JP2009224688A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2009224688A
JP2009224688A JP2008069728A JP2008069728A JP2009224688A JP 2009224688 A JP2009224688 A JP 2009224688A JP 2008069728 A JP2008069728 A JP 2008069728A JP 2008069728 A JP2008069728 A JP 2008069728A JP 2009224688 A JP2009224688 A JP 2009224688A
Authority
JP
Japan
Prior art keywords
electrode plate
anode
substrate
capacitor element
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008069728A
Other languages
Japanese (ja)
Inventor
Yoshiki Fujita
善岐 藤田
Koji Sakata
幸治 坂田
Takeshi Saito
猛 斎藤
Takeo Kasuga
健男 春日
Takashi Mizukoshi
崇 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008069728A priority Critical patent/JP2009224688A/en
Publication of JP2009224688A publication Critical patent/JP2009224688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-quality solid electrolytic capacitor which is compact and improves performance and environmental resistance. <P>SOLUTION: A solid electrolytic capacitor is formed so that a cathode electrode plate 11a and an anode electrode plate 11b on a substrate 1 are positioned inside an outer circumferential part of a capacitor element 2, namely, so that projection parts, with respect to the substrate 1, of the cathode electrode plate 11a and the anode electrode plate 11b when watched from an upper surface of the substrate 1 are included in a projection part of the capacitor element 2. Meanwhile, if the projection parts of the cathode electrode plate 11a and the anode electrode plate 11b are not included but are protruded from the projection part of the capacitor element 2 partially, namely, they extend outside from the outer circumferential part, the extending parts are covered with insulating resins 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、基板とコンデンサ素子を備えた、基板実装面に直接引き出された電極を有する下面電極型の固体電解コンデンサに関する。   The present invention relates to a bottom electrode type solid electrolytic capacitor including a substrate and a capacitor element and having an electrode directly drawn on a substrate mounting surface.

近年、各種電子機器の小型化、薄型化に伴い、固体電解コンデンサでも高密度実装が可能で、陽極端子と陰極端子が本体の下面に位置する、いわゆる下面電極型で、耐環境性を向上させるため周囲を外装樹脂で封止し、弁作用金属としてアルミニウム、タンタル、ニオブなどを用いて小型、大容量化を図り、周波数特性を高めた固体電解コンデンサが多く使用されている。   In recent years, with the downsizing and thinning of various electronic devices, solid electrolytic capacitors can be mounted at high density, and the so-called bottom electrode type, in which the anode and cathode terminals are located on the bottom surface of the main body, improves environmental resistance. For this reason, solid electrolytic capacitors are often used that are sealed with exterior resin and are made small, large capacity, and have improved frequency characteristics by using aluminum, tantalum, niobium or the like as a valve action metal.

図3は、従来の固体電解コンデンサ(比較例)におけるコンデンサ素子と電極板の位置関係を示す図で、図3(a)は断面摸式図を、図3(b)は上面透過図をそれぞれ示す。   3A and 3B are diagrams showing the positional relationship between the capacitor element and the electrode plate in a conventional solid electrolytic capacitor (comparative example). FIG. 3A is a schematic cross-sectional view, and FIG. Show.

図3(a)に示すように、固体電解コンデンサは、基板1上にコンデンサ素子2を実装し、その後前記コンデンサ素子の外周部を外装樹脂18で封止した構造である。   As shown in FIG. 3A, the solid electrolytic capacitor has a structure in which the capacitor element 2 is mounted on the substrate 1 and then the outer peripheral portion of the capacitor element is sealed with an exterior resin 18.

コンデンサ素子2は、弁作用金属3の片側一部からなるコンデンサ素子陽極部15と、前記コンデンサ素子陽極部15を除く部分に、前記弁作用金属3の酸化皮膜である第1の誘電体層4aと第2の誘電体層4b、固体電解質である第1の導電性高分子層5aと第2の導電性高分子層5b、第1のグラファイト層6aと第2のグラファイト層6b、銀7をそれぞれ前記弁作用金属3を上下面から挟むように順次積層し、最外層の銀7をコンデンサ素子陰極部14とした構造である。
また、コンデンサ素子陽極部15とコンデンサ素子陰極部14の間には、両極間の絶縁性確保のためレジスト帯8を形成し、更に前記コンデンサ素子陽極部15の下面、すなわち実装面側には導電性のリードフレーム9を接合している。
The capacitor element 2 includes a capacitor element anode portion 15 formed of a part of one side of the valve action metal 3, and a first dielectric layer 4a which is an oxide film of the valve action metal 3 on a portion excluding the capacitor element anode portion 15. And the second dielectric layer 4b, the first conductive polymer layer 5a and the second conductive polymer layer 5b, which are solid electrolytes, the first graphite layer 6a and the second graphite layer 6b, and silver 7. The valve metal 3 is sequentially laminated so as to sandwich the valve metal 3 from above and below, and the outermost silver 7 is used as the capacitor element cathode portion 14.
Further, a resist band 8 is formed between the capacitor element anode portion 15 and the capacitor element cathode portion 14 in order to ensure insulation between the two electrodes, and further, a conductive layer is formed on the lower surface of the capacitor element anode portion 15, that is, on the mounting surface side. The lead frame 9 is bonded.

一方、基板1の上面には、前記リードフレーム9とコンデンサ素子陰極部14の下面側にそれぞれ対向するように、陽極電極板11bと陰極電極板11aを形成し、下面には前記陽極電極板11bと第2の貫通ビア12bを介して接続する外部陽極端子13bと、前記陰極電極板11aと第1の貫通ビア12aを介して接続する外部陰極端子13aを形成している。   On the other hand, an anode electrode plate 11b and a cathode electrode plate 11a are formed on the upper surface of the substrate 1 so as to face the lower surfaces of the lead frame 9 and the capacitor element cathode portion 14, respectively, and the anode electrode plate 11b is formed on the lower surface. And an external anode terminal 13b connected via the second through via 12b and an external cathode terminal 13a connected to the cathode electrode plate 11a via the first through via 12a.

そして、導電性接着剤10を介して前記リードフレーム9と前記陽極電極板11bが、一方、前記コンデンサ素子陰極部14の下面側と前記陰極電極板11aが、それぞれ接続されて、最終的に、コンデンサ素子2の外周部を外装樹脂18で封止している。このような固体電解コンデンサは、例えば特許文献1に開示されている。   And, via the conductive adhesive 10, the lead frame 9 and the anode electrode plate 11b, while the lower surface side of the capacitor element cathode portion 14 and the cathode electrode plate 11a are respectively connected, finally, The outer periphery of the capacitor element 2 is sealed with an exterior resin 18. Such a solid electrolytic capacitor is disclosed in Patent Document 1, for example.

