JP4197140B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4197140B2
JP4197140B2 JP2003174153A JP2003174153A JP4197140B2 JP 4197140 B2 JP4197140 B2 JP 4197140B2 JP 2003174153 A JP2003174153 A JP 2003174153A JP 2003174153 A JP2003174153 A JP 2003174153A JP 4197140 B2 JP4197140 B2 JP 4197140B2
Authority
JP
Japan
Prior art keywords
interposer substrate
semiconductor device
groove
sealing resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003174153A
Other languages
Japanese (ja)
Other versions
JP2005011978A (en
Inventor
公仁 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003174153A priority Critical patent/JP4197140B2/en
Publication of JP2005011978A publication Critical patent/JP2005011978A/en
Application granted granted Critical
Publication of JP4197140B2 publication Critical patent/JP4197140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable area array type semiconductor device capable of preventing teardown inside a resin, since the separation between a mold sealing resin and an interposer substrate will not be caused even when a heat shock is applied thereon. <P>SOLUTION: Grooves 16 or protrusions provide a bonding surface between the interposer substrate 7 and a mold sealing resin 5, provided so as to cover semiconductor chips 1, 12, with a recessed and projected configuration, and are formed on the interposer substrate 7 for mounting the semiconductor chips 1, 12. According to this method, a bonding area between the interposer substrate 7 and the mold sealing resin 5 is increased, whereby resistance against a stress in a direction along the surface of the substrate and an unplug stress in the thickness direction of the substrate can be increased. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多数の配線接続を一層高密度な実装を可能とした半導体素子の実装方法に関するもので、とりわけ、情報通信機器、事務用電子機器等の高機能化・小型化を容易にするエリアアレイ状に配列された半導体装置において、該半導体の集積回路部を保護する樹脂封止をもって、半導体素子の電気的な接続信頼性を安定に確保するパッケージ構成に関するものである。
【0002】
【従来の技術】
図9に、リードフレームを用いた従来の周辺端子型パッケージ半導体装置を示す。
【0003】
半導体素子1(以下半導体チップ1)は、シリコン材からなる基板の表面に電極端子パッド(図示せず)が微細なピッチで形成されたものであり、金属製リードフレームのベース2上に接着ペーストや接着テープで固定され、金細線などのボンディングワイヤー3で周辺のリード4に電気的に接続されている。半導体チップ1およびボンディングワイヤー3の周囲は、これら半導体チップ1、ボンディングワイヤー3、接続部を保護するために、熱硬化性エポキシ樹脂等のモールド封止樹脂5で覆われている。
【0004】
ところが、パッケージ半導体装置は一般に、製造時のモールド樹脂封止工程や、製造後に電子機器のマザー回路基板に自動半田付けする工程などで、各部材の熱膨張係数の差から生じる変形や熱ストレスが生じ、装置の破壊に至ることがある。また一度に破壊に至らずとも、繰り返して上下する温度負荷を受けて、装置の特性が劣化することがある。
【0005】
半導体チップ1とモールド封止樹脂5との剥離については、従来より幾つかの問題提起と対策がなされている。
たとえば、上記したような周辺端子型パッケージ半導体装置では、半導体チップ1とモールド封止樹脂5との熱膨張係数の差に基づく表面方向のストレスによるダメージや、半導体チップ1とモールド封止樹脂5との界面に侵入し蓄積した水分が熱で蒸発して「水蒸気爆発」する、剥離破壊の恐れが指摘されている。
【0006】
この対策としてたとえば、図示したように、半導体チップ1の配線接続側の表面を樹脂コーティングする薄い保護膜6の全体を、凹凸形状にする提案がなされている(たとえば特許文献1、2参照)。
【0007】
また、矩形の半導体チップ1の絶縁膜上に配置する導体膜を、半導体チップ1の角部に屈折部を持ち、その角部を挟む2辺に沿って延びるように、また絶縁膜上に形成された多数本の長溝に沿う凹凸を持つように、形成する提案がなされている(たとえば特許文献3参照)。
【0008】
これらはいずれも、シリコンなどからなる半導体基板とモールド封止樹脂との剥離を、凹凸部分で熱的ストレスを吸収することにより防止するものである。
近年、電子機器の小型化に伴って半導体装置の小型化が加速してきており、それより要求される接続端子数の増加、配線ピッチの微細化を満足させるために、上記したような周辺端子型パッケージから、半導体装置の裏面全体に円形電極ランドを配置するエリアアレイ型のパッケージへと移行してきている。
【0009】
図10,図11,図12はそれぞれ、エリアアレイ型のパッケージ半導体装置の断面構造を示したものである。
図10は、半導体チップをインターポーザ基板上にワイヤーボンディング法で実装したパッケージ半導体装置を示す。
【0010】
半導体チップ1はインターポーザ基板7上にアンダーフィル樹脂8により封止固定されており、半導体チップ1上の端子(図示せず)はインターポーザ基板7上のチップ実装配線ランド9にボンディングワイヤー3により電気的に接続されている。インターポーザ基板7上の半導体チップ1とボンディングワイヤー3の全体は、モールド封止樹脂5で覆われ封止されている。インターポーザ基板7は多層配線されたものであり、チップ搭載面に背反する面に半田ボール電極端子10が形成されている。アンダーフィル樹脂8はフリップチップ部用のものが用いられる。
【0011】
図11は、半導体チップをインターポーザ基板上にフリップチップ実装したパッケージ半導体装置を示す。
電極端子パッドとしての金などのバンプ11が形成された半導体チップ1はインターポーザ基板7上に、バンプ11,チップ実装配線ランド9により電気的に接続され、アンダーフィル樹脂8により封止固定されており、インターポーザ基板7上の半導体チップ1の全体がモールド封止樹脂5で覆われて封止されている。
【0012】
図12は、2個の半導体チップを重ねてインターポーザ基板上にフリップチップ実装、ワイヤーボンディング実装したパッケージ半導体装置を示す。低コスト・高密度回路を実現するスタック構成である。
【0013】
