金属板の片面に補強層を形成する工程と、前記補強層と反対の面より切削加工することで、前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、前記補強層と反対の面に対して、前記穴を充填すると共に当該面を被覆する保護層を形成する工程と、隣接する前記穴の間の前記保護層が形成された金属板の面に、所定間隔で凹部を形成することで、当該凹部の内面に弁金属の地金を露出させる工程と、前記凹部内面の前記弁金属の地金を、拡面処理し、その表面に酸化皮膜層を形成する工程と、前記凹部内の前記酸化皮膜層の上に、固体電解質層を形成する工程と、前記固体電解質層の上に、陰極端子部を形成する工程と、陽極端子部を設けるために、前記凹部周辺の前記保護層を部分的に除去することで金属板の地金を露出させる工程と、当該露出した金属板の地金の上に前記陽極端子部を形成する工程と、前記穴の部分で、前記金属板、前記補強層及び前記保護層を切断することにより、個片の固体電解コンデンサとする工程と、を含むことを特徴とする。   Another aspect of the present invention is a method of manufacturing a solid electrolytic capacitor in which the above aspect is grasped from the viewpoint of the method, the step of forming a reinforcing layer on one side of a metal plate made of a valve metal, and the opposite of the reinforcing layer Cutting a surface to form a plurality of groove-shaped holes that penetrate the metal plate but not the reinforcing layer, and fill the holes on the surface opposite to the reinforcing layer. A step of forming a protective layer covering the surface, and forming a concave portion at a predetermined interval on the surface of the metal plate on which the protective layer between the adjacent holes is formed, thereby forming a valve metal on the inner surface of the concave portion. A step of exposing the bare metal, a step of expanding the bare metal of the valve metal on the inner surface of the concave portion, forming an oxide film layer on the surface, and on the oxide film layer in the concave portion, A step of forming a solid electrolyte layer, and a cathode end on the solid electrolyte layer A step of forming a metal plate, a step of exposing the metal plate in the metal plate by partially removing the protective layer around the concave portion, and a step of exposing the metal plate in the exposed metal plate. Forming the anode terminal portion thereon, and cutting the metal plate, the reinforcing layer, and the protective layer at the hole portion to form a solid electrolytic capacitor in pieces. Features.

以上のような態様では、補強層を形成した面と反対の金属板の面に凹部を形成することで地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けると共に凹部両脇に陽極端子部を設け、さらに、金属板に形成した穴に保護層を注入し、当該穴の位置で切断することにより、個片の固体電解コンデンサの側面を絶縁樹脂等を使用した保護層で被覆することが可能となる。   In the above embodiment, a metal base is exposed by forming a recess on the surface of the metal plate opposite to the surface on which the reinforcing layer is formed, and an oxide film layer, a solid electrolyte layer, and a cathode terminal are provided in the recess. An anode terminal portion was provided on both sides of the recess, and a protective layer was injected into a hole formed in the metal plate and cut at the position of the hole, thereby using an insulating resin or the like on the side surface of the individual solid electrolytic capacitor It becomes possible to coat with a protective layer.

これにより、固体電解コンデンサの側面が保護層で覆われているので、金属板、補強層や陽極端子部の接合強度が高まり、さらに、安全性が向上する。また、個片を形成する際、保護層が注入された穴を切断するので、陽極端子部が傷つくこともなく、精度の高い固体電解コンデンサを提供することができる。   Thereby, since the side surface of the solid electrolytic capacitor is covered with the protective layer, the bonding strength of the metal plate, the reinforcing layer, and the anode terminal portion is increased, and the safety is further improved. Moreover, since the hole into which the protective layer is injected is cut when forming the individual pieces, the anode terminal portion is not damaged, and a highly accurate solid electrolytic capacitor can be provided.

なお、保護層を設けた金属板片面に凹部を形成して地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けたことで、コンデンサとしての容量保持部である酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、当該容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。また、金属板に補強層を形成し、金属板は貫通するが補強層は貫通しない穴とすることにより、従来のように櫛歯状にカットした場合と比べ、補強層で金属板が安定し加工の精度や効率を維持できる。   In addition, it is a capacity | capacitance holding part as a capacitor | condenser by forming a recessed part in the metal plate single side | surface which provided the protective layer, exposing a base metal, and having provided the oxide film layer, the solid electrolyte layer, and the cathode terminal in the recessed part. The cathode terminal part is formed in the vicinity of the interface between the oxide film and the solid electrolyte layer. The distance between the capacitor holding part and the cathode terminal part to the circuit pattern or LSI device is short, and the current inside the capacitor Since the routing route is shortened, the transient response to the unstable power supply voltage is improved. In addition, by forming a reinforcing layer on the metal plate and making the hole through the metal plate but not through the reinforcing layer, the metal plate is more stable with the reinforcing layer than in the case of cutting in a comb shape as in the past. Processing accuracy and efficiency can be maintained.