特開2002−110458号公報JP 2002-110458 A

なお、図3(b)のようにコンデンサ素子2と、基板1上の陽極電極板11bと陰極電極板11aとの接合状態の視認性の理由から、上面から見た場合にコンデンサ素子2の基板1に対する投影部から陽極電極板11bと陰極電極板11aの各々の投影部がはみ出しており、このように形成されるのが一般的であった。
すなわち、前記陽極電極板11bと前記陰極電極板11aは、コンデンサ素子2の外周端より外側に延在して形成されており、電極板露出部16が存在する。
As shown in FIG. 3B, the substrate of the capacitor element 2 when viewed from the upper surface for the reason of visibility of the bonding state between the capacitor element 2 and the anode electrode plate 11b and the cathode electrode plate 11a on the substrate 1. The projected portions of the anode electrode plate 11b and the cathode electrode plate 11a protrude from the projected portion for 1 and are generally formed in this way.
That is, the anode electrode plate 11 b and the cathode electrode plate 11 a are formed to extend outward from the outer peripheral end of the capacitor element 2, and the electrode plate exposed portion 16 exists.

このような配置方法では、大容量化を目的として、固体電解コンデンサの外形寸法を変えずにコンデンサ素子を大きくすると外装樹脂の肉厚も薄くなり、外装樹脂が電極板と接する面積の方が、基板上の電極板の外周部に配されたレジスト層などの絶縁樹脂層と接する面積に比べ大きくなるので、外装樹脂と基板との接合強度が低下し外装樹脂が剥離、欠落などして内部の電極部が露出して酸化、電食等により製品品質、特に耐環境性を悪化させるという欠点があり、大容量化の阻害となっていた。   In such an arrangement method, for the purpose of increasing the capacity, if the capacitor element is enlarged without changing the external dimensions of the solid electrolytic capacitor, the thickness of the exterior resin is reduced, and the area where the exterior resin is in contact with the electrode plate is Since it is larger than the area in contact with the insulating resin layer such as a resist layer disposed on the outer periphery of the electrode plate on the substrate, the bonding strength between the exterior resin and the substrate is reduced, and the exterior resin is peeled off and missing. The electrode portion is exposed and has the disadvantage of deteriorating product quality, particularly environmental resistance, due to oxidation, electrolytic corrosion, etc., which has hindered the increase in capacity.

本発明は、上述の課題を解決し、小型、高性能、耐環境性に優れた高品質な固体電解コンデンサの提供を目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a high-quality solid electrolytic capacitor excellent in small size, high performance, and environmental resistance.

本発明は、上記課題を解決するため、基板上の電極部はコンデンサ素子の外周部より内側、すなわち基板上面から見た時に電極板の基板に対する投影部がコンデンサ素子の投影部に内包されるように形成する、または、電極部の投影部の一部がコンデンサ素子の投影部に内包されずにはみ出している、すなわち外周部より外側に延在している場合は、その延在部を絶縁樹脂で覆うことで、コンデンサ素子を大きくしてもコンデンサ素子の外周部は、外装樹脂と前記絶縁樹脂を含む基板上の絶縁層(レジスト層)との接合部を確実に確保し、樹脂同士が強固に密着されるので外装樹脂の剥離、欠落を防止し、完全に外装樹脂で覆うことができる。   In order to solve the above-mentioned problems, the electrode portion on the substrate is included in the projection portion of the capacitor element when the electrode portion on the substrate is viewed from the inner periphery of the capacitor element, that is, when viewed from the upper surface of the substrate. If the projection part of the electrode part protrudes without being included in the projection part of the capacitor element, that is, if it extends outside the outer peripheral part, the extension part is insulated resin. Even if the capacitor element is enlarged, the outer peripheral portion of the capacitor element ensures a bonding portion between the exterior resin and the insulating layer (resist layer) on the substrate containing the insulating resin, and the resins are strong. Since it is in close contact with the outer casing, it is possible to prevent the outer casing resin from being peeled off and missing, and to completely cover the outer casing resin.

本発明によれば、基板の上面にコンデンサ素子を実装し、前記コンデンサ素子を外装樹脂で封止した固体電解コンデンサであって、前記コンデンサ素子は弁作用金属からなる陽極部と、前記陽極部の上面の一部に、順に積層した第1の誘電体層と第1の固体電解質層と第1のグラファイト層と第1の陰極部と、前記陽極部の下面の一部に、順に積層した第2の誘電体層と第2の固体電解質層と第2のグラファイト層と第2の陰極部とを備え、前記陽極部の上下面が露出する部分と前記基板との間に形成された陽極電極板と、前記基板の下面に形成された外部陽極端子は、第1の貫通ビアを介して接続されてなり、前記第2の陰極部と前記基板との間に形成された陰極電極板と、前記基板の下面に形成された外部陰極端子は、第2の貫通ビアを介して接続されてなり、前記陽極部と、前記陽極電極板と、前記陰極電極板の、各々の前記基板に対向する面を、前記基板に投影した時、前記陽極電極板と前記陰極電極板の投影部が前記陽極部の投影部に内包されてなることを特徴とする固体電解コンデンサ得られる。   According to the present invention, there is provided a solid electrolytic capacitor in which a capacitor element is mounted on an upper surface of a substrate and the capacitor element is sealed with an exterior resin. The capacitor element includes an anode portion made of a valve metal and the anode portion. A first dielectric layer, a first solid electrolyte layer, a first graphite layer, a first cathode part, and a part of the lower surface of the anode part are sequentially laminated on a part of the upper surface. An anode electrode comprising a dielectric layer, a second solid electrolyte layer, a second graphite layer, and a second cathode portion, and formed between a portion where the upper and lower surfaces of the anode portion are exposed and the substrate A cathode electrode plate formed between the second cathode portion and the substrate, the plate and an external anode terminal formed on the lower surface of the substrate being connected via a first through via; The external cathode terminal formed on the lower surface of the substrate has a second through via. When the surfaces of the anode portion, the anode electrode plate, and the cathode electrode plate that face each of the substrates are projected onto the substrate, the anode electrode plate and the cathode electrode plate The solid electrolytic capacitor is obtained in which the projection part is included in the projection part of the anode part.