バンプ11が形成された第1の半導体チップ1はインターポーザ基板7上に、バンプ11,チップ実装配線ランド9により電気的に接続され、アンダーフィル樹脂8により封止固定されている。また第2の半導体チップ12は第1の半導体チップ1上にチップ接着材13により接着され、第2の半導体チップ12上の端子(図示せず)はインターポーザ基板7上のチップ実装配線ランド9にボンディングワイヤー3により電気的に接続されている。インターポーザ基板7上の第1の半導体チップ1,第2の半導体チップ12,ボンディングワイヤー3の全体がモールド封止樹脂5で覆われて封止されている。
【0014】
【特許文献1】
特開平6−177285号公報
【0015】
【特許文献2】
特開平6−163755号公報
【0016】
【特許文献3】
特開平5−175198号公報
【0017】
【発明が解決しようとする課題】
しかしながら、近年増加しているエリアアレイ型のパッケージ半導体装置においては、従来の周辺端子型パッケージ半導体装置と同様に、半導体チップ1(および半導体チップ12)とモールド封止樹脂5との剥離の問題があるのみならず、新たにインターポーザ基板7とモールド封止樹脂5との境界面のストレス破壊という問題がある。
【0018】
つまり、周辺端子型パッケージ半導体装置の構造では、熱膨張率が低く且つ硬いシリコン材を主体とする半導体チップ1を、上下面ともに同程度の厚さのモールド封止樹脂5層で覆うことが可能であったため、温度が変化しても半導体装置全体の反り変形は生じにくく、反り変形の際に外部露出部位に応力が集中することは無かった。
【0019】
これに対し、エリアアレイ型パッケージ半導体装置の構造では、材質が相違するモールド封止樹脂5とインターポーザ基板7とが互いに上下になって半導体チップ1(および半導体チップ12)を挟んだ非対称構造となっているため、モールド封止樹脂5,インターポーザ基板7の熱膨張差によって半導体装置全体の反り変形が生じる。
【0020】
そのため、半導体チップ1(および半導体チップ12)とモールド封止樹脂5とを剥離しようとする,図13(a)(b)に示すような従来の境界面方向のストレスf1,f2に加えて、モールド封止樹脂5とインターポーザ基板7との境界を引き剥がそうとするストレスf3が生じる。
【0021】
加えて、モールド封止樹脂5とインターポーザ基板7との境界部は外部に露出しているため、露出した境界部からの水分浸入も多い。しかもその境界部では、図13(c)に示すように、外周側に内部応力が拡大集中する。
【0022】
その結果、境界部の外周端で亀裂14が発生しやすい。一旦亀裂14が発生すると、温度変動等により繰り返し発生する応力でさらに進展していく。そして、モールド封止樹脂5とインターポーザ基板7との境界部での剥がれという装置破壊が起こる。
【0023】
本発明は上記問題を解決するもので、実装時等の熱衝撃によってもモールド封止樹脂とインターポーザ基板との剥離が起こらず、樹脂内の破壊を防止できる、信頼性の高いエリアアレイ型の半導体装置を提供することを目的するものである。
【0024】
【課題を解決するための手段】
上記課題を解決するために本発明は、回路配線層を有した少なくとも1つの半導体素子と、前記半導体素子と接続する配線層を有したインターポーザ基板と、前記インターポーザ基板上に電気的に接続された前記半導体素子を覆う封止樹脂とを有した半導体装置において、前記インターポーザ基板の前記配線層を有した面は、その端部まで前記封止樹脂によって覆われており、前記インターポーザ基板と封止樹脂との接合面を凸凹状にし、少なくとも前記インタポーザ基板のコーナー部付近で前記半導体素子を囲む曲線形状を有する、不連続部分を有する環状の溝部または凸条をインターポーザ基板に形成したことを特徴とする。ここで凸条は、基板面に沿う方向に長い凸形状を言う。これにより、インターポーザ基板と封止樹脂部との接合面積が増加し、基板表面に沿う方向のストレス、および基板厚み方向の引き離しストレスへの抵抗を高めることができる。
【0025】
好ましくは、溝部または凸条は、半導体素子を囲む方向に延びた円弧部を少なくとも一部に有するものとする。単一の円弧部を配置してもよいし、複数の円弧部を適当間隔をおいて配置してもよく、リング状のものとして配置してもよい。
【0026】
より好ましくは、溝部または凸条は、装置中心軸に対する周方向に沿って配置する。
インターポーザ基板と封止樹脂部との界面への熱応力の集中は、両者の線膨張係数の相違に基づき、装置中心軸部分から外周側へ向かって放射方向に熱膨張する量が異なることから発生するもので、熱応力は外周部の近傍で最大になり、内部応力は外周部から中心軸側へ向かう逆放射方向となる。
【0027】
上記したように装置中心軸に対する周方向に沿って配置した溝部または凸条は、上記放射方向・逆放射方向と直交する方向に延びたものとなるため、放射方向・逆放射方向のストレスへの抵抗を高め、剥離を防止するアンカー効果と、微細な剥離が生じた場合もクラックへの進展拡大を食い止めるクラック進展抑止効果、という2重の剥離抑制効果を発揮する。
【0028】
また好ましくは、溝部または凸条を、装置外周に沿う方向に直線状に配置するとともに、少なくとも1つの装置コーナー部の近傍では装置中心軸に対する周方向に沿って配置する。
【0029】
矩形等の多角形の半導体装置では、放射方向・逆放射方向のストレスの最大点は常にコーナー部である。装置外周縁の直線部はコーナー部に比べてストレスが低く、剥離ポイントとならない。このため、装置コーナー部の近傍では、溝部または凸条を装置中心軸に対する周方向に沿って配置することで、すなわち放射方向・逆放射方向と直交する方向に配置することで、放射方向・逆放射方向のストレスへの抵抗を高め、微細な剥離が生じた場合もクラックへの進展拡大を食い止める。装置コーナー部の近傍以外の部分では、クラック進展拡大を抑止することに主眼をおいて、溝部または凸条を装置外周縁の近傍に装置外周に沿う方向に直線状に配置することで、中心部に比べてストレスの高い外周部での密着性を高める。
【0030】
溝部または凸条は断面が矩形であるのが望ましい。これによれば、インターポーザ基板と封止樹脂部とを引き反す方向の応力が生じ、その界面に沿って微細なクラックが入った場合も、溝部または凸条の上隅や下隅で界面方向が急激に90度変わるため、亀裂への進展拡大が停止する。このような溝部や凸条がない場合には、クラックは界面に沿って拡大することになる。
【0031】
溝部または凸条は断面が三角形であるのが望ましい。これによれば、インターポーザ基板と封止樹脂部との界面に沿って微細なクラックが入った場合も、溝部または凸条の隅で界面方向が急激に変わるため、亀裂への進展拡大が停止する。この効果は、溝部の底部、凸条の頂部の角度を90度にした時に特に大きい。
【0032】
溝部または凸条は、前記溝部内あるいは複数の前記凸条間に形成される溝部内に、封止樹脂中に含まれるフィラーの各粒が侵入する寸法に形成するのが望ましい。溝部内にフィラーが侵入することで、溝部内の封止樹脂の剛性が高くなり、剥離に対する抵抗が増大する。
【0033】
インターポーザ基板にさらに微細な凹凸部を形成するのが望ましい。微細な凹凸部によって、接合面での密着性が高まり、熱膨張差で発生するせん断応力による初期クラック発生を抑止できる。
【0034】
微細な凹凸部は、封止樹脂中に含まれるフィラーの各粒が侵入しない寸法に形成するのが望ましい。フィラーが侵入しないことで、ミクロな表面密着性を確保できる。したがって、溝部,凸条がアンカー効果とクラック進展抑止効果とを発揮し、さらに微細な凹凸部が接合面での密着性そのものを増すことになり、剥離に対する抵抗が高いものとなる。
【0035】
上記した各構成は、インターポーザ基板がセラミック製基板である時に特に望ましい。セラミック製基板は特に、線膨張係数が大きく、剛性(ヤング率)が高いため、樹脂主体である封止樹脂との間で発生する応力(=ヤング率×歪み量)が大きくなるので、上記した各構成によって大きな効果が得られる。しかし当然ながら、セラミック以外の材質のインターポーザ基板でも同様の効果が得られる。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1(a)は、本発明の第1の実施形態におけるパッケージ半導体装置の構造を示す断面図、図1(b)は同パッケージ半導体装置のA−A断面図である。このパッケージ半導体装置は先に図12を用いて説明した従来のエリアアレイ型パッケージ半導体装置とほぼ同様の構成を有しているので、同様の作用を有する部材に図12と同じ符号を付して説明する。
【0037】
図1(a)に示すように、金,半田などのバンプ11が形成された第1の半導体チップ1は、セラミック材などのインターポーザ基板7上に、バンプ11,チップ実装配線ランド9により電気的に接続され、フリップチップ部用のアンダーフィル樹脂8で接着固定されている。インターポーザ基板7は、チップ搭載面に背反する面に半田ボール電極端子10を有している。