さらに、従来のようなサンドイッチ構造が不要となるため薄型化と共に小型化を図ることが可能となる。とりわけ、陽極端子部の外部電極と陰極端子部が近接した構造となり、陽極端子部の外部電極と陰極端子部に電流が流れる際に発生する誘導磁界を相殺する効果が大きくなり、固体電解コンデンサのESLを低減させることができる。   Furthermore, since the conventional sandwich structure is not necessary, it is possible to reduce the thickness and the size. In particular, the external electrode of the anode terminal portion and the cathode terminal portion are close to each other, and the effect of canceling the induced magnetic field generated when current flows through the external electrode and the cathode terminal portion of the anode terminal portion is increased. ESL can be reduced.

また、陰極端子部の周囲を絶縁樹脂で被覆することにより、絶縁樹脂が凹部と陰極外部電極の隙間に入り込んで陽極と陰極の絶縁性が改善され、さらに、絶縁樹脂により、陰極端子部を構成する陰極外部電極の一部を被覆することで、陰極外部電極の接合強度を高めることができる。   Also, by covering the periphery of the cathode terminal with an insulating resin, the insulating resin enters the gap between the recess and the cathode external electrode to improve the insulation between the anode and the cathode, and the cathode terminal is made up of the insulating resin. By covering a part of the cathode external electrode, the bonding strength of the cathode external electrode can be increased.

以上のように、本発明によれば、薄型かつ小型で部品配置の自由度が大きく、特性に加え製造の精度や接合強度の優れた多端子型の固体電解コンデンサ及びその製造方法を提供することが可能となる。   As described above, according to the present invention, there are provided a multi-terminal solid electrolytic capacitor that is thin and small, has a high degree of freedom in component arrangement, has excellent manufacturing accuracy and bonding strength in addition to characteristics, and a method for manufacturing the same. Is possible.

次に、本発明を実施するための最良の実施形態について図1及び2を参照して以下に説明する。なお、背景技術や課題で既に説明した内容と共通する事項は適宜説明を省略する。   Next, the best mode for carrying out the present invention will be described below with reference to FIGS. In addition, the description common to the contents already described in the background art and problems will be omitted as appropriate.

(1)構成
本実施形態は、以下のような工程A〜Kによる固体電解コンデンサの製造方法と、そのように製造される固体電解コンデンサに関するものである。ここで、各工程段階を図1及び図2の断面図に示す。
(1) Configuration The present embodiment relates to a method for manufacturing a solid electrolytic capacitor according to the following steps A to K, and a solid electrolytic capacitor manufactured as such. Here, each process step is shown in the cross-sectional views of FIGS.

A.金属板の用意
まず、弁金属すなわち弁作用金属からなる金属板1を用意する(図1(1))。この金属板は長尺で、図1及び図2は、図に向かって奥行き方向が長手方向となる断面図である。また、この金属板1について、金属の種類はアルミニウムが望ましく、厚さは200から800ミクロン程度が一般的と考えられるが、金属の種類や厚さは適宜変更可能である。例えば、アルミニウムの他、タンタル、ニオブ、チタン等の弁作用金属を用いることができる。
A. Preparation of Metal Plate First, a metal plate 1 made of a valve metal, that is, a valve action metal is prepared (FIG. 1 (1)). This metal plate is long, and FIG. 1 and FIG. 2 are cross-sectional views in which the depth direction is the longitudinal direction toward the figure. The metal plate 1 is preferably made of aluminum and generally has a thickness of about 200 to 800 microns, but the type and thickness of the metal can be changed as appropriate. For example, valve action metals such as tantalum, niobium, and titanium can be used in addition to aluminum.

B.補強層の形成
そして、金属板1の一面に補強層2を形成する(図1(2))。この補強層2としては、補強部材であるエポキシ材等の絶縁樹脂材を貼り付け、もしくは絶縁樹脂の塗布、SUS材等の貼り付けなど、自由に選択可能であるが、固体電解コンデンサの外装の絶縁性を確保する観点からは絶縁樹脂を用いることが好ましい。
B. Formation of Reinforcing Layer Then, the reinforcing layer 2 is formed on one surface of the metal plate 1 (FIG. 1 (2)). The reinforcing layer 2 can be freely selected by attaching an insulating resin material such as an epoxy material, which is a reinforcing member, or by applying an insulating resin, a SUS material, or the like. From the viewpoint of ensuring insulation, it is preferable to use an insulating resin.