本発明によれば、基板の上面にコンデンサ素子を実装し、前記コンデンサ素子を外装樹脂で封止した固体電解コンデンサであって、前記コンデンサ素子は弁作用金属からなる陽極部と、前記陽極部の上面の一部に、順に積層した第1の誘電体層と第1の固体電解質層と第1のグラファイト層と第1の陰極部と、前記陽極部の下面の一部に、順に積層した第2の誘電体層と第2の固体電解質層と第2のグラファイト層と第2の陰極部とを備え、前記陽極部の上下面が露出する部分と前記基板との間に形成された陽極電極板と、前記基板の下面に形成された外部陽極端子は、第1の貫通ビアを介して接続されてなり、前記第2の陰極部と前記基板との間に形成された陰極電極板と、前記基板の下面に形成された外部陰極端子は、第2の貫通ビアを介して接続されてなり、前記陽極部と、前記陽極電極板と、前記陰極電極板の、各々の前記基板に対向する面を、前記基板に投影した時、前記陽極電極板と前記陰極電極板の投影部が前記陽極部の投影部に内包されない場合に、前記陽極電極板または前記陰極電極板の少なくとも前記内包されない部分を絶縁樹脂で覆われてなることを特徴とする固体電解コンデンサが得られる。   According to the present invention, there is provided a solid electrolytic capacitor in which a capacitor element is mounted on an upper surface of a substrate and the capacitor element is sealed with an exterior resin. The capacitor element includes an anode portion made of a valve metal and the anode portion. A first dielectric layer, a first solid electrolyte layer, a first graphite layer, a first cathode part, and a part of the lower surface of the anode part are sequentially laminated on a part of the upper surface. An anode electrode comprising a dielectric layer, a second solid electrolyte layer, a second graphite layer, and a second cathode portion, and formed between a portion where the upper and lower surfaces of the anode portion are exposed and the substrate A cathode electrode plate formed between the second cathode portion and the substrate, the plate and an external anode terminal formed on the lower surface of the substrate being connected via a first through via; The external cathode terminal formed on the lower surface of the substrate has a second through via. When the surfaces of the anode portion, the anode electrode plate, and the cathode electrode plate that face each of the substrates are projected onto the substrate, the anode electrode plate and the cathode electrode plate When the projection part is not included in the projection part of the anode part, a solid electrolytic capacitor is obtained in which at least the part not included in the anode electrode plate or the cathode electrode plate is covered with an insulating resin. .

本発明の基板型の固体電解コンデンサは、コンデンサ素子と基板実装面の電極板との大きさ、位置関係に関して、基板上面から見た時に電極板の基板への投影部がコンデンサ素子の投影部に内包されるように形成する、あるいは電極板の投影部がコンデンサ素子の投影部に内包されず、外側に延在して形成する場合は、電極板の投影部の内包されない部分、すなわち電極板の少なくともその露出した延在部を絶縁樹脂で覆うことによって、一般に電極板と外装樹脂との密着性が悪いため、その界面に生じる空気の侵入経路を絶縁樹脂がふさぐので、基板とコンデンサ素子との外周隙間が狭くなって外装樹脂の肉厚が薄くなっても、基板をコーティングしている絶縁樹脂と強固に接着するので、外装樹脂の剥離、欠落による内部電極接合部への悪影響や耐環境性の低下を防止することができる。   In the substrate type solid electrolytic capacitor of the present invention, the projection portion of the electrode plate onto the substrate is the projection portion of the capacitor element when viewed from the upper surface of the substrate with respect to the size and positional relationship between the capacitor element and the electrode plate on the substrate mounting surface. If the electrode plate projection part is not included in the projection part of the capacitor element and is formed to extend outside, the part of the electrode plate projection part that is not included, that is, the electrode plate By covering at least the exposed extended portion with an insulating resin, the adhesion between the electrode plate and the exterior resin is generally poor, so the insulating resin blocks the air intrusion path that occurs at the interface between the substrate and the capacitor element. Even if the outer peripheral gap becomes narrow and the thickness of the exterior resin decreases, it adheres firmly to the insulating resin that coats the substrate. A decrease in impact and environmental resistance can be prevented.

また、外形寸法はそのままで、コンデンサ素子を基板の大きさに極力近づける、すなわち外装樹脂の肉厚を極力薄くすることができるので、大容量化が可能となる。   Further, since the capacitor element can be made as close as possible to the size of the substrate without changing the external dimensions, that is, the thickness of the exterior resin can be made as thin as possible, the capacity can be increased.

更に、基板上に形成した電極板の表面を金、銀、銅、ニッケルなどの金属材料でメッキ処理することで、コンデンサ素子の陽極部、陰極部との接合性を向上させ、接合強度を高めると共に、接触抵抗の小さい、すなわち等価直列抵抗(ESR)の低減化が可能となる。   Furthermore, the surface of the electrode plate formed on the substrate is plated with a metal material such as gold, silver, copper, or nickel, thereby improving the bondability between the anode and cathode of the capacitor element and increasing the bonding strength. At the same time, the contact resistance is small, that is, the equivalent series resistance (ESR) can be reduced.

本発明による実施の形態について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の固体電解コンデンサにおける基板上の電極板とコンデンサ素子との位置関係を示す図で、図1(a)は断面摸式図を、図1(b)は上面透過図をそれぞれ示す。   FIG. 1 is a diagram showing the positional relationship between an electrode plate on a substrate and a capacitor element in a solid electrolytic capacitor of the present invention. FIG. 1 (a) is a schematic sectional view, and FIG. 1 (b) is a top transmission diagram. Show.

コンデンサ素子2は、母材となる板状または箔状の弁作用金属3の片端部をコンデンサ素子陽極部15として備え、前記コンデンサ素子陽極部15の下面、すなわち実装面側の一部にリードフレーム9を接合し、合金を含むペースト状などの導電性接着剤10を介して、基板1の陽極電極板11bに電気的に接続されている。一方、前記弁作用金属3の前記コンデンサ素子陽極部15を除いた部分に、前記コンデンサ素子陽極部15と隣接してレジスト帯8などの絶縁部を挟んでコンデンサ素子陰極部14を形成している。   The capacitor element 2 includes one end portion of a plate-like or foil-like valve metal 3 serving as a base material as a capacitor element anode portion 15, and a lead frame is formed on the lower surface of the capacitor element anode portion 15, that is, a part on the mounting surface side. 9 are joined and electrically connected to the anode electrode plate 11b of the substrate 1 through a conductive adhesive 10 such as a paste containing an alloy. On the other hand, a capacitor element cathode portion 14 is formed on the portion of the valve metal 3 excluding the capacitor element anode portion 15 so as to be adjacent to the capacitor element anode portion 15 and sandwich an insulating portion such as a resist band 8. .