【0038】
第2の半導体チップ12は、半導体チップ1上にチップ接着材13により接着されており、半導体チップ12上の端子(図示せず)はインターポーザ基板7上のチップ実装配線ランド9に、金などのボンディングワイヤー3を用いるワイヤーボンディング法により電気的に接続されている。
【0039】
そしてインターポーザ基板7上の半導体チップ1,半導体チップ12,ボンディングワイヤー3の全体が、外部の影響からの保護を目的として、エポキシ樹脂などのモールド封止樹脂5を用いてトランスファーモールド法などにより封止されている。なお、第1の半導体チップ1,第2の半導体チップ12,インターポーザ基板7とも矩形である。
【0040】
このパッケージ半導体装置が従来のものと相違するのは、図1(b)にも示すように、インターポーザ基板7とモールド封止樹脂5との接合面を凹凸状にする溝部16,17がインターポーザ基板7に形成されている点である。溝部16,17内にはモールド封止樹脂6が充満している。
【0041】
溝部16は、インターポーザ基板7のコーナー部7aに装置中心軸(通常はインターポーザ基板7の中心軸に一致する)に対する周方向に沿って円弧状に配置されている。溝部17は、溝部16より内側に、同じく装置中心軸に対する周方向に沿ってリング状に配置されている。
【0042】
これらの溝部16,17が存在することで、インターポーザ基板7とモールド封止樹脂5との接合面積は平坦な接合面構造に比べて増加し、インターポーザ基板7の表面に沿う方向のストレス、および基板厚み方向の引き離しストレスへの抵抗を高めることができる。
【0043】
しかも装置中心軸に対する周方向に沿って配置した溝部16,17は、装置中心軸に対する放射方向・逆放射方向と直交する方向に延びているため、図2に示すように、放射方向・逆放射方向のストレス(それぞれ矢印f1、f2)への抵抗を高め、剥離を防止するアンカー効果と、万が一微細な剥離15が生じた場合もクラックへの進展拡大を食い止めるクラック進展抑止効果、という2重の剥離抑制効果を発揮する。
【0044】
インターポーザ基板7が、上記したセラミック材のように剛性が高い材料で構成され、モールド封止樹脂5との熱膨張差が大きい場合には、発生するストレスが特に大きくなるため、上記した剥離抑制効果は顕著となる。
【0045】
図3(a)は、本発明の第2の実施形態におけるパッケージ半導体装置の構造を示す断面図、図3(b)は同パッケージ半導体装置のB−B断面図である。
このパッケージ半導体装置が第1の実施形態のものと相違するのは、矩形の半導体チップ1を中央部に配置する矩形のインターポーザ基板7上に、モールド封止樹脂5との接合面を凹凸状にする四角枠状の溝部18が形成されている点である。
【0046】
詳細には、溝部18は、インターポーザ基板7の周縁部に基板外周に沿う方向に直線状に配置された直線部18aと、インターポーザ基板7の4つのコーナー部7aの近傍に基板中心軸に対する周方向に沿って配置された彎曲部18bとで構成されている。インターポーザ基板7の外周および中心軸は、装置外周および装置中心軸に一致している。
【0047】
このように、矩形の半導体チップ1,インターポーザ基板7で構成された半導体装置において、放射方向・逆放射方向のストレスの最大点であるコーナー部7aに、放射方向・逆放射方向と直交する方向の彎曲部18bを配置しているため、上記第1の実施形態と同様に、放射方向・逆放射方向のストレスへの抵抗を高め、微細な剥離が生じた場合もクラックへの進展拡大を食い止めることができる。コーナー部7a以外では、周縁部に基板外周に沿う直線部18aを配置しているため、ストレスのより高い外周部での密着性を高めることができる。
【0048】
図4(a)は、本発明の第3の実施形態におけるパッケージ半導体装置の構造を示す断面図、図4(b)は同パッケージ半導体装置のC−C断面図である。
このパッケージ半導体装置は上記第2の実施形態のものとほぼ同様であるが、矩形の半導体チップ1を中央部に配置する矩形のインターポーザ基板7上に、モールド封止樹脂5との接合面を凹凸状にする四角枠状の溝部19,20,21が同心状に3本、形成されている点が相違する。
【0049】
溝部19,20,21はそれぞれ、第2の実施形態の溝部18と同様に、彎曲部19a,20a,21aと、直線部19b,20b,21bとを有している。3本の溝部19,20,21が広範囲にわたって形成されていることで、外周部での密着性が高まる。
【0050】
図5は溝部の断面形状を示す。
図5(a)において、インターポーザ基板7に形成された溝部22は、矩形の断面を有している。インターポーザ基板7とモールド封止樹脂5との界面は、溝部22の上隅と下隅とで90度向きが変わるため、界面で亀裂が発生しても、これら上隅と下隅で進展しにくくなり、亀裂の進展を抑止できる。
【0051】
図5(b)において、インターポーザ基板7に形成された溝部23は、三角形の断面を有している。インターポーザ基板7とモールド封止樹脂5との界面は、溝部23の上隅と下隅とで向きが変わるため、界面で亀裂が発生しても、向きが変わる上隅と下隅で進展しにくくなり、亀裂の進展を抑止できる。溝部23の下隅(底端部)の角度を90度とした時に最も効果が大きい。
【0052】
図5(c)は、図5(b)に示した三角形の断面を有する溝部23が、モールド封止樹脂5中に含まれる無機質フィラー24の粒子が侵入可能な寸法に形成されていることを示す。フィラー24も溝部23内に侵入することで、溝部23内のモールド樹脂部5の剛性が高くなり、剥離に対する抵抗が増大する。図5(a)に示したような矩形の断面を有する溝部22であっても同様の効果が得られるのは言うまでもない。
【0053】
図6は溝部およびその周辺の詳細構造を示す。
図6(a)においては、図5(a)に示したような矩形の断面を有する溝部22の内面とその周囲のインターポーザ基板7の表面に、微細な凹凸部25が形成されている。
【0054】
図6(b)においては、図5(b)に示したような三角形の断面を有する溝部23の内面とその周囲のインターポーザ基板7の表面に、微細な凹凸部26が形成されている。
【0055】
これら図6(a),図6(b)に示した微細な凹凸部25,26は、モールド封止樹脂5中に含まれるフィラーの粒子よりも小さく形成されている。このため、凹凸部25,26にモールド封止樹脂5の樹脂成分が入り込み、インターポーザ基板7,モールド封止樹脂5の表面の密着性そのものが増大する。
【0056】
凹凸部25,26を形成する方法としては、インターポーザ基板7の表面をサンドブラストなどで微細に荒らす方法や、プラズマを照射する方法などがある。後者の方法では、インターポーザ基板7の表面の油脂などを取り除き、且つ化学的に表面分子構造を改変させることができるので、それによる密着性向上効果もある。
【0057】
インターポーザ基板7とモールド封止樹脂5との接合面を凹凸状にするには、上述したように図8(a)のような溝部27をインターポーザ基板7の表面に形成してもよいし、あるいは、図8(b)に示すように、インターポーザ基板7の表面に凸条28を形成してもよい。
【0058】
なお、上記した各実施の形態においては、インターポーザ基板7上に半導体チップ1,半導体チップ12を2段に設けたものを図示して説明したが、半導体チップの段数は1段であっても、3段以上であっても同様の効果が得られる。
【0059】
また、インターポーザ基板7,半導体チップ1,半導体チップ12とも矩形のものを例示したが、球形の半導体チップなどを用いる場合も同様の効果が得られる。
【0060】
【発明の効果】
以上のように本発明によれば、インターポーザ基板と封止樹脂部との接合面を凹凸状にする溝部または凸条をインターポーザ基板に形成することにより、実装時や温度サイクル試験等の熱負荷によっても、インターポーザ基板とモールド封止樹脂との剥離を防止し、樹脂内の亀裂破壊のない信頼性の高い半導体装置を実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態のパッケージ半導体装置の(a)縦断面図、(b)A−A断面図
【図2】図1のパッケージ半導体装置を構成する基板とモールド封止樹脂との界面のストレスを説明する模式図
【図3】本発明の第2の実施形態のパッケージ半導体装置の(a)縦断面図、(b)B−B断面図
【図4】本発明の第3の実施形態のパッケージ半導体装置の(a)縦断面図、(b)C−C断面図
【図5】本発明の半導体装置に形成され基板とモールド封止樹脂との接合面を凹凸状にする溝部を示す拡大断面図
【図6】本発明の半導体装置に形成される溝部および微細な凹凸部を示す拡大断面図
【図7】図6に示した微細な凹凸部の近傍のストレスを説明する模式図