C.穴の形成
続いて、補強層2の面とは逆の面より金属板1を切削加工することで、金属板1を貫通するが補強層2を貫通しない溝状の穴3を形成する(図1(3))。この穴3の形状としては、連続した溝状でもよいし、また、一定のピッチ(長さ及び間隔)で断続する複数の穴でもよい。また、いずれの場合であっても、補強層2は、溝状の穴の長手方向を基準に見た際、少なくとも両端寄りの一部ずつがつながったままとなり、櫛歯状にはならない。
C. Formation of hole Subsequently, the metal plate 1 is cut from the surface opposite to the surface of the reinforcing layer 2 to form a groove-shaped hole 3 that penetrates the metal plate 1 but does not penetrate the reinforcing layer 2 (FIG. 1 (3)). The shape of the hole 3 may be a continuous groove shape, or may be a plurality of holes intermittent at a constant pitch (length and interval). Further, in any case, the reinforcing layer 2 is not connected in a comb-like shape, when viewed from the longitudinal direction of the groove-shaped hole, at least a part close to both ends.

D.保護層の形成
そして、金属板1の補強層2とは反対の穴3が形成された面に対して保護層4を形成する(図1(4))。この保護層4は、金属板1の全面を覆う必要はなく、後述する凹部を形成する加工のための窓部が形成されていても良い。また、保護層4としては、いわゆるレジストなどの樹脂被覆層のほか、陽極酸化皮膜を形成するなどでもよく、後述のエッチングによる拡面処理の際に、エッチング液により腐食されない層であれば、種類や形成の手段などは自由に選択可能である。
D. Formation of the protective layer Then, the protective layer 4 is formed on the surface of the metal plate 1 on which the hole 3 opposite to the reinforcing layer 2 is formed (FIG. 1 (4)). The protective layer 4 does not need to cover the entire surface of the metal plate 1 and may be formed with a window for processing to form a concave portion to be described later. Further, as the protective layer 4, in addition to a resin coating layer such as a so-called resist, an anodized film may be formed. If the layer is not corroded by an etching solution during the surface enlargement process by etching described later, The formation method and the like can be freely selected.

E.凹部の形成
続いて、穴3の間の保護層4が形成された金属板1の面に所定間隔で凹部5を形成することにより、この凹部5の内面において金属板1の地金を露出させる(図1(5))。ここで、凹部5を形成する手段としては、金属板1の切削が好適である。なお、保護層4に窓部が形成されている場合には、窓部の部分をプレス加工して凹部を形成することや、窓部の部分をエッチングによって凹部5を形成してもよく、特に、エッチングによって凹部5を形成する場合には、後述する「F.エッチングと酸化皮膜の形成」の工程のエッチング工程を同時に行うことで効率よく凹部を形成することができる。
E. Formation of recesses Subsequently, by forming recesses 5 at predetermined intervals on the surface of the metal plate 1 on which the protective layer 4 between the holes 3 is formed, the metal of the metal plate 1 is exposed on the inner surface of the recesses 5. (FIG. 1 (5)). Here, as a means for forming the recess 5, cutting of the metal plate 1 is suitable. In addition, when the window part is formed in the protective layer 4, the recessed part 5 may be formed by press-working the window part, or the recessed part 5 may be formed by etching the window part. In the case where the concave portion 5 is formed by etching, the concave portion can be efficiently formed by simultaneously performing the etching process of “F. Etching and formation of oxide film” described later.

F.エッチングと酸化皮膜の形成
その後、凹部5内面に露出した地金を、エッチングで拡面処理し、さらにその拡面処理した凹部の表面に陽極酸化することにより酸化皮膜層6を形成する(図1(6))。ここで、エッチング及び陽極酸化については公知の手段を用いることが可能である。
F. Etching and Formation of Oxide Film Thereafter, the bare metal exposed on the inner surface of the concave portion 5 is subjected to surface expansion treatment by etching, and further, an oxide film layer 6 is formed by anodizing the surface of the concave portion subjected to the surface expansion treatment (FIG. 1). (6)). Here, it is possible to use known means for etching and anodizing.