なお、前記弁作用金属3のコンデンサ素子陽極部15と前記レジスト帯8とを除いた残りの部分には、前記弁金属の酸化皮膜である第1の誘電体層4aと第2の誘電体層4b、固体電解質である第1の導電性高分子層5aと第2の導電性高分子層5b、第1のグラファイト層6aと第2のグラファイト層6b、前記コンデンサ素子陰極部14である銀7をそれぞれ陽極部を上下から挟むように順次積層した構造である。また、コンデンサ素子陰極部14の一部は、印刷法等の工法により基板1上に形成した陰極電極板11aと合金を含むペースト状などの導電性接着剤10を用いて電気的に接続されている。   The remaining portions of the valve metal 3 excluding the capacitor element anode portion 15 and the resist band 8 are a first dielectric layer 4a and a second dielectric layer, which are oxide films of the valve metal. 4b, first conductive polymer layer 5a and second conductive polymer layer 5b which are solid electrolytes, first graphite layer 6a and second graphite layer 6b, and silver 7 which is the capacitor element cathode portion 14 Are sequentially stacked so that the anode portions are sandwiched from above and below, respectively. A part of the capacitor element cathode portion 14 is electrically connected to the cathode electrode plate 11a formed on the substrate 1 by a printing method or the like using a conductive adhesive 10 such as a paste containing an alloy. Yes.

また、前記陰極電極板11aと前記陽極電極板11bは、基板1に貫通し、図示しない導電材で充填した第1の貫通ビア12aと第2の貫通ビア12bを介して外部陰極端子13aと外部陽極端子13bにそれぞれ接続されている。
さらに、基板1上のコンデンサ素子2の外周部を外装樹脂18で封止した構造である。
The cathode electrode plate 11a and the anode electrode plate 11b penetrate the substrate 1 and are externally connected to the external cathode terminal 13a via the first through via 12a and the second through via 12b filled with a conductive material (not shown). Each is connected to the anode terminal 13b.
Further, the outer peripheral portion of the capacitor element 2 on the substrate 1 is sealed with an exterior resin 18.

図1に示すように、基板1上に形成した陰極電極板11aおよび陽極電極板11bの大きさとコンデンサ素子2と位置関係は、各々の電極板はコンデンサ素子2の外周端より内側、すなわち基板1の上面から見た時に両電極板の投影部がコンデンサ素子2の投影部に内包されるように配されている。   As shown in FIG. 1, the size of the cathode electrode plate 11a and the anode electrode plate 11b formed on the substrate 1 and the positional relationship with the capacitor element 2 are such that each electrode plate is inside the outer peripheral edge of the capacitor element 2, that is, the substrate 1 When viewed from above, the projections of both electrode plates are arranged so as to be included in the projection of the capacitor element 2.

このように構成することで、外装樹脂18はコンデンサ素子2の外周下部の隙間に流れ込み易くなり、基板1とコンデンサ素子との外周隙間が狭くなって外装樹脂18の肉厚が薄くなっても、基板1をコーティングしている絶縁樹脂と強固に接着するので、外装樹脂18の剥離、欠落や内部電極接合部への悪影響を防ぐことができる。   With this configuration, the exterior resin 18 can easily flow into the gap at the lower periphery of the capacitor element 2, and even if the outer circumference gap between the substrate 1 and the capacitor element is narrowed and the thickness of the exterior resin 18 is reduced, Since it adheres firmly to the insulating resin coating the substrate 1, it is possible to prevent the exterior resin 18 from being peeled off, missing, or adversely affecting the internal electrode joint.

図2は、本発明の固体電解コンデンサにおける基板上の電極板とコンデンサ素子との位置関係を示す図で、図2(a)は断面摸式図を、図2(b)は上面透過図をそれぞれ示す。   2A and 2B are diagrams showing the positional relationship between the electrode plate on the substrate and the capacitor element in the solid electrolytic capacitor of the present invention. FIG. 2A is a schematic cross-sectional view, and FIG. Each is shown.

図2は、図1に示した固体電解コンデンサと基本構造は同一で、電極板の大きさ、配置位置のみが異なる場合を示す。すなわち、基板1上に形成した陰極電極板11aおよび陽極電極板11bの大きさとコンデンサ素子2と位置関係は、少なくとも陰極電極板11aの一部がコンデンサ素子2の外周端よりも外側に延在して配され、コンデンサ素子2に覆われない電極板露出部16を絶縁樹脂17によって覆われている。
ここでは、両方の電極板ともそれらの一部が、基板1上のコンデンサ素子2の外周端よりも外側に延在して配されているが、少なくとも一方の電極板の一部のみが外側に延在するように配され、該延在部を絶縁樹脂17で覆われていてもよい。
FIG. 2 shows a case where the basic structure is the same as that of the solid electrolytic capacitor shown in FIG. 1, and only the size and arrangement position of the electrode plate are different. That is, the size of the cathode electrode plate 11 a and the anode electrode plate 11 b formed on the substrate 1 and the positional relationship with the capacitor element 2 are such that at least a part of the cathode electrode plate 11 a extends outside the outer peripheral end of the capacitor element 2. The electrode plate exposed portion 16 that is disposed and not covered by the capacitor element 2 is covered with an insulating resin 17.
Here, both of the electrode plates are arranged so that a part of them extends outside the outer peripheral end of the capacitor element 2 on the substrate 1, but only a part of at least one of the electrode plates is on the outside. The extending portion may be arranged so as to extend, and the extending portion may be covered with the insulating resin 17.

基板1は、高耐熱性の絶縁材を用いるのが好ましく、ガラスエポキシ材、BTレジン、ポリイミド、液晶ポリマーなどの樹脂系や、アルミナなどのセラミック系等何れを用いてもよいが、薄型化、可とう性、コスト面で有効で、汎用的なガラスエポキシ材を用いるのがより好適である。   The substrate 1 is preferably made of a highly heat-resistant insulating material, and any of a resin system such as a glass epoxy material, a BT resin, a polyimide, a liquid crystal polymer, or a ceramic system such as alumina may be used. It is more preferable to use a general-purpose glass epoxy material that is effective in terms of flexibility and cost.

母材となる弁作用金属3(=コンデンサ素子陽極部15)は、アルミニウム、タンタル、ニオブ、チタンなどの金属製の板状または箔状のものを使用するのが好ましい。   The valve metal 3 (= capacitor element anode portion 15) serving as a base material is preferably a plate or foil made of metal such as aluminum, tantalum, niobium or titanium.

第1の誘電体層4a、第2の誘電体層4bは、前記弁作用金属3を電解液中に漬け、電流を流すことで金属表面に形成される酸化皮膜であり、電解液の種類、電流を適宜調整して製膜するのが好ましい。   The first dielectric layer 4a and the second dielectric layer 4b are oxide films formed on the metal surface by immersing the valve metal 3 in an electrolytic solution and flowing an electric current. It is preferable to form a film by appropriately adjusting the current.