【図8】本発明の半導体装置に形成され基板とモールド封止樹脂との接合面を凹凸状にする(a)溝部および(b)凸条を示す拡大断面図
【図9】従来の周辺端子型パッケージ半導体装置の断面図
【図10】従来のエリアアレイ型パッケージ半導体装置の断面図
【図11】従来の他のエリアアレイ型パッケージ半導体装置の断面図
【図12】従来のさらに他のエリアアレイ型パッケージ半導体装置の断面図
【図13】半導体チップ、モールド封止樹脂、インターポーザ基板を互いに引き剥がそうとするストレスを説明する模式図
【符号の説明】
1 半導体チップ
5 モールド封止樹脂
7 インターポーザ基板
9 チップ実装配線ランド
10 半田ボール電極端子
11 バンプ
12 半導体チップ
16,17,18,19,20,21,22,23 溝部
24 フィラー
25,26 微細な凹凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for mounting a semiconductor element that enables a higher density mounting of a large number of wiring connections, and in particular, an area that facilitates high functionality and downsizing of information communication equipment, office electronic equipment, and the like. In a semiconductor device arranged in an array, the present invention relates to a package configuration that stably secures electrical connection reliability of a semiconductor element by resin sealing that protects an integrated circuit portion of the semiconductor.
[0002]
[Prior art]
FIG. 9 shows a conventional peripheral terminal type package semiconductor device using a lead frame.
[0003]
A semiconductor element 1 (hereinafter referred to as a semiconductor chip 1) is formed by forming electrode terminal pads (not shown) at a fine pitch on the surface of a substrate made of a silicon material, and an adhesive paste on a base 2 of a metal lead frame. And fixed with an adhesive tape and electrically connected to the peripheral leads 4 with bonding wires 3 such as gold wires. The periphery of the semiconductor chip 1 and the bonding wire 3 is covered with a mold sealing resin 5 such as a thermosetting epoxy resin in order to protect the semiconductor chip 1, the bonding wire 3, and the connection portion.
[0004]
However, package semiconductor devices generally suffer from deformation and thermal stress caused by differences in the thermal expansion coefficient of each member, such as in a mold resin sealing process at the time of manufacture and a process of automatically soldering to a mother circuit board of an electronic device after manufacture. May result in destruction of the device. Even if it does not break down at once, the characteristics of the apparatus may deteriorate due to repeated temperature loads.
[0005]
Conventionally, several problems have been raised and countermeasures have been taken for peeling between the semiconductor chip 1 and the mold sealing resin 5.
For example, in the peripheral terminal type package semiconductor device as described above, damage due to stress in the surface direction based on the difference in thermal expansion coefficient between the semiconductor chip 1 and the mold sealing resin 5, or the semiconductor chip 1 and the mold sealing resin 5 It has been pointed out that the moisture that penetrates and accumulates at the interface of the water evaporates with heat and causes a “water vapor explosion”, which may cause delamination.
[0006]
As a countermeasure against this, for example, as shown in the drawing, a proposal has been made to make the entire thin protective film 6 that resin-coats the surface of the semiconductor chip 1 on the wiring connection side to have an uneven shape (see, for example, Patent Documents 1 and 2).
[0007]
In addition, a conductor film disposed on the insulating film of the rectangular semiconductor chip 1 is formed on the insulating film so as to have a refracting portion at the corner of the semiconductor chip 1 and extend along two sides sandwiching the corner. A proposal has been made to form such as to have irregularities along a large number of long grooves (see, for example, Patent Document 3).
[0008]
All of these prevent peeling of the semiconductor substrate made of silicon or the like and the mold sealing resin by absorbing thermal stress at the uneven portions.