G.固体電解質層と陰極端子部の形成
そして、酸化皮膜層6の上に、固体電解質層7を形成する(図2(7))。ここで、固体電解質層7としては、導電性高分子が好適であり、このような導電性高分子層は、チオフェン、ピロール等をもとに、化学重合、電解重合など、公知の技術により形成すればよい。
G. Formation of Solid Electrolyte Layer and Cathode Terminal Portion A solid electrolyte layer 7 is formed on the oxide film layer 6 (FIG. 2 (7)). Here, as the solid electrolyte layer 7, a conductive polymer is suitable, and such a conductive polymer layer is formed by a known technique such as chemical polymerization or electrolytic polymerization based on thiophene, pyrrole, or the like. do it.

続いて、固体電解質層7の上に、グラファイト(Gr)層と銀ペースト層(あわせて符号8で示す)を介し、陰極外部電極を設けることをもって、陰極端子部9を形成する(図2(7))。なお、このグラファイト(Gr)層と銀ペースト層自体は、固体電解コンデンサにおける公知技術と同様でよい。   Subsequently, a cathode terminal portion 9 is formed on the solid electrolyte layer 7 by providing a cathode external electrode through a graphite (Gr) layer and a silver paste layer (indicated by reference numeral 8 together) (FIG. 2 ( 7)). The graphite (Gr) layer and the silver paste layer itself may be the same as the publicly known technique in the solid electrolytic capacitor.

また、陰極外部電極としては、銅等の金属製の板材を導電性接着剤で接続することが好適であり、板材は、平板でも、平板上に突起を設けることで当該突起を陰極外部端子としてもよい。この陰極外部電極は、銀ペースト層の上に銅メッキを施して構成することも可能であるが、陰極端子部9である陰極外部電極と保護層4との間には、絶縁のための距離すなわちギャップを設ける必要がある。   In addition, as the cathode external electrode, it is preferable to connect a metal plate material such as copper with a conductive adhesive, and the plate material may be a flat plate or a projection on the flat plate so that the projection serves as a cathode external terminal. Also good. The cathode external electrode can be configured by copper plating on the silver paste layer, but the distance between the cathode external electrode as the cathode terminal portion 9 and the protective layer 4 is an insulation distance. That is, it is necessary to provide a gap.

なお、陰極外部電極として平板に突起部が複数形成された板材を用い、この複数の突起部を陰極外部端子とした場合に、陰極端子部9は複数の陰極端子として導出された多端子の電極構造となる。   When a plate material having a plurality of projections formed on a flat plate is used as the cathode external electrode and the plurality of projections are used as cathode external terminals, the cathode terminal portion 9 is a multi-terminal electrode derived as a plurality of cathode terminals. It becomes a structure.

また、陰極外部電極として平板の板材を用いて、平板の板材を銀ペースト層に接着した後に突起部を形成することもできる。この突起部の形成は、いわゆるバンプ電極を用い、金ワイヤを熱圧着のうえ切断した金バンプのほか、銅メッキの上に半田ボールを接着しボール形状端子を格子配列状に形成したボールグリッドアレイ(BGA)など、自由に選択可能である。   Alternatively, a flat plate material may be used as the cathode external electrode, and the protrusion may be formed after the flat plate material is bonded to the silver paste layer. The bumps are formed by using a so-called bump electrode, a gold bump obtained by cutting a gold wire by thermocompression bonding, and a ball grid array in which solder balls are bonded onto a copper plating to form ball-shaped terminals in a grid array. (BGA) or the like can be freely selected.

H.絶縁樹脂での被覆
次に、陰極端子部9のうち、外部に露出すべき所定の外部露出部を除いた部分に対して、絶縁樹脂10を注入することにより被覆する(図2(8))。なお、この絶縁樹脂10としては熱硬化性エポキシ樹脂が好適である。
H. Coating with Insulating Resin Next, a portion of the cathode terminal portion 9 excluding a predetermined externally exposed portion that should be exposed to the outside is covered by injecting the insulating resin 10 (FIG. 2 (8)). . As the insulating resin 10, a thermosetting epoxy resin is suitable.

ここで、例えば、陰極端子部9が図2(8)のように、平板上に突起部を有する場合には、外部露出部は、この突起部に相当し、外部露出部を除いた部分は、平板の上面部、側端面や、保護層4との間の上記ギャップなどである。一方、陰極端子部9が突起部を有しない平板の場合には、外部露出部は、平板の上面であり、外部露出部を除いた部分は、側端面や、保護層4との間の上記ギャップなどである。   Here, for example, when the cathode terminal portion 9 has a protrusion on the flat plate as shown in FIG. 2 (8), the externally exposed portion corresponds to this protrusion, and the portion excluding the externally exposed portion is And the above-mentioned gap between the upper surface portion and the side end surface of the flat plate and the protective layer 4. On the other hand, when the cathode terminal portion 9 is a flat plate having no protrusion, the externally exposed portion is the upper surface of the flat plate, and the portion excluding the externally exposed portion is between the side end surface and the protective layer 4. Such as a gap.