固体電解質である第1の導電性高分子層5a、第2の導電性高分子層5bは、ポリチオフェンまたはポリピロールなどを用いるのが好ましい。   The first conductive polymer layer 5a and the second conductive polymer layer 5b, which are solid electrolytes, preferably use polythiophene or polypyrrole.

第1のグラファイト層6a、第2のグラファイト層6bは、その上層に積層する前記銀7と、下層に形成する固体電解質である第1の導電性高分子層5a、第2の導電性高分子層5bとの結合性を高めるためのものである。   The first graphite layer 6a and the second graphite layer 6b are composed of the silver 7 laminated on the upper layer thereof, the first conductive polymer layer 5a which is a solid electrolyte formed on the lower layer, and the second conductive polymer. This is to improve the bonding with the layer 5b.

銀7(=コンデンサ素子陰極部14)は、コンデンサ素子2の陰極電極材として汎用的に用いられているペースト状のものをディスペンサ等で塗布し乾燥硬化して形成するのが好ましい。   The silver 7 (= capacitor element cathode portion 14) is preferably formed by applying a paste-like material generally used as a cathode electrode material of the capacitor element 2 with a dispenser and drying and curing.

レジスト帯8は、材質が高耐熱性を有し、エポキシ系、シリコーン系などの熱硬化性樹脂、ポリイミド系などの熱可塑性樹脂のいずれでもよく、ペースト又は液状のものを用いるのが好ましく、製膜加工性を考慮し、シリコーン系熱硬化性樹脂がより好適である。塗布方法は、浸漬、吹き付け、塗布、印刷法などの一般的な工法を用い、レジストの機能を確保するのに十分な厚さである10〜30μmとするのが好ましい。   The resist band 8 is made of a material having high heat resistance, and may be any of a thermosetting resin such as epoxy or silicone, or a thermoplastic resin such as polyimide, and a paste or liquid is preferably used. In consideration of film processability, a silicone-based thermosetting resin is more preferable. The coating method is preferably set to a thickness of 10 to 30 μm, which is a sufficient thickness to ensure the function of the resist, using a common method such as dipping, spraying, coating, or printing.

リードフレーム9は、銅、アルミニウム、ステンレス、またはそれらの合金などの金属製の導電材を用い、更にその表面を金、錫などでめっき処理したものを用いるのが好ましい。   The lead frame 9 is preferably made of a conductive material made of metal such as copper, aluminum, stainless steel, or an alloy thereof, and the surface of which is plated with gold, tin or the like.

導電性接着剤10は、金、銀、銅などの金属粉末を含むエポキシ系などのペースト状の樹脂をディスペンサを用いて塗布するのか好ましい。   The conductive adhesive 10 is preferably applied by using a dispenser with an epoxy-based paste resin containing metal powder such as gold, silver and copper.

陰極電極板11a、陽極電極板11bは、基板1の上面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成する。上記方法に限らず、導電性ペーストを印刷してもよい。   The cathode electrode plate 11a and the anode electrode plate 11b are formed by a general printing method such as gravure printing or screen printing after bonding a conductive foil body made of metal such as copper or aluminum to the upper surface of the substrate 1. Resist printing is performed, and an etching process is performed. Not only the above method but also a conductive paste may be printed.

外部陰極端子13a、外部陽極端子13bは、基板1の下面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成する。上記方法に限らず、導電性ペーストを印刷してもよい。   The external cathode terminal 13a and the external anode terminal 13b are formed by a general printing method such as gravure printing or screen printing after a conductive foil body made of metal such as copper or aluminum is bonded and attached to the lower surface of the substrate 1. Resist printing is performed, and an etching process is performed. Not only the above method but also a conductive paste may be printed.

絶縁樹脂17は、上記レジスト帯8と同様、材質が高耐熱性を有し、エポキシ系、シリコーン系などの熱硬化性樹脂、ポリイミド系などの熱可塑性樹脂の何れでもよく、ペースト又は液状のものを用いるのが好ましく、製膜加工性を考慮し、シリコーン系熱硬化性樹脂がより好適である。塗布方法は、浸漬、吹き付け、塗布、印刷法などの一般的な工法を用い、レジストの機能を確保するのに十分な厚さである10〜30μmとするのが好ましい。   The insulating resin 17 is made of a material having high heat resistance, like the resist band 8, and may be any of an epoxy-based or silicone-based thermosetting resin, a polyimide-based thermoplastic resin, or a paste or liquid. Is preferably used, and a silicone-based thermosetting resin is more preferable in consideration of film forming processability. The coating method is preferably set to a thickness of 10 to 30 μm, which is a sufficient thickness to ensure the function of the resist, using a common method such as dipping, spraying, coating, or printing.

外装樹脂18は、汎用の封止用樹脂で、使用環境に耐えうるものであればどんなものでもよく、エポキシ系、フェノール系などの熱硬化性樹脂やPP、PSなどの熱可塑性樹脂の何れでもよいが、耐熱性、加工性を考慮し適宜選定するのが好ましい。電源基板での半田リフロー実装性を考慮し、エポキシ系熱硬化性樹脂がより好適である。また、封止方法はインジェクション法、トランスファー法など何れの工法でもよい。   The exterior resin 18 is a general-purpose sealing resin and may be any resin that can withstand the usage environment, and may be any one of epoxy-based, phenol-based thermosetting resins, PP, PS, and other thermoplastic resins. However, it is preferable to select appropriately considering heat resistance and workability. In consideration of solder reflow mounting property on the power supply board, an epoxy-based thermosetting resin is more preferable. The sealing method may be any method such as an injection method or a transfer method.

以下、実施例を用いて詳述する。   Hereinafter, it explains in full detail using an Example.

(実施例1)
基板1として、材質がガラスエポキシ樹脂で、大きさ7.5×5.8mm、厚さ0.1mmを用いた。また、基板1の上面には、大きさは4.5×4.5mmの陰極電極板11aと、大きさ0.6×4.5mmの陽極電極板11bとを、更に下面には大きさは4.0×4.5mmの外部陰極端子13aと、大きさ0.5×4.5mmの外部陽極端子13bとを、それぞれ板厚50μmとし、印刷法により形成した。
また、陰極電極板11aと陽極電極板11bの配置位置は、コンデンサ素子2の実装面積の内側、すなわち実装上面から見た時にコンデンサ素子2で完全に覆われるように形成した。
Example 1
As the substrate 1, a material made of glass epoxy resin, a size of 7.5 × 5.8 mm, and a thickness of 0.1 mm was used. Further, a cathode electrode plate 11a having a size of 4.5 × 4.5 mm and an anode electrode plate 11b having a size of 0.6 × 4.5 mm are provided on the upper surface of the substrate 1, and a size is provided on the lower surface. A 4.0 × 4.5 mm external cathode terminal 13a and a 0.5 × 4.5 mm external anode terminal 13b were each formed by a printing method with a plate thickness of 50 μm.
Further, the arrangement positions of the cathode electrode plate 11a and the anode electrode plate 11b were formed so as to be completely covered with the capacitor element 2 when viewed from the inner side of the mounting area of the capacitor element 2, that is, the mounting upper surface.