In recent years, along with miniaturization of electronic equipment, miniaturization of semiconductor devices has been accelerated, and in order to satisfy the increase in the number of connection terminals required and the miniaturization of wiring pitch, the peripheral terminal type as described above The package has shifted to an area array type package in which circular electrode lands are arranged on the entire back surface of the semiconductor device.
[0009]
10, 11 and 12 each show a cross-sectional structure of an area array type package semiconductor device.
FIG. 10 shows a package semiconductor device in which a semiconductor chip is mounted on an interposer substrate by a wire bonding method.
[0010]
The semiconductor chip 1 is sealed and fixed on the interposer substrate 7 with an underfill resin 8, and terminals (not shown) on the semiconductor chip 1 are electrically connected to chip mounting wiring lands 9 on the interposer substrate 7 by bonding wires 3. It is connected to the. The entire semiconductor chip 1 and bonding wire 3 on the interposer substrate 7 are covered and sealed with a mold sealing resin 5. The interposer substrate 7 is multi-layered, and solder ball electrode terminals 10 are formed on the surface opposite to the chip mounting surface. The underfill resin 8 is used for the flip chip portion.
[0011]
FIG. 11 shows a package semiconductor device in which a semiconductor chip is flip-chip mounted on an interposer substrate.
A semiconductor chip 1 on which bumps 11 such as gold as electrode terminal pads are formed is electrically connected to an interposer substrate 7 by bumps 11 and chip mounting wiring lands 9 and sealed and fixed by an underfill resin 8. The entire semiconductor chip 1 on the interposer substrate 7 is covered and sealed with the mold sealing resin 5.
[0012]
FIG. 12 shows a package semiconductor device in which two semiconductor chips are stacked and flip-chip mounted and wire bonded mounted on an interposer substrate. It is a stack configuration that realizes low-cost and high-density circuits.
[0013]
The first semiconductor chip 1 on which the bumps 11 are formed is electrically connected to the interposer substrate 7 by the bumps 11 and the chip mounting wiring lands 9 and sealed and fixed by the underfill resin 8. The second semiconductor chip 12 is bonded to the first semiconductor chip 1 with a chip adhesive 13, and terminals (not shown) on the second semiconductor chip 12 are connected to chip mounting wiring lands 9 on the interposer substrate 7. They are electrically connected by a bonding wire 3. The entire first semiconductor chip 1, second semiconductor chip 12, and bonding wire 3 on the interposer substrate 7 are covered and sealed with a mold sealing resin 5.
[0014]
[Patent Document 1]
JP-A-6-177285
[Patent Document 2]
Japanese Patent Laid-Open No. 6-163755 [0016]
[Patent Document 3]
JP-A-5-175198 [0017]
[Problems to be solved by the invention]
However, in the area array type package semiconductor device which has been increasing in recent years, there is a problem of peeling between the semiconductor chip 1 (and the semiconductor chip 12) and the mold sealing resin 5 as in the conventional peripheral terminal type package semiconductor device. In addition to this, there is a new problem of stress destruction at the interface between the interposer substrate 7 and the mold sealing resin 5.
[0018]
That is, in the structure of the peripheral terminal type package semiconductor device, the semiconductor chip 1 mainly composed of a hard silicon material having a low coefficient of thermal expansion can be covered with five layers of mold sealing resin having the same thickness on the upper and lower surfaces. Therefore, even if the temperature changes, warpage deformation of the entire semiconductor device hardly occurs, and stress does not concentrate on the externally exposed portion during warpage deformation.
[0019]
On the other hand, the structure of the area array type package semiconductor device has an asymmetric structure in which the mold sealing resin 5 and the interposer substrate 7 made of different materials are placed on top of each other and sandwich the semiconductor chip 1 (and the semiconductor chip 12). Therefore, warpage deformation of the entire semiconductor device occurs due to the thermal expansion difference between the mold sealing resin 5 and the interposer substrate 7.
[0020]
Therefore, in addition to the conventional stresses f1 and f2 in the direction of the boundary surface as shown in FIGS. 13A and 13B, the semiconductor chip 1 (and the semiconductor chip 12) and the mold sealing resin 5 are to be peeled off. A stress f3 that causes the boundary between the mold sealing resin 5 and the interposer substrate 7 to peel off is generated.
[0021]
In addition, since the boundary portion between the mold sealing resin 5 and the interposer substrate 7 is exposed to the outside, there is much water intrusion from the exposed boundary portion. In addition, as shown in FIG. 13C, the internal stress expands and concentrates on the outer peripheral side at the boundary portion.
[0022]
As a result, the crack 14 is likely to occur at the outer peripheral edge of the boundary portion. Once the crack 14 is generated, the crack 14 further develops due to a stress repeatedly generated due to a temperature variation or the like. Then, the apparatus is destroyed, that is, peeling at the boundary between the mold sealing resin 5 and the interposer substrate 7.
[0023]
The present invention solves the above-described problem. A highly reliable area array type semiconductor that can prevent the mold sealing resin and the interposer substrate from being peeled off even by a thermal shock during mounting or the like, and can prevent destruction in the resin. The object is to provide an apparatus.
[0024]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides at least one semiconductor element having a circuit wiring layer, an interposer substrate having a wiring layer connected to the semiconductor element, and electrically connected to the interposer substrate. In a semiconductor device having a sealing resin covering the semiconductor element, a surface of the interposer substrate having the wiring layer is covered with the sealing resin up to an end thereof, and the interposer substrate and the sealing resin the bonding surface to uneven and, characterized by forming with a curve shape surrounding the semiconductor element at least in the vicinity corner of the interns interposer substrate, an annular groove or ridge having a discontinuous portion on the interposer substrate And Here, the ridge refers to a convex shape that is long in the direction along the substrate surface. Thereby, the bonding area between the interposer substrate and the sealing resin portion increases, and resistance to stress in the direction along the substrate surface and separation stress in the substrate thickness direction can be increased.
[0025]
Preferably, the groove or the protrusion has at least a part of an arc extending in a direction surrounding the semiconductor element. A single arc portion may be arranged, or a plurality of arc portions may be arranged at an appropriate interval, or may be arranged as a ring shape.
[0026]
More preferably, the groove or the ridge is arranged along the circumferential direction with respect to the central axis of the apparatus.
Concentration of thermal stress at the interface between the interposer substrate and the sealing resin occurs due to the difference in the amount of thermal expansion in the radial direction from the central axis of the device toward the outer periphery, based on the difference in linear expansion coefficient between the two. Therefore, the thermal stress is maximized in the vicinity of the outer peripheral portion, and the internal stress is in the reverse radiation direction from the outer peripheral portion toward the central axis.
[0027]
As described above, the grooves or ridges arranged along the circumferential direction with respect to the central axis of the device extend in a direction perpendicular to the radial direction and the reverse radiation direction, and therefore, are subject to stress in the radial direction and the reverse radiation direction. It exhibits a double delamination suppressing effect that increases the resistance and prevents delamination and a crack progress deterrent effect that stops the spread of cracks even when fine delamination occurs.