なお、絶縁樹脂10が、陰極端子部9の外部に露出すべき所定の外部露出部を除いた部分に注入されることにより、陽極と陰極の絶縁性を高めることが可能となり、さらに、陰極外部電極の接合強度を向上させることが可能となる。すなわち、例えば、陰極外部電極として、平板に突起部が複数形成された板材を用い、突起部のみが露出するように板材の上面を絶縁樹脂10で被覆すれば、陰極外部電極の上面が金属板と一体化され、陰極外部端子の接合強度を高めることが可能となる。   The insulating resin 10 is injected into a portion excluding a predetermined external exposed portion that should be exposed to the outside of the cathode terminal portion 9, whereby the insulation between the anode and the cathode can be improved. It becomes possible to improve the bonding strength of the electrode. That is, for example, if a plate material having a plurality of protrusions formed on a flat plate is used as the cathode external electrode and the upper surface of the plate material is covered with the insulating resin 10 so that only the protrusions are exposed, the upper surface of the cathode external electrode is a metal plate. And the bonding strength of the cathode external terminal can be increased.

I.保護層の一部除去
また、後述する陽極端子部12との電気的接続を図るために、凹部5周囲の金属板1の保護層4を部分的に除去することで金属板1の地金を露出させ、陽極端子部12を設けるための露出部11を形成する(図2(9))。この際、保護層4を露出するのみでもよいが、金属板まで切削してもよく、この後で形成する陽極端子部12の高さとの関連で、切削する深さは適宜調整可能である。
I. Partial removal of the protective layer Further, in order to achieve electrical connection with the anode terminal portion 12 to be described later, the metal layer 1 is removed by partially removing the protective layer 4 of the metal plate 1 around the recess 5. An exposed portion 11 for exposing and providing the anode terminal portion 12 is formed (FIG. 2 (9)). At this time, the protective layer 4 may only be exposed, or even a metal plate may be cut, and the cutting depth can be appropriately adjusted in relation to the height of the anode terminal portion 12 to be formed later.

J.陽極端子部の形成
そして、上記のように露出した陽極引き出し手段を形成する露出部11の上に陽極端子部12を形成する(図2(10))。この陽極端子部12は、いわゆるバンプ電極を用い、金ワイヤを熱圧着のうえ切断した金バンプのほか、銅メッキの上に半田ボールを接着しボール形状端子を格子配列状に形成したボールグリッドアレイ(BGA)など、自由に選択可能である。
J. et al. Formation of Anode Terminal Part Then, the anode terminal part 12 is formed on the exposed part 11 that forms the exposed anode lead means as described above (FIG. 2 (10)). The anode terminal portion 12 uses a so-called bump electrode, a gold grid obtained by cutting a gold wire by thermocompression bonding, and a ball grid array in which solder balls are bonded on a copper plating to form ball-shaped terminals in a grid array. (BGA) or the like can be freely selected.

このようなバンプ電極は、幅300μm程度の長方形の領域に電極を形成することが可能であり、固体電解コンデンサの静電容量に寄与しない陽極端子部12の領域を極めて小さなものとすることができる。さらに、この陽極端子部12の形成個数は任意であり、一辺に複数個の陽極端子部12を形成した場合には、複数の陽極端子部12として導出された多端子の電極構造となる。   Such a bump electrode can be formed in a rectangular region having a width of about 300 μm, and the region of the anode terminal portion 12 that does not contribute to the capacitance of the solid electrolytic capacitor can be made extremely small. . Furthermore, the number of anode terminal portions 12 formed is arbitrary, and when a plurality of anode terminal portions 12 are formed on one side, a multi-terminal electrode structure led out as a plurality of anode terminal portions 12 is obtained.