コンデンサ素子2は、公知の技術による製造方法と同様なので簡略にして、弁作用金属3としてアルミニウム箔を用い、大きさ6.5×5.0mm、50μm厚とした。
大きさ5.0×5.0mmの片側面積内の上下面に酸化皮膜として第1の誘電体層4a、第2の誘電体層4bを各々50μm厚、固体電解質である第1の導電性高分子層5a、第2の導電性高分子層5bを各々15μm厚、導電性の第1のグラファイト層6a、第2のグラファイト層6bを各々20μm厚、銀7を20μm厚、それぞれ順次積層し、最外層の銀7をコンデンサ素子陰極部14とした。
一方、前記コンデンサ素子陰極部14と反対側の大きさ1.0×5.0mmの部分をコンデンサ素子陽極部15とし、前記コンデンサ素子陰極部14とコンデンサ素子陽極部15の隙間0.5×5.0mmには両極間の絶縁確保のため0.1mm厚のレジスト帯8を形成した。更に、リードフレーム9として銅合金に錫メッキを施したものを用い、抵抗溶接やレーザー溶接により前記陽極部の下面に接合した。
このようにして大きさ6.5×5.0mm、高さ0.3mmのコンデンサ素子2を得た。
Since the capacitor element 2 is the same as the manufacturing method by a known technique, it is simplified and aluminum foil is used as the valve action metal 3, and the size is 6.5 × 5.0 mm and the thickness is 50 μm.
The first dielectric layer 4a and the second dielectric layer 4b are 50 μm thick as oxide films on the upper and lower surfaces within a one-side area of size 5.0 × 5.0 mm, respectively, and the first conductive layer is a solid electrolyte. The molecular layer 5a and the second conductive polymer layer 5b are each 15 μm thick, the conductive first graphite layer 6a and the second graphite layer 6b are each 20 μm thick, and the silver 7 is 20 μm thick. The outermost silver 7 was used as the capacitor element cathode portion 14.
On the other hand, the portion of the size 1.0 × 5.0 mm opposite to the capacitor element cathode portion 14 is used as a capacitor element anode portion 15, and the gap between the capacitor element cathode portion 14 and the capacitor element anode portion 15 is 0.5 × 5. A resist band 8 having a thickness of 0.1 mm was formed at 0.0 mm in order to ensure insulation between the two electrodes. Further, a lead frame 9 made of tin-plated copper alloy was used and joined to the lower surface of the anode part by resistance welding or laser welding.
In this way, a capacitor element 2 having a size of 6.5 × 5.0 mm and a height of 0.3 mm was obtained.

また、上記陰極電極板11a、陽極電極板11bの表面には、接合性を高めるよう金めっきを施し、更に導電性接着剤10として銀合金を含むエポキシ系接着剤を介して加熱処理により溶融して、コンデンサ素子2を電気的に接続した。
その後、コンデンサ素子2の外周部を外装樹脂18としてエポキシ系熱硬化性樹脂(住友ベークライト社製)を用い、トランスファー法により封止し、大きさ7.5×5.8mm、高さ0.5mmの図1に示した固体電解コンデンサを得た。
Further, the surfaces of the cathode electrode plate 11a and the anode electrode plate 11b are subjected to gold plating so as to improve the bondability, and further melted by heat treatment through an epoxy adhesive containing a silver alloy as the conductive adhesive 10. Thus, the capacitor element 2 was electrically connected.
Thereafter, the outer peripheral portion of the capacitor element 2 is sealed by a transfer method using an epoxy-based thermosetting resin (manufactured by Sumitomo Bakelite Co., Ltd.) as the exterior resin 18, and has a size of 7.5 × 5.8 mm and a height of 0.5 mm. The solid electrolytic capacitor shown in FIG. 1 was obtained.

(実施例2)
実施例1との同一材料、同一部品を用い、陰極電極板11aと陽極電極板11bの配置位置、大きさのみを変更、すなわち各々の電極板の一部がコンデンサ素子2の外周端よりも外側に各辺0.2mmだけ延在して配し、このコンデンサ素子で覆われていない一部の電極板露出部16と各辺で50μmmだけ周りの絶縁層にはみ出して、絶縁樹脂17としてペースト状のエポキシ系樹脂(太陽インキ社製)を塗布した。
その後、コンデンサ素子2の外周部を外装樹脂18としてエポキシ系熱硬化性樹脂(住友ベークライト社製)を用い、トランスファー法により封止し、大きさ7.5×5.8mm、高さ0.5mmの図2に示した固体電解コンデンサを得た。
(Example 2)
Using the same material and the same parts as in Example 1, only the arrangement position and size of the cathode electrode plate 11a and the anode electrode plate 11b are changed, that is, a part of each electrode plate is outside the outer peripheral end of the capacitor element 2. Each electrode plate is extended by 0.2 mm on each side, protrudes from a part of the electrode plate exposed portion 16 that is not covered with this capacitor element, and the insulating layer around each side by 50 μm, and is pasted as insulating resin 17 An epoxy resin (manufactured by Taiyo Ink Co., Ltd.) was applied.
Thereafter, the outer peripheral portion of the capacitor element 2 is sealed by a transfer method using an epoxy-based thermosetting resin (manufactured by Sumitomo Bakelite Co., Ltd.) as an exterior resin 18, and the size is 7.5 × 5.8 mm and the height is 0.5 mm. The solid electrolytic capacitor shown in FIG. 2 was obtained.

(比較例)
比較例として、上記と同一部材で、陰極電極板11aと陽極電極板11bの大きさ、配置方法のみを変えた図3に示した従来の固体電解コンデンサを作製した。すなわち電極板は、コンデンサ素子2の電極板露出部16が各辺で0.2mmだけ外側に延在するように配置した。
その後、コンデンサ素子2の外周部を外装樹脂18としてエポキシ系熱硬化性樹脂(住友ベークライト社製)を用い、トランスファー法により封止し、大きさ7.5×5.8mm、高さ0.5mmの図3に示した固体電解コンデンサを得た。
(Comparative example)
As a comparative example, the conventional solid electrolytic capacitor shown in FIG. 3 was manufactured using the same members as described above, except that only the size and arrangement method of the cathode electrode plate 11a and the anode electrode plate 11b were changed. That is, the electrode plate was disposed so that the electrode plate exposed portion 16 of the capacitor element 2 extended outward by 0.2 mm on each side.
Thereafter, the outer peripheral portion of the capacitor element 2 is sealed by a transfer method using an epoxy-based thermosetting resin (manufactured by Sumitomo Bakelite Co., Ltd.) as an exterior resin 18, and the size is 7.5 × 5.8 mm and the height is 0.5 mm. The solid electrolytic capacitor shown in FIG. 3 was obtained.