[0028]
Preferably, the groove or the ridge is arranged linearly in the direction along the outer periphery of the apparatus, and is arranged along the circumferential direction with respect to the apparatus central axis in the vicinity of at least one apparatus corner.
[0029]
In a polygonal semiconductor device such as a rectangle, the maximum point of stress in the radiation direction and reverse radiation direction is always the corner. The straight part of the outer peripheral edge of the apparatus is lower in stress than the corner part and does not become a peeling point. For this reason, in the vicinity of the device corner, by arranging the groove or ridge along the circumferential direction with respect to the center axis of the device, that is, by arranging in the direction orthogonal to the radiation direction / reverse radiation direction, Increases resistance to radial stress and stops the spread of cracks even when fine delamination occurs. In the parts other than the vicinity of the device corner portion, the central portion is arranged by linearly arranging the grooves or ridges in the direction along the outer periphery of the device in the vicinity of the outer peripheral edge of the device, with a focus on suppressing the expansion of crack propagation. Compared with, it increases the adhesion at the outer periphery where stress is high.
[0030]
As for a groove part or a protruding item | line, it is desirable for a cross section to be a rectangle. According to this, even when a stress occurs in a direction that pulls the interposer substrate and the sealing resin portion apart and a fine crack is generated along the interface, the interface direction is changed at the upper and lower corners of the groove or protrusion. Since it suddenly changes by 90 degrees, the spread and expansion to the crack stops. In the absence of such grooves and ridges, the cracks will expand along the interface.
[0031]
It is desirable that the cross section of the groove or the ridge is triangular. According to this, even when a fine crack enters along the interface between the interposer substrate and the sealing resin portion, the interface direction changes abruptly at the groove or the corner of the ridge, so that the spread and expansion to the crack stops. . This effect is particularly great when the angle of the bottom of the groove and the top of the ridge is 90 degrees.
[0032]
It is desirable to form the groove or the ridge so that each particle of the filler contained in the sealing resin enters the groove or the groove formed between the plurality of ridges. When the filler enters the groove, the rigidity of the sealing resin in the groove is increased, and the resistance to peeling increases.
[0033]
It is desirable to form finer uneven portions on the interposer substrate. Due to the fine irregularities, the adhesion at the joint surface is enhanced, and the occurrence of initial cracks due to the shear stress generated by the difference in thermal expansion can be suppressed.
[0034]
It is desirable to form the fine irregularities so as to prevent the filler particles contained in the sealing resin from entering. By preventing the filler from entering, micro surface adhesion can be secured. Therefore, the grooves and the ridges exhibit the anchor effect and the crack growth inhibiting effect, and the fine uneven portions increase the adhesion itself at the joint surface, and the resistance to peeling is high.
[0035]
Each of the above-described configurations is particularly desirable when the interposer substrate is a ceramic substrate. Since the ceramic substrate has a particularly large linear expansion coefficient and high rigidity (Young's modulus), the stress (= Young's modulus x strain) generated between the sealing resin, which is the resin main component, is large. A big effect is acquired by each composition. However, as a matter of course, the same effect can be obtained with an interposer substrate made of a material other than ceramic.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a cross-sectional view showing the structure of the package semiconductor device according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA of the package semiconductor device. Since this package semiconductor device has substantially the same configuration as the conventional area array type package semiconductor device described above with reference to FIG. 12, the same reference numerals as those in FIG. explain.
[0037]
As shown in FIG. 1A, the first semiconductor chip 1 on which bumps 11 such as gold and solder are formed is electrically connected to an interposer substrate 7 such as a ceramic material by bumps 11 and chip mounting wiring lands 9. Are bonded and fixed with an underfill resin 8 for the flip chip portion. The interposer substrate 7 has solder ball electrode terminals 10 on the surface opposite to the chip mounting surface.
[0038]
The second semiconductor chip 12 is bonded to the semiconductor chip 1 with a chip adhesive 13, and a terminal (not shown) on the semiconductor chip 12 is connected to the chip mounting wiring land 9 on the interposer substrate 7 such as gold. They are electrically connected by a wire bonding method using a bonding wire 3.
[0039]
The entire semiconductor chip 1, semiconductor chip 12, and bonding wire 3 on the interposer substrate 7 are sealed by a transfer molding method or the like using a mold sealing resin 5 such as an epoxy resin for the purpose of protection from external influences. Has been. The first semiconductor chip 1, the second semiconductor chip 12, and the interposer substrate 7 are also rectangular.
[0040]
This package semiconductor device is different from the conventional one as shown in FIG. 1B. As shown in FIG. 1B, the groove portions 16 and 17 that make the joint surface between the interposer substrate 7 and the mold sealing resin 5 uneven are formed by the interposer substrate. 7 is formed. The groove portions 16 and 17 are filled with the mold sealing resin 6.
[0041]
The groove portion 16 is arranged in an arc shape along the circumferential direction with respect to the apparatus central axis (usually coincident with the central axis of the interposer substrate 7) at the corner portion 7 a of the interposer substrate 7. The groove portion 17 is disposed inside the groove portion 16 in a ring shape along the circumferential direction with respect to the central axis of the apparatus.
[0042]
Due to the presence of these grooves 16 and 17, the bonding area between the interposer substrate 7 and the mold sealing resin 5 is increased as compared with the flat bonding surface structure, the stress in the direction along the surface of the interposer substrate 7, and the substrate Resistance to separation stress in the thickness direction can be increased.
[0043]
Moreover, since the grooves 16 and 17 arranged along the circumferential direction with respect to the device central axis extend in a direction orthogonal to the radial direction and the reverse radiation direction with respect to the device central axis, as shown in FIG. The double effect of an anchor effect that increases resistance to directional stress (arrows f1 and f2, respectively) and prevents delamination, and a crack progress suppression effect that prevents the spread of cracks to progress even if fine delamination 15 occurs Demonstrates peeling suppression effect.
[0044]
When the interposer substrate 7 is made of a material having high rigidity such as the above-described ceramic material and the thermal expansion difference from the mold sealing resin 5 is large, the generated stress becomes particularly large. Becomes prominent.
[0045]
FIG. 3A is a cross-sectional view showing the structure of the package semiconductor device according to the second embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along the line BB of the package semiconductor device.
This package semiconductor device is different from that of the first embodiment in that the bonding surface with the mold sealing resin 5 is made uneven on the rectangular interposer substrate 7 in which the rectangular semiconductor chip 1 is arranged in the center. The square frame-shaped groove 18 is formed.