K.個片への切断
最後に、穴3の部分で補強層2及び保護層4を切断(カット)すると共に、単位となる陰極端子部9間を各々切断することで、個片の固体電解コンデンサとする(図2(11))。すなわち、凹部5と陽極端子部12を含む所定の領域、この実施の形態では、凹部5を挟むように対向して配置した陽極端子部12を含む領域を区画するようにカットする。
K. Cutting into individual pieces Finally, the reinforcing layer 2 and the protective layer 4 are cut (cut) at the portion of the hole 3, and the individual cathode terminal portions 9 are cut to form individual solid electrolytic capacitors and (FIG. 2 (11)). That is, it cuts so that the predetermined area | region containing the recessed part 5 and the anode terminal part 12, and the area | region containing the anode terminal part 12 arrange | positioned facing this so that the recessed part 5 may be pinched | interposed in this embodiment.

(2)作用効果
以上のように、補強層を形成した面と反対の金属板の面に凹部を形成することで地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けると共に凹部両脇に陽極端子部を設け、さらに、金属板に形成した穴に保護層を注入し、当該穴の位置で切断することにより、個片の固体電解コンデンサの側面を絶縁樹脂等を使用した保護層で被覆することが可能となる。
(2) Operational effects As described above, a metal base is exposed by forming a concave portion on the surface of the metal plate opposite to the surface on which the reinforcing layer is formed, and an oxide film layer, a solid electrolyte layer, a cathode terminal are formed in the concave portion. In addition, an anode terminal portion is provided on both sides of the recess, and a protective layer is injected into a hole formed in the metal plate and cut at the position of the hole, so that the side surface of the individual solid electrolytic capacitor is insulated with resin, etc. It becomes possible to coat with a protective layer using.

これにより、固体電解コンデンサの側面が保護層で覆われているので、金属板、補強層や陽極端子部の接合強度が高まり、さらに、安全性が向上する。また、個片を形成する際、保護層が注入された穴を切断するので、陽極端子部が傷つくこともなく、精度の高い固体電解コンデンサを提供することができる。   Thereby, since the side surface of the solid electrolytic capacitor is covered with the protective layer, the bonding strength of the metal plate, the reinforcing layer, and the anode terminal portion is increased, and the safety is further improved. Moreover, since the hole into which the protective layer is injected is cut when forming the individual pieces, the anode terminal portion is not damaged, and a highly accurate solid electrolytic capacitor can be provided.

なお、保護層を設けた金属板片面に凹部を形成して地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けたことで、コンデンサとしての容量保持部である酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、当該容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。また、金属板に補強層を形成し、金属板は貫通するが補強層は貫通しない穴とすることにより、従来のように櫛歯状にカットした場合と比べ、補強層で金属板が安定し加工の精度や効率を維持できる。   In addition, it is a capacity | capacitance holding part as a capacitor | condenser by forming a recessed part in the metal plate single side | surface which provided the protective layer, exposing a base metal, and having provided the oxide film layer, the solid electrolyte layer, and the cathode terminal in the recessed part. The cathode terminal part is formed in the vicinity of the interface between the oxide film and the solid electrolyte layer. The distance between the capacitor holding part and the cathode terminal part to the circuit pattern or LSI device is short, and the current inside the capacitor Since the routing route is shortened, the transient response to the unstable power supply voltage is improved. In addition, by forming a reinforcing layer on the metal plate and making the hole through the metal plate but not through the reinforcing layer, the metal plate is more stable with the reinforcing layer than in the case of cutting in a comb shape as in the past. Processing accuracy and efficiency can be maintained.

さらに、従来のようなサンドイッチ構造が不要となるため薄型化と共に、陽極端子部は、固体電解コンデンサの金属板の露出部に直接形成されているので当該固体電解コンデンサの静電容量に寄与しない陽極端子部を設ける領域を小さなものとすることができ、小型化が実現される。とりわけ、陽極端子部の外部電極と陰極端子部が近接した構造となり、陽極端子部の外部電極と陰極端子部に電流が流れる際に発生する誘導磁界を相殺する効果が大きくなり、固体電解コンデンサのESLを低減させることができる。   In addition, since the conventional sandwich structure is not required, the anode terminal portion is formed directly on the exposed portion of the metal plate of the solid electrolytic capacitor, so that the anode does not contribute to the capacitance of the solid electrolytic capacitor. The region where the terminal portion is provided can be made small, and downsizing is realized. In particular, the external electrode of the anode terminal portion and the cathode terminal portion are close to each other, and the effect of canceling the induced magnetic field generated when current flows through the external electrode and the cathode terminal portion of the anode terminal portion is increased. ESL can be reduced.