上記の要領で作製した、図1に示した本発明による実施例1と、図2に示した本発明による実施例2と、図3に示した比較例との各々の固体電解コンデンサについて、125℃高温無負荷試験(n=10、〜2000h)を行い、100kHzの等価直列抵抗(ESR)について初期値を1とした時の変化率(Tc=25℃)の平均値を時系列に比較した結果を表1に示す。   With respect to each solid electrolytic capacitor produced in the above manner, the first embodiment according to the present invention shown in FIG. 1, the second embodiment according to the present invention shown in FIG. 2, and the comparative example shown in FIG. A high temperature no-load test (n = 10 to 2000 h) was performed, and the average value of the rate of change (Tc = 25 ° C.) when the initial value was set to 1 for 100 kHz equivalent series resistance (ESR) was compared in time series. The results are shown in Table 1.

Figure 2009224688
Figure 2009224688

表1に示すように、本発明の実施例1、実施例2は比較例に比べて、等価直列抵抗(ESR)の変化率が小さい、すなわち接触抵抗が安定し、非常に優れた特性・品質を確保できることがわかった。   As shown in Table 1, Example 1 and Example 2 of the present invention have a smaller rate of change in equivalent series resistance (ESR) than that of the comparative example, that is, contact resistance is stable and very excellent characteristics and quality. It was found that can be secured.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の固体電解コンデンサにより、小型化、大容量化、高性能化、高品質化が可能となり、今後益々小型化、高性能化要求が厳しくなる多種多用な電子機器市場への対応も可能となる。   With the solid electrolytic capacitor of the present invention, it is possible to reduce the size, increase the capacity, improve the performance, and improve the quality, and respond to the increasingly diverse electronic equipment market where demands for further downsizing and higher performance become stricter in the future. Become.

本発明の固体電解コンデンサ(実施例1)におけるコンデンサ素子と電極板の位置関係を示す図。図1(a)は断面摸式図、図1(b)は上面透過図。The figure which shows the positional relationship of the capacitor | condenser element and electrode plate in the solid electrolytic capacitor (Example 1) of this invention. 1A is a schematic cross-sectional view, and FIG. 1B is a top transparent view. 本発明の固体電解コンデンサ(実施例2)におけるコンデンサ素子と電極板の位置関係を示す図。図2(a)は断面摸式図、図2(b)は上面透過図。The figure which shows the positional relationship of the capacitor | condenser element and electrode plate in the solid electrolytic capacitor (Example 2) of this invention. 2A is a schematic sectional view, and FIG. 2B is a top transparent view. 従来の固体電解コンデンサ(比較例)におけるコンデンサ素子と電極板の位置関係を示す図。図3(a)は断面摸式図、図3(b)は上面透過図。The figure which shows the positional relationship of the capacitor | condenser element and electrode plate in the conventional solid electrolytic capacitor (comparative example). 3A is a schematic sectional view, and FIG. 3B is a top transparent view.

符号の説明Explanation of symbols

1 基板
2 コンデンサ素子
3 弁作用金属
4a 第1の誘電体層
4b 第2の誘電体層
5a 第1の導電性高分子層
5b 第2の導電性高分子層
6a 第1のグラファイト層
6b 第2のグラファイト層
7 銀
8 レジスト帯
9 リードフレーム
10 導電性接着剤
11a 陰極電極板
11b 陽極電極板
12a 第1の貫通ビア
12b 第2の貫通ビア
13a 外部陰極端子
13b 外部陽極端子
14 コンデンサ素子陰極部
15 コンデンサ素子陽極部
16 電極板露出部
17 絶縁樹脂
18 外装樹脂
DESCRIPTION OF SYMBOLS 1 Substrate 2 Capacitor element 3 Valve action metal 4a First dielectric layer 4b Second dielectric layer 5a First conductive polymer layer 5b Second conductive polymer layer 6a First graphite layer 6b Second Graphite layer 7 Silver 8 Resist strip 9 Lead frame 10 Conductive adhesive 11a Cathode electrode plate 11b Anode electrode plate 12a First through via 12b Second through via 13a External cathode terminal 13b External anode terminal 14 Capacitor element cathode portion 15 Capacitor element anode portion 16 Electrode plate exposed portion 17 Insulating resin 18 Exterior resin

Claims (2)