[0046]
Specifically, the groove portion 18 is formed in a circumferential direction with respect to the central axis of the substrate in the vicinity of the linear portion 18a linearly arranged in the direction along the outer periphery of the interposer substrate 7 and the four corner portions 7a of the interposer substrate 7. And a bent portion 18b arranged along the line. The outer periphery and the central axis of the interposer substrate 7 coincide with the outer periphery of the apparatus and the central axis of the apparatus.
[0047]
As described above, in the semiconductor device constituted by the rectangular semiconductor chip 1 and the interposer substrate 7, the corner portion 7a, which is the maximum point of the stress in the radiation direction / reverse radiation direction, has a direction orthogonal to the radiation direction / reverse radiation direction. Since the bent portion 18b is arranged, similarly to the first embodiment, the resistance to the stress in the radial direction and the reverse radiation direction is increased, and even when fine peeling occurs, the expansion of the crack is prevented. Can do. Except for the corner portion 7a, the linear portion 18a along the outer periphery of the substrate is disposed at the peripheral portion, so that the adhesion at the outer peripheral portion with higher stress can be enhanced.
[0048]
FIG. 4A is a cross-sectional view showing the structure of the package semiconductor device according to the third embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along the line CC of the package semiconductor device.
This package semiconductor device is substantially the same as that of the second embodiment, but the bonding surface with the mold sealing resin 5 is uneven on the rectangular interposer substrate 7 in which the rectangular semiconductor chip 1 is arranged in the center. The difference is that three rectangular frame-shaped groove portions 19, 20, and 21 are formed concentrically.
[0049]
The groove portions 19, 20, and 21 have curved portions 19a, 20a, and 21a and straight portions 19b, 20b, and 21b, respectively, similarly to the groove portion 18 of the second embodiment. Since the three groove portions 19, 20, and 21 are formed over a wide range, the adhesion at the outer peripheral portion is enhanced.
[0050]
FIG. 5 shows the cross-sectional shape of the groove.
In FIG. 5A, the groove 22 formed in the interposer substrate 7 has a rectangular cross section. Since the interface between the interposer substrate 7 and the mold sealing resin 5 changes in direction by 90 degrees between the upper corner and the lower corner of the groove 22, even if a crack occurs at the interface, it becomes difficult to propagate at these upper and lower corners. Crack growth can be suppressed.
[0051]
In FIG.5 (b), the groove part 23 formed in the interposer substrate 7 has a triangular cross section. The direction of the interface between the interposer substrate 7 and the mold sealing resin 5 changes between the upper corner and the lower corner of the groove 23. Therefore, even if a crack occurs at the interface, it becomes difficult to propagate at the upper corner and the lower corner where the orientation changes. Crack growth can be suppressed. The effect is greatest when the angle of the lower corner (bottom end) of the groove 23 is 90 degrees.
[0052]
FIG. 5C shows that the groove 23 having the triangular cross section shown in FIG. 5B is formed to have a size that allows the particles of the inorganic filler 24 contained in the mold sealing resin 5 to enter. Show. Since the filler 24 also enters the groove 23, the rigidity of the mold resin part 5 in the groove 23 increases, and the resistance to peeling increases. It goes without saying that the same effect can be obtained even with the groove portion 22 having a rectangular cross section as shown in FIG.
[0053]
FIG. 6 shows the detailed structure of the groove portion and its periphery.
In FIG. 6A, fine uneven portions 25 are formed on the inner surface of the groove portion 22 having a rectangular cross section as shown in FIG. 5A and the surface of the surrounding interposer substrate 7.
[0054]
In FIG. 6B, fine uneven portions 26 are formed on the inner surface of the groove 23 having a triangular cross section as shown in FIG. 5B and the surface of the surrounding interposer substrate 7.
[0055]
The fine uneven portions 25 and 26 shown in FIGS. 6A and 6B are formed smaller than the filler particles contained in the mold sealing resin 5. For this reason, the resin component of the mold sealing resin 5 enters the concavo-convex portions 25 and 26, and the adhesion itself between the surfaces of the interposer substrate 7 and the mold sealing resin 5 increases.
[0056]
As a method for forming the uneven portions 25 and 26, there are a method of finely roughening the surface of the interposer substrate 7 by sandblasting, a method of irradiating plasma, and the like. In the latter method, since the oil and fat on the surface of the interposer substrate 7 can be removed and the surface molecular structure can be chemically modified, there is also an effect of improving adhesion.
[0057]
In order to make the bonding surface between the interposer substrate 7 and the mold sealing resin 5 uneven, a groove 27 as shown in FIG. 8A may be formed on the surface of the interposer substrate 7 as described above, or As shown in FIG. 8 (b), a ridge 28 may be formed on the surface of the interposer substrate 7.
[0058]
In each of the above-described embodiments, the semiconductor chip 1 and the semiconductor chip 12 provided in two stages on the interposer substrate 7 are illustrated and described. However, even if the number of semiconductor chip stages is one, Similar effects can be obtained even with three or more stages.
[0059]
In addition, the interposer substrate 7, the semiconductor chip 1, and the semiconductor chip 12 are illustrated as rectangular, but the same effect can be obtained when a spherical semiconductor chip or the like is used.
[0060]
【The invention's effect】
As described above, according to the present invention, by forming grooves or ridges on the interposer substrate that make the joint surface between the interposer substrate and the sealing resin portion concavo-convex, due to thermal load during mounting or temperature cycle test, etc. In addition, the interposer substrate and the mold sealing resin can be prevented from being peeled off, and a highly reliable semiconductor device free from crack destruction in the resin can be realized.
[Brief description of the drawings]
1A is a longitudinal cross-sectional view of a package semiconductor device according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA. FIG. FIG. 3 is a schematic diagram for explaining a stress at an interface with a resin. FIG. 3A is a longitudinal sectional view of a package semiconductor device according to a second embodiment of the present invention, and FIG. FIG. 5A is a longitudinal cross-sectional view of a package semiconductor device according to a third embodiment, and FIG. 5B is a cross-sectional view taken along CC. FIG. 5 is an uneven surface formed on the semiconductor device of the present invention. FIG. 6 is an enlarged cross-sectional view showing a groove and a fine uneven portion formed in the semiconductor device of the present invention. FIG. 7 is a stress in the vicinity of the fine uneven portion shown in FIG. FIG. 8 is a schematic diagram for explaining the substrate and mold sealing resin formed in the semiconductor device of the present invention. FIG. 9 is a cross-sectional view of a conventional peripheral terminal type package semiconductor device. FIG. 10 is a cross-sectional view of a conventional peripheral terminal type package semiconductor device. 11 is a cross-sectional view of another conventional area array type package semiconductor device. FIG. 12 is a cross-sectional view of still another conventional area array type package semiconductor device. FIG. 13 is a semiconductor chip, a mold sealing resin, and an interposer. Schematic diagram explaining the stress of trying to peel off the substrates from each other 【Explanation of symbols】
1 Semiconductor chip 5 Mold sealing resin 7 Interposer substrate 9 Chip mounting wiring land
10 Solder ball electrode terminal
11 Bump
12 Semiconductor chip
16,17,18,19,20,21,22,23 Groove
24 filler
25,26 Fine irregularities

Claims (10)

回路配線層を有した少なくとも1つの半導体素子と、前記半導体素子と接続する配線層を有したインターポーザ基板と、前記インターポーザ基板上に電気的に接続された前記半導体素子を覆う封止樹脂とを有した半導体装置において、
前記インターポーザ基板の前記配線層を有した面は、その端部まで前記封止樹脂によって覆われており、前記インターポーザ基板と封止樹脂との接合面を凸凹状にし、少なくとも前記インタポーザ基板のコーナー部付近で前記半導体素子を囲む曲線形状を有する、不連続部分を有する環状の溝部または凸条をインターポーザ基板に形成した半導体装置。
At least one semiconductor element having a circuit wiring layer; an interposer substrate having a wiring layer connected to the semiconductor element; and a sealing resin covering the semiconductor element electrically connected to the interposer substrate. In the semiconductor device
Surface having the wiring layers of the interposer substrate are covered with the sealing resin to its end, to the joint surface between the interposer substrate and the sealing resin in uneven, at least the interns interposer substrate A semiconductor device in which an annular groove or ridge having a discontinuous portion having a curved shape surrounding the semiconductor element in the vicinity of a corner is formed on an interposer substrate.