また、本実施形態では、陰極端子部の周囲を絶縁樹脂で被覆することにより、絶縁樹脂が凹部と陰極外部電極の隙間に入り込んで陽極と陰極の絶縁性が改善され、さらに、絶縁樹脂により、陰極端子部を構成する陰極外部電極の一部を被覆することで、陰極外部電極の接合強度を高めることができる。   Further, in this embodiment, by covering the periphery of the cathode terminal portion with an insulating resin, the insulating resin enters the gap between the concave portion and the cathode external electrode to improve the insulation between the anode and the cathode. By covering a part of the cathode external electrode constituting the cathode terminal portion, the bonding strength of the cathode external electrode can be increased.

(3)他の実施形態
本発明は、上記実施形態に限定されるものではなく、次に例示するもの及びそれ以外の他の実施形態も含むものである。例えば、陰極端子部9のうち、外部に露出すべき外部露出部を除いた部分を絶縁樹脂10で被覆することは省略可能である。また、以上に挙げたそれぞれの具体的な材料の種類や加工手法、各図に示した形状や構造は例示に過ぎず、適宜変更実施可能であることは言うまでもない。
(3) Other Embodiments The present invention is not limited to the above-described embodiment, and includes the following embodiments and other embodiments. For example, it is possible to omit covering the portion of the cathode terminal portion 9 excluding the externally exposed portion that should be exposed to the outside with the insulating resin 10. In addition, it is needless to say that the specific types of materials, processing methods, shapes and structures shown in the drawings are merely examples, and can be appropriately changed.

本発明の実施形態における固体電解コンデンサの製造方法(前半)を示す断面図。Sectional drawing which shows the manufacturing method (first half) of the solid electrolytic capacitor in embodiment of this invention. 本発明の実施形態における固体電解コンデンサの製造方法(後半)を示す断面図。Sectional drawing which shows the manufacturing method (latter half) of the solid electrolytic capacitor in embodiment of this invention.

符号の説明Explanation of symbols

1…金属板
2…補強層
3…穴
4…保護層
5…凹部
6…酸化皮膜層
7…固体電解質層
8…グラファイト(Gr)層と銀ペースト層
9…陰極端子部
10…絶縁樹脂
11…露出部
12…陽極端子部
DESCRIPTION OF SYMBOLS 1 ... Metal plate 2 ... Reinforcement layer 3 ... Hole 4 ... Protective layer 5 ... Recess 6 ... Oxide film layer 7 ... Solid electrolyte layer 8 ... Graphite (Gr) layer and silver paste layer 9 ... Cathode terminal part 10 ... Insulating resin 11 ... Exposed part 12 ... Anode terminal part

Claims (2)