基板の上面にコンデンサ素子を実装し、前記コンデンサ素子を外装樹脂で封止した固体電解コンデンサであって、前記コンデンサ素子は弁作用金属からなる陽極部と、前記陽極部の上面の一部に、順に積層した第1の誘電体層と第1の固体電解質層と第1のグラファイト層と第1の陰極部と、前記陽極部の下面の一部に、順に積層した第2の誘電体層と第2の固体電解質層と第2のグラファイト層と第2の陰極部とを備え、前記陽極部の上下面が露出する部分と前記基板との間に形成された陽極電極板と、前記基板の下面に形成された外部陽極端子は、第1の貫通ビアを介して接続されてなり、前記第2の陰極部と前記基板との間に形成された陰極電極板と、前記基板の下面に形成された外部陰極端子は、第2の貫通ビアを介して接続されてなり、前記陽極部と、前記陽極電極板と、前記陰極電極板の、各々の前記基板に対向する面を、前記基板に投影した時、前記陽極電極板と前記陰極電極板の投影部が前記陽極部の投影部に内包されてなることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor in which a capacitor element is mounted on an upper surface of a substrate and the capacitor element is sealed with an exterior resin, the capacitor element being an anode portion made of a valve metal, and a part of the upper surface of the anode portion, A first dielectric layer, a first solid electrolyte layer, a first graphite layer, a first cathode portion, and a second dielectric layer sequentially laminated on a part of the lower surface of the anode portion; An anode electrode plate comprising a second solid electrolyte layer, a second graphite layer, and a second cathode portion, the anode electrode plate formed between a portion where the upper and lower surfaces of the anode portion are exposed, and the substrate; The external anode terminal formed on the lower surface is connected via the first through via, and is formed on the lower surface of the substrate, the cathode electrode plate formed between the second cathode portion and the substrate. The external cathode terminal connected is connected through the second through via When the surfaces of the anode portion, the anode electrode plate, and the cathode electrode plate that face each of the substrates are projected onto the substrate, the projection portions of the anode electrode plate and the cathode electrode plate are A solid electrolytic capacitor characterized by being enclosed in a projection part of an anode part. 基板の上面にコンデンサ素子を実装し、前記コンデンサ素子を外装樹脂で封止した固体電解コンデンサであって、前記コンデンサ素子は弁作用金属からなる陽極部と、前記陽極部の上面の一部に、順に積層した第1の誘電体層と第1の固体電解質層と第1のグラファイト層と第1の陰極部と、前記陽極部の下面の一部に、順に積層した第2の誘電体層と第2の固体電解質層と第2のグラファイト層と第2の陰極部とを備え、前記陽極部の上下面が露出する部分と前記基板との間に形成された陽極電極板と、前記基板の下面に形成された外部陽極端子は、第1の貫通ビアを介して接続されてなり、前記第2の陰極部と前記基板との間に形成された陰極電極板と、前記基板の下面に形成された外部陰極端子は、第2の貫通ビアを介して接続されてなり、前記陽極部と、前記陽極電極板と、前記陰極電極板の、各々の前記基板に対向する面を、前記基板に投影した時、前記陽極電極板と前記陰極電極板の投影部が前記陽極部の投影部に内包されない場合に、前記陽極電極板または前記陰極電極板の少なくとも前記内包されない部分を絶縁樹脂で覆われてなることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor in which a capacitor element is mounted on an upper surface of a substrate and the capacitor element is sealed with an exterior resin, the capacitor element being an anode portion made of a valve metal, and a part of the upper surface of the anode portion, A first dielectric layer, a first solid electrolyte layer, a first graphite layer, a first cathode portion, and a second dielectric layer sequentially laminated on a part of the lower surface of the anode portion; An anode electrode plate comprising a second solid electrolyte layer, a second graphite layer, and a second cathode portion, the anode electrode plate formed between a portion where the upper and lower surfaces of the anode portion are exposed, and the substrate; The external anode terminal formed on the lower surface is connected via the first through via, and is formed on the lower surface of the substrate, the cathode electrode plate formed between the second cathode portion and the substrate. The external cathode terminal connected is connected through the second through via When the surfaces of the anode portion, the anode electrode plate, and the cathode electrode plate that face each of the substrates are projected onto the substrate, the projection portions of the anode electrode plate and the cathode electrode plate are A solid electrolytic capacitor comprising: an anode electrode plate or a cathode electrode plate that is not encapsulated in a projection portion of an anode portion; and at least the unencapsulated portion of the anode electrode plate or the cathode electrode plate is covered with an insulating resin.
JP2008069728A 2008-03-18 2008-03-18 Solid electrolytic capacitor Pending JP2009224688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069728A JP2009224688A (en) 2008-03-18 2008-03-18 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069728A JP2009224688A (en) 2008-03-18 2008-03-18 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009224688A true JP2009224688A (en) 2009-10-01

Family

ID=41241137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069728A Pending JP2009224688A (en) 2008-03-18 2008-03-18 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009224688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050322A (en) * 2008-08-22 2010-03-04 Nec Tokin Corp Solid-state electrolytic capacitor
EP2577695A2 (en) * 2010-05-26 2013-04-10 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
JP2013084826A (en) * 2011-10-12 2013-05-09 Nec Tokin Corp Solid electrolytic capacitor
US9748043B2 (en) 2010-05-26 2017-08-29 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312240A (en) * 1996-05-22 1997-12-02 Nitsuko Corp Layered solid-state chip capacitor
JP2006041447A (en) * 2004-07-30 2006-02-09 Tdk Corp Manufacturing method of electrolytic capacitor, and electrolytic capacitor
JP2006093343A (en) * 2004-09-22 2006-04-06 Tdk Corp Solid electrolyte capacitor
JP2006140179A (en) * 2004-11-10 2006-06-01 Tdk Corp Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2009164168A (en) * 2007-12-28 2009-07-23 Nec Tokin Corp Interposer for capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312240A (en) * 1996-05-22 1997-12-02 Nitsuko Corp Layered solid-state chip capacitor
JP2006041447A (en) * 2004-07-30 2006-02-09 Tdk Corp Manufacturing method of electrolytic capacitor, and electrolytic capacitor
JP2006093343A (en) * 2004-09-22 2006-04-06 Tdk Corp Solid electrolyte capacitor
JP2006140179A (en) * 2004-11-10 2006-06-01 Tdk Corp Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2009164168A (en) * 2007-12-28 2009-07-23 Nec Tokin Corp Interposer for capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050322A (en) * 2008-08-22 2010-03-04 Nec Tokin Corp Solid-state electrolytic capacitor
EP2577695A2 (en) * 2010-05-26 2013-04-10 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
EP2577695A4 (en) * 2010-05-26 2014-12-03 Kemet Electronics Corp Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
US9748043B2 (en) 2010-05-26 2017-08-29 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
JP2013084826A (en) * 2011-10-12 2013-05-09 Nec Tokin Corp Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4440911B2 (en) Solid electrolytic capacitor
KR100724227B1 (en) Thin surface mounted type solid electrolytic capacitor
JP2009158692A (en) Multilayer solid electrolytic capacitor
JP4142878B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009224688A (en) Solid electrolytic capacitor
JP2008078312A (en) Solid electrolytic capacitor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP4276774B2 (en) Chip-shaped solid electrolytic capacitor
JP5526949B2 (en) Solid electrolytic capacitor
JP5170699B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP5164213B2 (en) Solid electrolytic capacitor
JP2002110461A (en) Solid-state electrolytic chip capacitor
US9659714B2 (en) Solid electrolytic capacitor including insulating substrate having recessed surface
JPH10289838A (en) Solid state electrolytic capacitor
JP2003197485A (en) Chip solid electrolytic capacitor and manufacturing method therefor
JP2002110459A (en) Solid electrolytic chip capacitor
JP5210672B2 (en) Capacitor parts
JP5371865B2 (en) 3-terminal capacitor
JP2001044077A (en) Chip-type solid electrolytic capacitor
JPH03297122A (en) Solid electrolytic capacitor and its manufacture
JP2002175939A (en) Method of manufacturing chip-type solid electrolytic capacitor
JP4539004B2 (en) Chip type solid electrolytic capacitor
JP2005072106A (en) Surface-mounted thin capacitor and manufacturing method therefor
JP2003282365A (en) Chip-type solid electrolytic capacitor
JP2010045202A (en) Stacked solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130717