溝部または凸条は、装置中心軸に対する周方向に沿って配置した請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the groove or the protrusion is arranged along a circumferential direction with respect to the central axis of the device. 溝部または凸条を、装置外周に沿う方向に直線状に配置するとともに、少なくとも1つの装置コーナー部の近傍では装置中心軸に対する周方向に沿って配置した請求項1または請求項2のいずれかに記載の半導体装置。  The groove portion or the ridge is arranged linearly in a direction along the outer periphery of the device, and arranged along the circumferential direction with respect to the device central axis in the vicinity of at least one device corner portion. The semiconductor device described. 溝部または凸条は断面が矩形である請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the groove or the protrusion has a rectangular cross section. 溝部または凸条は断面が三角形である請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the groove or the protrusion has a triangular cross section. 溝部または凸条は、前記溝部内あるいは複数の前記凸条間に形成される溝部内に封止樹脂中に含まれるフィラーの各粒が侵入する寸法に形成した請求項1記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the groove or the ridge is formed to have a size such that each particle of filler contained in the sealing resin enters the groove or the groove formed between the plurality of ridges. インターポーザ基板にさらに微細な凹凸部を形成した請求項6記載の半導体装置。  The semiconductor device according to claim 6, wherein finer uneven portions are formed on the interposer substrate. 微細な凹凸部は、封止樹脂中に含まれるフィラーの各粒が侵入しない寸法に形成した請求項7記載の半導体装置。  The semiconductor device according to claim 7, wherein the fine uneven portion is formed to have a size such that each particle of the filler contained in the sealing resin does not enter. インターポーザ基板がセラミック製基板である請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the interposer substrate is a ceramic substrate. さらなる溝部または凸条、全周に亘って閉じた環状に形成した請求項1から請求項3のいずれかに記載の半導体装置。The semiconductor device according to any one of claims 1 to 3, wherein the further groove or ridge is formed in an annular shape that is closed over the entire circumference.
JP2003174153A 2003-06-19 2003-06-19 Semiconductor device Expired - Lifetime JP4197140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174153A JP4197140B2 (en) 2003-06-19 2003-06-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174153A JP4197140B2 (en) 2003-06-19 2003-06-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005011978A JP2005011978A (en) 2005-01-13
JP4197140B2 true JP4197140B2 (en) 2008-12-17

Family

ID=34097715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174153A Expired - Lifetime JP4197140B2 (en) 2003-06-19 2003-06-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4197140B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565931B2 (en) * 2004-08-25 2010-10-20 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2007103737A (en) * 2005-10-05 2007-04-19 Sharp Corp Semiconductor device
US7687897B2 (en) * 2006-12-28 2010-03-30 Stats Chippac Ltd. Mountable integrated circuit package-in-package system with adhesive spacing structures
JP5164213B2 (en) * 2008-10-27 2013-03-21 Necトーキン株式会社 Solid electrolytic capacitor
JP2014001969A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal type flowmeter
DE102013217888A1 (en) * 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Electronic device and method for manufacturing an electronic device
JP6041435B2 (en) * 2013-01-31 2016-12-07 タカタ株式会社 Tongue and seat belt device using the same
WO2014122892A1 (en) * 2013-02-06 2014-08-14 三菱電機株式会社 Semiconductor module
JP6536992B2 (en) * 2015-03-26 2019-07-03 大口マテリアル株式会社 Lead frame, lead frame with resin, optical semiconductor device, and method for manufacturing them
JP6989763B2 (en) * 2017-08-31 2022-01-12 日亜化学工業株式会社 Manufacturing method of light emitting device
TWI665770B (en) * 2018-12-13 2019-07-11 力成科技股份有限公司 Semiconductor package and fabricating method thereof

Also Published As

Publication number Publication date
JP2005011978A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US6756685B2 (en) Semiconductor device
TWI529878B (en) Hybrid thermal interface material for ic packages with integrated heat spreader
TWI283076B (en) IC chip package structure and underfill process
KR100411811B1 (en) Semiconductor package
JP5387685B2 (en) Manufacturing method of semiconductor device
US20070164457A1 (en) Semiconductor package, substrate with conductive post, stacked type semiconductor device, manufacturing method of semiconductor package and manufacturing method of stacked type semiconductor device
KR101332866B1 (en) Semiconductor package and method for manufacturing the same
US20060249852A1 (en) Flip-chip semiconductor device
JP2008071953A (en) Semiconductor device
KR20010104217A (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
JP2005175423A (en) Semiconductor package
JP2010263192A (en) Package on package to prevent circuit pattern lift defect and method of fabricating the same
KR20020065045A (en) Semiconductor chip package comprising enhanced pads
JP6242231B2 (en) Semiconductor device and manufacturing method thereof
US9607951B2 (en) Chip package
JP4197140B2 (en) Semiconductor device
US9041180B2 (en) Semiconductor package and method of manufacturing the semiconductor package
US20100044880A1 (en) Semiconductor device and semiconductor module
KR100652549B1 (en) Polygonal, rounded and circular flip chip ball grid array board
TW200824067A (en) Stacked chip package structure and fabricating method thereof
US6737590B2 (en) Tape circuit board and semiconductor chip package including the same
JP2005286087A (en) Semiconductor device
US20050127487A1 (en) Semiconductor package with improved solder joint reliability
JP2007250916A (en) Semiconductor device and manufacturing method therefor
JP2005183836A (en) Tape carrier for semiconductor device, and semiconductor device using same tape carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4