弁金属からなる金属板の片面に補強層を形成し、
前記補強層と反対の面より切削加工することで、前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、
前記補強層と反対の面に対して、前記穴を充填すると共に当該面を被覆する保護層を形成し、
隣接する前記穴の間の前記保護層が形成された金属板の面に、所定間隔で凹部を形成することで、当該凹部の内面に弁金属の地金を露出させ、
前記凹部内面の前記弁金属の地金を、拡面処理し、その表面に酸化皮膜層を形成し、
前記凹部内の前記酸化皮膜層の上に、固体電解質層を形成し、
前記固体電解質層の上に、陰極端子部を形成し、
陽極端子部を設けるために、前記凹部周辺の前記保護層を部分的に除去することで金属板の地金を露出させ、
当該露出した金属板の地金の上に前記陽極端子部を形成し、
前記穴の部分で、前記金属板、前記補強層及び前記保護層を切断することにより、個片の固体電解コンデンサとしたことを特徴とする固体電解コンデンサ。
A reinforcing layer is formed on one side of a metal plate made of valve metal,
By cutting from the surface opposite to the reinforcing layer, a plurality of groove-shaped holes that penetrate the metal plate but do not penetrate the reinforcing layer are formed.
Forming a protective layer that fills the hole and covers the surface against the surface opposite to the reinforcing layer;
By forming a recess at a predetermined interval on the surface of the metal plate on which the protective layer between the adjacent holes is formed, the valve metal ingot is exposed on the inner surface of the recess,
Surface expansion of the valve metal ingot on the inner surface of the recess, forming an oxide film layer on the surface,
Forming a solid electrolyte layer on the oxide film layer in the recess,
Forming a cathode terminal on the solid electrolyte layer;
In order to provide the anode terminal portion, the metal layer bare metal is exposed by partially removing the protective layer around the recess,
Forming the anode terminal portion on the bare metal plate exposed,
A solid electrolytic capacitor, wherein the metal plate, the reinforcing layer, and the protective layer are cut at the hole portion to form an individual solid electrolytic capacitor.
弁金属からなる金属板の片面に補強層を形成する工程と、
前記補強層と反対の面より切削加工することで、前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、
前記補強層と反対の面に対して、前記穴を充填すると共に当該面を被覆する保護層を形成する工程と、
隣接する前記穴の間の前記保護層が形成された金属板の面に、所定間隔で凹部を形成することで、当該凹部の内面に弁金属の地金を露出させる工程と、
前記凹部内面の前記弁金属の地金を、拡面処理し、その表面に酸化皮膜層を形成する工程と、
前記凹部内の前記酸化皮膜層の上に、固体電解質層を形成する工程と、
前記固体電解質層の上に、陰極端子部を形成する工程と、
陽極端子部を設けるために、前記凹部周辺の前記保護層を部分的に除去することで金属板の地金を露出させる工程と、
当該露出した金属板の地金の上に前記陽極端子部を形成する工程と、
前記穴の部分で、前記金属板、前記補強層及び前記保護層を切断することにより、個片の固体電解コンデンサとする工程と、
を含むことを特徴とする固体電解コンデンサの製造方法。
Forming a reinforcing layer on one side of a metal plate made of a valve metal;
Cutting a surface opposite to the reinforcing layer to form a plurality of groove-shaped holes that penetrate the metal plate but do not penetrate the reinforcing layer;
Forming a protective layer that fills the hole and covers the surface against the surface opposite to the reinforcing layer;
A step of exposing a valve metal ingot to the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate on which the protective layer between the adjacent holes is formed;
A step of expanding the surface metal of the valve metal on the inner surface of the recess, and forming an oxide film layer on the surface;
Forming a solid electrolyte layer on the oxide film layer in the recess;
Forming a cathode terminal on the solid electrolyte layer;
In order to provide the anode terminal portion, the step of exposing the metal base metal by partially removing the protective layer around the recess, and
Forming the anode terminal portion on the bare metal plate exposed;
Cutting the metal plate, the reinforcing layer and the protective layer at the hole portion to form a solid electrolytic capacitor as a piece;
The manufacturing method of the solid electrolytic capacitor characterized by including this.
JP2008092832A 2008-03-31 2008-03-31 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP5120025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092832A JP5120025B2 (en) 2008-03-31 2008-03-31 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092832A JP5120025B2 (en) 2008-03-31 2008-03-31 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009246234A JP2009246234A (en) 2009-10-22
JP5120025B2 true JP5120025B2 (en) 2013-01-16

Family

ID=41307786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092832A Expired - Fee Related JP5120025B2 (en) 2008-03-31 2008-03-31 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5120025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239937A1 (en) * 2018-06-11 2019-12-19 株式会社村田製作所 Capacitor array, composite electronic component, method for manufacturing capacitor array, and method for manufacturing composite electronic component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614465Y2 (en) * 1988-02-23 1994-04-13 日通工株式会社 Solid electrolytic capacitor
JPH02194518A (en) * 1989-01-23 1990-08-01 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH02301119A (en) * 1989-05-15 1990-12-13 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH0693421B2 (en) * 1990-04-23 1994-11-16 日本ケミコン株式会社 Method for manufacturing solid electrolytic capacitor
JP3088907B2 (en) * 1994-07-05 2000-09-18 エイ ブイ エックス コーポレイション Solid capacitor and its manufacturing method
JP3696341B2 (en) * 1996-08-30 2005-09-14 ローム株式会社 Structure of array type solid electrolytic capacitor and manufacturing method thereof
JP2003124067A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2006173441A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2009246234A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5120026B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN100565735C (en) Solid electrolytic capacitor and transmission-line device and method for making thereof, composite electronic component
KR100904794B1 (en) Solid electrolytic capacitor and method for manufacturing same
US7359181B2 (en) Solid electrolytic capacitor
US10256046B2 (en) Solid electrolytic capacitor and method for making the same
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
JP2010258049A (en) Solid electrolytic capacitor
JP5007678B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5120025B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5434364B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009295634A (en) Solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP3966402B2 (en) Thin solid electrolytic capacitor and manufacturing method thereof
JP5104380B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5206008B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP5206958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5164213B2 (en) Solid electrolytic capacitor
JP2005294291A (en) Solid-state electrolytic capacitor and its manufacturing method, and complex electronic component
JP2005236090A (en) Solid electrolytic capacitor and transmission line element, and their manufacturing methods, and composite electronic component using them
JP2011176067A (en) Solid-state electrolytic capacitor
JP2002110458A (en) Solid electrolytic chip capacitor
JP2009295645A (en) Solid electrolytic capacitor
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees