JP6475417B2 - Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor Download PDF

Info

Publication number
JP6475417B2
JP6475417B2 JP2014053185A JP2014053185A JP6475417B2 JP 6475417 B2 JP6475417 B2 JP 6475417B2 JP 2014053185 A JP2014053185 A JP 2014053185A JP 2014053185 A JP2014053185 A JP 2014053185A JP 6475417 B2 JP6475417 B2 JP 6475417B2
Authority
JP
Japan
Prior art keywords
layer
anode lead
electrolytic capacitor
solid electrolyte
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053185A
Other languages
Japanese (ja)
Other versions
JP2015177088A (en
Inventor
勇輔 保科
勇輔 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2014053185A priority Critical patent/JP6475417B2/en
Publication of JP2015177088A publication Critical patent/JP2015177088A/en
Application granted granted Critical
Publication of JP6475417B2 publication Critical patent/JP6475417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解質として導電性高分子を用いた固体電解コンデンサ素子およびその製造方法ならびに固体電解コンデンサに関する。   The present invention relates to a solid electrolytic capacitor element using a conductive polymer as a solid electrolyte, a method for manufacturing the same, and a solid electrolytic capacitor.

弁作用金属としてタンタル、アルミニウム等を用いた固体電解コンデンサは、静電容量が大きく、周波数特性に優れていることから、携帯電子端末やパーソナルコンピュータ等の電子機器に広く使用されている。   A solid electrolytic capacitor using tantalum, aluminum or the like as a valve action metal has a large electrostatic capacity and excellent frequency characteristics, and is therefore widely used in electronic devices such as portable electronic terminals and personal computers.

また、近年では電子機器の高信頼性化や高性能化に伴って、固体電解コンデンサに関する漏れ電流の低減などの要求がさらに高まっている。   In recent years, as electronic devices have higher reliability and higher performance, there has been an increasing demand for reduction of leakage current related to solid electrolytic capacitors.

従来の固体電解コンデンサの一例として特許文献1に開示された構成がある。特許文献1の固体電解コンデンサでは、陽極と陰極を分離するために、陽極導出線の外表面に形成された誘電体酸化皮膜層から固体電解質層までを除去する必要がある。   As an example of a conventional solid electrolytic capacitor, there is a configuration disclosed in Patent Document 1. In the solid electrolytic capacitor of Patent Document 1, in order to separate the anode and the cathode, it is necessary to remove from the dielectric oxide film layer formed on the outer surface of the anode lead-out line to the solid electrolyte layer.

陽極導出線の外表面に形成された誘電体酸化皮膜層から固体電解質層までをレーザ照射で除去した場合、除去した端面が同一平面に形成された構成となる。   When the layers from the dielectric oxide film layer formed on the outer surface of the anode lead-out line to the solid electrolyte layer are removed by laser irradiation, the removed end faces are formed on the same plane.

また、他の例として特許文献2に開示された構成がある。特許文献2の固体電解コンデンサは、誘電体層の表面に絶縁性高分子膜を設け、その表面に化学酸化重合導電性高分子膜を形成する。その化学酸化重合導電性高分子膜に導電体を接触させて電解酸化重合導電性高分子膜を形成することで、陽極リードと電解酸化重合導電性高分子膜とが離れた構成となっている。   Another example is the configuration disclosed in Patent Document 2. In the solid electrolytic capacitor of Patent Document 2, an insulating polymer film is provided on the surface of a dielectric layer, and a chemical oxidation polymerization conductive polymer film is formed on the surface. By forming an electrolytic oxidation polymerization conductive polymer film by bringing a conductor into contact with the chemical oxidation polymerization conductive polymer film, the anode lead is separated from the electrolytic oxidation polymerization conductive polymer film. .

特開2005−129622号公報JP 2005-129622 A 特開平01−105523号公報JP-A-01-105523

特許文献1に開示された構成では、誘電体酸化皮膜層から固体電解質層までの端面が同一平面に形成されるため、陽極導出線と固体電解質層との絶縁距離が短く、長期間の使用によって漏れ電流の増大を招き、短絡不良(ショート不良)が発生する場合がある。   In the configuration disclosed in Patent Document 1, since the end surfaces from the dielectric oxide film layer to the solid electrolyte layer are formed in the same plane, the insulation distance between the anode lead-out line and the solid electrolyte layer is short, In some cases, leakage current increases and short circuit failure (short circuit failure) occurs.

また、特許文献2に開示された方法では導電体を接触させて電解酸化重合導電性高分子膜を形成するため、接触させていた導電体を除去する際に近傍の電解酸化重合導電性高分子膜が導電体と共に剥離する場合がある。電解酸化重合導電性高分子膜が剥離することによって誘電体層が表面に露出した場合、漏れ電流の増大を招き、ショート不良が発生する。   In addition, in the method disclosed in Patent Document 2, an electrooxidation polymerization conductive polymer film is formed by bringing a conductor into contact with each other. Therefore, when removing the contacted conductor, the nearby electrooxidation polymerization conductive polymer is removed. The film may peel off together with the conductor. When the dielectric layer is exposed on the surface due to peeling of the electrooxidation polymerization conductive polymer film, leakage current increases and short circuit failure occurs.

そこで本発明は、陽極リードと固体電解質層との絶縁距離を確保し、ショート不良を抑制した固体電解コンデンサ素子およびその製造方法ならびに固体電解コンデンサを提供することを目的とする。   Therefore, an object of the present invention is to provide a solid electrolytic capacitor element that secures an insulation distance between an anode lead and a solid electrolyte layer and suppresses short-circuit defects, a manufacturing method thereof, and a solid electrolytic capacitor.

上記の課題を解決するために、本発明の固体電解コンデンサ素子は、前記陽極リードが導出した弁作用金属の多孔質体からなる陽極体と、前記陽極リードの一部および前記陽極体の表面に形成した誘電体層と、前記陽極リードの表面に形成した前記誘電体層の少なくとも一部の表面に形成した絶縁層と、前記誘電体層の少なくとも一部および前記絶縁層の一部の表面に形成した導電性高分子からなる固体電解質層を備え、前記陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面を階段状に形成することを特徴とする。   In order to solve the above-mentioned problems, the solid electrolytic capacitor element of the present invention comprises an anode body made of a porous body of valve action metal derived from the anode lead, a part of the anode lead, and a surface of the anode body. A dielectric layer formed; an insulating layer formed on at least a part of the dielectric layer formed on the surface of the anode lead; and at least a part of the dielectric layer and a part of the insulating layer. A solid electrolyte layer made of a conductive polymer is formed, and the surfaces of the insulating layer and the solid electrolyte layer are formed stepwise with respect to the surface of the anode lead.

ここで、陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面を階段状に形成することによって、陽極リードのみが露出した部分と、誘電体層の表面に形成された絶縁層のみが露出した部分と、絶縁層の表面に形成された固体電解質層のみが露出した部分を有する。陽極リードの表面と、絶縁層の表面と、固体電解質層の表面からなる階段状の段差が形成され、陽極リードと固体電解質層との間に露出した絶縁層を有することによって、陽極リードの表面から立ち上がる絶縁層の端部から、前記絶縁層の表面から立ち上がる前記固体電解質層の端部までの露出した絶縁層分の絶縁距離を確保できる。   Here, by forming the surfaces of the insulating layer and the solid electrolyte layer stepwise with respect to the surface of the anode lead, only the portion where the anode lead is exposed and only the insulating layer formed on the surface of the dielectric layer are provided. It has an exposed portion and a portion where only the solid electrolyte layer formed on the surface of the insulating layer is exposed. The surface of the anode lead is formed by forming a stepped step composed of the surface of the anode lead, the surface of the insulating layer, and the surface of the solid electrolyte layer, and having an insulating layer exposed between the anode lead and the solid electrolyte layer. An insulating distance corresponding to the exposed insulating layer from the end of the insulating layer rising from the end to the end of the solid electrolyte layer rising from the surface of the insulating layer can be secured.

また、本発明の固体電解コンデンサ素子は、前記陽極リードの少なくとも一部の表面に凹凸を有することが望ましい。   In the solid electrolytic capacitor element of the present invention, it is desirable that at least a part of the surface of the anode lead has irregularities.

また、本発明の固体電解コンデンサ素子の前記固体電解質層は、化学重合により形成した化学重合層を少なくとも有し、前記絶縁層の表面に形成した前記化学重合層の厚みは1μm以下(0を含まず)であることが望ましい。   The solid electrolyte layer of the solid electrolytic capacitor element of the present invention has at least a chemical polymerization layer formed by chemical polymerization, and the thickness of the chemical polymerization layer formed on the surface of the insulating layer is 1 μm or less (including 0). It is desirable that

また、本発明の固体電解コンデンサ素子は、前記陽極リードの表面から立ち上がる前記絶縁層の端部と、前記絶縁層の表面から立ち上がる前記固体電解質層の端部との、前記絶縁層の露出した距離は10μm以上、15μm以下であることが望ましい。   Further, in the solid electrolytic capacitor element of the present invention, the exposed distance of the insulating layer between the end of the insulating layer rising from the surface of the anode lead and the end of the solid electrolyte layer rising from the surface of the insulating layer Is preferably 10 μm or more and 15 μm or less.

本発明の固体電解コンデンサは、本発明の固体電解コンデンサ素子と、前記固体電解質層の表面に形成する陰極層と、前記陽極リードと電気的に接続した陽極端子と、前記陰極層を介し、前記陽極体と電気的に接続した陰極端子と、外装樹脂を備え、前記外装樹脂は、前記陽極端子の一部および前記陰極端子の一部ならびに前記固体電解コンデンサ素子を被覆することを特徴とする。   The solid electrolytic capacitor of the present invention includes the solid electrolytic capacitor element of the present invention, a cathode layer formed on the surface of the solid electrolyte layer, an anode terminal electrically connected to the anode lead, and the cathode layer, A cathode terminal electrically connected to the anode body and an exterior resin are provided, and the exterior resin covers a part of the anode terminal, a part of the cathode terminal, and the solid electrolytic capacitor element.

本発明の固体電解コンデンサ素子の製造方法は、陽極リードが導出した弁作用金属の多孔質体からなる陽極体の表面に誘電体層を形成し、前記陽極リードの表面に形成した前記誘電体層の少なくとも一部の表面に絶縁層を形成し、前記誘電体層および前記絶縁層の表面に導電性高分子からなる固体電解質層を形成し、前記陽極リードに形成した一部の前記誘電体層から前記固体電解質層までを除去するレーザ加工で、除去する近傍の前記固体電解質層が前記絶縁層から剥離し、前記陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面を階段状に形成することを特徴とする。   In the method for manufacturing a solid electrolytic capacitor element of the present invention, the dielectric layer is formed on the surface of the anode body made of the porous body of the valve action metal derived from the anode lead, and the dielectric layer formed on the surface of the anode lead. An insulating layer is formed on at least a part of the surface, a solid electrolyte layer made of a conductive polymer is formed on the surface of the dielectric layer and the insulating layer, and a part of the dielectric layer formed on the anode lead In the laser processing that removes from the solid electrolyte layer to the solid electrolyte layer, the solid electrolyte layer in the vicinity to be removed peels from the insulating layer, and the surface of the insulating layer and the solid electrolyte layer is stepped with respect to the surface of the anode lead. It is characterized by forming.

本発明によれば、陽極リードに形成した一部の誘電体層から固体電解質層までを除去するレーザ加工の際に、除去する近傍の固体電解質層が絶縁層から剥離して一部の絶縁層が表面に露出する。これにより、陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面に階段状の段差が形成される。   According to the present invention, in the laser processing for removing from the part of the dielectric layer formed on the anode lead to the solid electrolyte layer, the solid electrolyte layer in the vicinity to be removed is peeled off from the insulating layer and part of the insulating layer is removed. Is exposed on the surface. Thereby, a stepped step is formed on the surface of the insulating layer and the solid electrolyte layer with respect to the surface of the anode lead.

そのため、陽極リードと固体電解質層との間に露出した絶縁層の長さ分の十分な絶縁距離が生じるため、長期間の使用においても陽極リードと固体電解質層との接触を抑制でき、ショート不良を防止できる。   As a result, a sufficient insulation distance corresponding to the length of the insulating layer exposed between the anode lead and the solid electrolyte layer is generated, so that contact between the anode lead and the solid electrolyte layer can be suppressed even during long-term use, resulting in a short circuit failure. Can be prevented.

また、陽極リードと固体電解質層を絶縁し、陽極リードに形成した一部の誘電体層から固体電解質層までを除去して陽極リードと外部端子である陽極端子を接続できる状態とするレーザ加工において、陽極リードと固体電解質層との十分な絶縁距離の確保が可能となるため、新たに製造工数を増やす必要がない。   Also, in laser processing that insulates the anode lead from the solid electrolyte layer and removes the solid electrolyte layer from some of the dielectric layers formed on the anode lead so that the anode lead can be connected to the external anode terminal. Since a sufficient insulation distance between the anode lead and the solid electrolyte layer can be secured, there is no need to newly increase the number of manufacturing steps.

以上のことより、陽極リードと固体電解質層との絶縁距離を確保し、ショート不良を抑制した固体電解コンデンサ素子およびその製造方法ならびに固体電解コンデンサを提供できる。   From the above, it is possible to provide a solid electrolytic capacitor element that secures an insulation distance between the anode lead and the solid electrolyte layer and suppresses short-circuit defects, a manufacturing method thereof, and a solid electrolytic capacitor.

本発明による固体電解コンデンサ素子の断面図である。It is sectional drawing of the solid electrolytic capacitor element by this invention. 本発明による固体電解コンデンサ素子の陽極リード近傍の外観写真であり、図2(a)はレーザ加工前の陽極リード近傍の外観写真、図2(b)はレーザ加工後の陽極リード近傍の外観写真である。FIG. 2A is an external view of the vicinity of the anode lead of the solid electrolytic capacitor element according to the present invention, FIG. 2A is an external view of the vicinity of the anode lead before laser processing, and FIG. 2B is an external view of the vicinity of the anode lead after laser processing. It is. 本発明による固体電解コンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the solid electrolytic capacitor by this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の固体電解コンデンサ素子の断面図である。図1に示すように、本発明の固体電解コンデンサ素子10は、弁作用を有する金属微粒子からなる焼結体や、エッチングによって拡面処理されて多孔質層化した弁作用金属などによって形成された陽極体2を有し、陽極体2からは陽極リード1が導出している。   FIG. 1 is a cross-sectional view of a solid electrolytic capacitor element of the present invention. As shown in FIG. 1, the solid electrolytic capacitor element 10 of the present invention is formed of a sintered body made of metal fine particles having a valve action, a valve action metal that has been subjected to a surface expansion treatment to form a porous layer, and the like. An anode body 2 is provided, and an anode lead 1 is led out from the anode body 2.

弁作用金属は、タンタル、アルミニウム、チタン、ニオブ、ジルコニウム、またはこれらの合金等から適宜選定すればよい。   The valve action metal may be appropriately selected from tantalum, aluminum, titanium, niobium, zirconium, or alloys thereof.

陽極リード1の少なくとも一部および陽極体2の表面に誘電体層3を形成し、陽極リード1の表面に形成された誘電体層3の少なくとも一部の表面に絶縁性高分子からなる絶縁層4を形成する。絶縁層4は、エポキシ樹脂やシリコン樹脂等を塗布して形成すればよい。   A dielectric layer 3 is formed on at least a part of the anode lead 1 and the surface of the anode body 2, and an insulating layer made of an insulating polymer is formed on at least a part of the surface of the dielectric layer 3 formed on the surface of the anode lead 1. 4 is formed. The insulating layer 4 may be formed by applying an epoxy resin, a silicon resin, or the like.

誘電体層3は、弁作用金属の表面を電解酸化させる事で得られ、厚みは電解酸化の電圧によって適宜調整すればよい。   The dielectric layer 3 is obtained by electrolytically oxidizing the surface of the valve action metal, and the thickness may be appropriately adjusted according to the voltage of electrolytic oxidation.

誘電体層3の少なくとも一部および絶縁層4の少なくとも一部の表面には導電性高分子からなる固体電解質層を形成する。本実施形態における固体電解質層は、モノマーと酸化剤を反応させる化学重合による導電性高分子からなる化学重合層5と、電気化学的に酸化還元反応を起こす電解重合による導電性高分子からなる電解重合層6によって形成している。   A solid electrolyte layer made of a conductive polymer is formed on at least a part of the dielectric layer 3 and at least a part of the insulating layer 4. The solid electrolyte layer in this embodiment includes a chemical polymerization layer 5 made of a conductive polymer by chemical polymerization in which a monomer and an oxidant are reacted, and an electrolysis made of a conductive polymer by electrolytic polymerization that causes an electrochemical redox reaction. It is formed by the polymerization layer 6.

ここで、本実施形態の固体電解質層は、化学重合層5と電解重合層6を組み合わせて形成しているが、化学重合層5のみで形成しても構わない。   Here, the solid electrolyte layer of the present embodiment is formed by combining the chemical polymerization layer 5 and the electrolytic polymerization layer 6, but may be formed only by the chemical polymerization layer 5.

また、化学重合層5の厚みは1μm以下(0を含まず)であることが望ましい。これによって、後述するレーザ加工の際、絶縁層4の表面に形成した化学重合層5および電解重合層6が絶縁層4から容易に剥離する。   The thickness of the chemical polymerization layer 5 is desirably 1 μm or less (excluding 0). Thereby, the chemical polymerization layer 5 and the electrolytic polymerization layer 6 formed on the surface of the insulating layer 4 are easily peeled off from the insulating layer 4 at the time of laser processing described later.

化学重合層5は導電性高分子であればよく、ポリチオフェン、ポリピロール、ポリアニリン等が挙げられる。同様に、電解重合層6は電解重合によって形成でき、且つ導電性高分子であればよく、ポリチオフェン、ポリピロール等が挙げられる。   The chemical polymerization layer 5 may be a conductive polymer, and examples thereof include polythiophene, polypyrrole, and polyaniline. Similarly, the electropolymerization layer 6 may be formed by electropolymerization and may be a conductive polymer, and examples thereof include polythiophene and polypyrrole.

固体電解質層まで形成した後、固体電解コンデンサを作製する際の陽極リード1と陽極端子との接続を可能とし、さらに陽極リード1と固体電解質層を絶縁するため、陽極リード1に形成した誘電体層3から固体電解質層までの一部をレーザ加工によって除去する。   After the formation of the solid electrolyte layer, the dielectric lead formed on the anode lead 1 in order to allow the anode lead 1 and the anode terminal to be connected when producing the solid electrolytic capacitor and further to insulate the anode lead 1 from the solid electrolyte layer. A part from the layer 3 to the solid electrolyte layer is removed by laser processing.

その際、除去する近傍の化学重合層5および電解重合層6が絶縁層4から剥離し、一部の絶縁層4が表面に露出する。   At that time, the chemical polymerization layer 5 and the electrolytic polymerization layer 6 in the vicinity to be removed are peeled off from the insulating layer 4, and a part of the insulating layer 4 is exposed on the surface.

固体電解質層と誘電体層の密着性に比べて、固体電解質層と絶縁層の密着性は低い。そのため、レーザ加工の衝撃によって、陽極リードの除去する近傍に形成した誘電体層から固体電解質層までの一部を絶縁層から剥離することができる。   Compared to the adhesion between the solid electrolyte layer and the dielectric layer, the adhesion between the solid electrolyte layer and the insulating layer is low. Therefore, a part from the dielectric layer formed in the vicinity of removing the anode lead to the solid electrolyte layer can be peeled off from the insulating layer by the impact of laser processing.

このように、絶縁層4から固体電解質層が剥離して一部の絶縁層4が露出することによって、陽極リード1の表面の誘電体層3と固体電解質層である化学重合層5および電解重合層6の端面が同一平面にはならず、陽極リード1の表面と、絶縁層4の表面と、固体電解質層の表面からなる段差が生じる。つまり、陽極リードの表面に対して絶縁層と固体電解質層の表面が階段状に形成される。   As described above, the solid electrolyte layer is peeled off from the insulating layer 4 and a part of the insulating layer 4 is exposed, whereby the dielectric layer 3 on the surface of the anode lead 1, the chemical polymerization layer 5 which is a solid electrolyte layer, and the electrolytic polymerization. The end surfaces of the layer 6 are not coplanar, and a step is formed by the surface of the anode lead 1, the surface of the insulating layer 4, and the surface of the solid electrolyte layer. That is, the surfaces of the insulating layer and the solid electrolyte layer are formed stepwise with respect to the surface of the anode lead.

一部の絶縁層4が露出することによって、陽極リード1の表面から立ち上がる絶縁層4の端部から、絶縁層4の表面から立ち上がる固体電解質層の端部までの露出した絶縁層4分の十分な絶縁距離が生じるため、長期間の使用においても陽極リード1と固体電解質層の接触を抑制でき、ショート不良を防止できる。   By exposing a part of the insulating layer 4, the exposed insulating layer 4 minutes from the end of the insulating layer 4 rising from the surface of the anode lead 1 to the end of the solid electrolyte layer rising from the surface of the insulating layer 4 is sufficient. Since a long insulation distance occurs, contact between the anode lead 1 and the solid electrolyte layer can be suppressed even during long-term use, and short-circuit defects can be prevented.

露出した絶縁層4の長さである絶縁距離は、陽極リード1と固体電解質層との間でのショート不良をより抑制できるため、10μm以上であることが望ましい。また、固体電解質層が容易に剥離する距離で生産性が向上するため、絶縁距離は15μm以下であることが望ましいが、ショート不良を抑制できるため長ければ長いほど望ましい。   The insulating distance, which is the length of the exposed insulating layer 4, is preferably 10 μm or more because a short circuit failure between the anode lead 1 and the solid electrolyte layer can be further suppressed. In addition, the productivity is improved by the distance at which the solid electrolyte layer easily peels off, so that the insulation distance is desirably 15 μm or less. However, it is desirable that the insulation distance is as long as possible to suppress short circuit defects.

固体電解コンデンサ素子を用いて固体電解コンデンサを作製する際には、固体電解コンデンサ素子の陽極リードと外部端子である陽極端子の接続を行う。本発明の固体電解コンデンサ素子10は、陽極リード1と外部端子である陽極端子の接続を行うためのレーザ加工の際に、固体電解質層の一部を剥離することで陽極リード1と固体電解質層の絶縁を確保できる。そのため、製造工数を増やすことなく、本発明の固体電解コンデンサ素子10が得られる。   When producing a solid electrolytic capacitor using a solid electrolytic capacitor element, the anode lead of the solid electrolytic capacitor element is connected to an anode terminal which is an external terminal. In the solid electrolytic capacitor element 10 of the present invention, the anode lead 1 and the solid electrolyte layer are peeled off by peeling off a part of the solid electrolyte layer during laser processing for connecting the anode lead 1 and the anode terminal which is an external terminal. Insulation can be secured. Therefore, the solid electrolytic capacitor element 10 of the present invention can be obtained without increasing the number of manufacturing steps.

図2は本発明による固体電解コンデンサ素子の陽極リード近傍の外観写真であり、図2(a)はレーザ加工前の陽極リード近傍の外観写真、図2(b)はレーザ加工後の陽極リード近傍の外観写真である。陽極リードの表面状態がわかりやすいよう、図2(a)は、陽極リード1の表面に絶縁層4まで形成された陽極リード近傍の外観写真である。また、図2(b)は図2(a)の個体電解コンデンサ素子に化学重合層(図示せず)および電解重合層6を順次形成した後、レーザ加工を施した陽極リード近傍の外観写真である。図2から明らかなように、陽極リード1に形成した誘電体層から固体電解質層までの一部をレーザ加工によって除去することによって、レーザ加工がなされた陽極リードの一部の表面に凹凸が形成される。   FIG. 2 is an external photograph of the vicinity of the anode lead of the solid electrolytic capacitor element according to the present invention, FIG. 2 (a) is an external photograph of the vicinity of the anode lead before laser processing, and FIG. 2 (b) is the vicinity of the anode lead after laser processing. It is an appearance photograph. FIG. 2A is an external photograph of the vicinity of the anode lead formed up to the insulating layer 4 on the surface of the anode lead 1 so that the surface state of the anode lead can be easily understood. FIG. 2 (b) is an external view of the vicinity of the anode lead subjected to laser processing after the chemical polymerization layer (not shown) and the electrolytic polymerization layer 6 are sequentially formed on the solid electrolytic capacitor element of FIG. 2 (a). is there. As can be seen from FIG. 2, irregularities are formed on the surface of a part of the anode lead subjected to laser processing by removing a part from the dielectric layer formed on the anode lead 1 to the solid electrolyte layer by laser processing. Is done.

図3は本発明の固体電解コンデンサの構成を示す断面図である。図3に示すように、本実施形態の固体電解コンデンサ300は、本発明による固体電解コンデンサ素子10と、外部電極である陽極端子7および陰極端子8と、外装樹脂9を備えている。   FIG. 3 is a cross-sectional view showing the configuration of the solid electrolytic capacitor of the present invention. As shown in FIG. 3, the solid electrolytic capacitor 300 of this embodiment includes a solid electrolytic capacitor element 10 according to the present invention, an anode terminal 7 and a cathode terminal 8 that are external electrodes, and an exterior resin 9.

本実施形態の固体電解コンデンサ300に用いられる固体電解コンデンサ素子10は、電解重合層6の表面に陰極層(図示せず)をさらに形成している。陰極層は、例えば、固体電解質層の表面にグラファイト層と銀ペースト層を順次形成して得られる。   In the solid electrolytic capacitor element 10 used in the solid electrolytic capacitor 300 of the present embodiment, a cathode layer (not shown) is further formed on the surface of the electrolytic polymerization layer 6. The cathode layer is obtained, for example, by sequentially forming a graphite layer and a silver paste layer on the surface of the solid electrolyte layer.

陽極リード1に外部電極端子である陽極端子7を抵抗溶接等で電気的に接続し、陰極層と外部電極端子である陰極端子8を導電性接着剤(図示せず)等で電気的に接続する。陽極端子7および陰極端子8は一般的に銅板等の母材にニッケルやスズをめっき形成して得られる。   An anode terminal 7 as an external electrode terminal is electrically connected to the anode lead 1 by resistance welding or the like, and a cathode layer and the cathode terminal 8 as an external electrode terminal are electrically connected by a conductive adhesive (not shown) or the like. To do. The anode terminal 7 and the cathode terminal 8 are generally obtained by plating nickel or tin on a base material such as a copper plate.

その後、固体電解コンデンサ素子10、陽極端子7の一部および陰極端子8の一部を絶縁材料であるエポキシ樹脂等からなる外装樹脂9で覆い、固体電解コンデンサ300を得る。   Thereafter, the solid electrolytic capacitor element 10, a part of the anode terminal 7 and a part of the cathode terminal 8 are covered with an exterior resin 9 made of an epoxy resin or the like, which is an insulating material, to obtain a solid electrolytic capacitor 300.

(実施例1)
陽極体を構成する弁作用金属にはタンタル金属粉末を用いた。タンタルワイヤーからなる陽極リードをタンタル金属粉末に埋設し、加圧成形した後、焼結して陽極体を得た。得た陽極体および陽極リードをリン酸水溶液中に浸して陽極酸化処理を行い、陽極体および陽極リードの表面に誘電体層を形成した。次に、陽極リードの表面に形成した誘電体層の一部の表面にシリコン樹脂を塗布して絶縁層を形成した。
Example 1
Tantalum metal powder was used for the valve action metal constituting the anode body. An anode lead made of tantalum wire was embedded in tantalum metal powder, pressure-molded, and sintered to obtain an anode body. The obtained anode body and anode lead were immersed in an aqueous phosphoric acid solution to perform anodization, and a dielectric layer was formed on the surfaces of the anode body and anode lead. Next, an insulating layer was formed by applying silicon resin to a part of the surface of the dielectric layer formed on the surface of the anode lead.

その後、誘電体層、絶縁層、および陽極リードの一部の表面を覆うように、固体電解質層としてポリ3,4−エチレンジオキシチオフェンからなる導電性高分子を化学重合によって形成した。この時、絶縁層の表面に形成された化学重合層の厚みは1μmであった。   Thereafter, a conductive polymer made of poly3,4-ethylenedioxythiophene was formed as a solid electrolyte layer by chemical polymerization so as to cover the dielectric layer, the insulating layer, and a part of the surface of the anode lead. At this time, the thickness of the chemical polymerization layer formed on the surface of the insulating layer was 1 μm.

次に、陽極リードの先端側に形成した一部の誘電体層と絶縁層とをレーザ加工によって除去して、陽極リードの先端に陽極リードの表面を露出させた。露出した陽極リードの表面から給電を行い、電解重合によって化学重合層の表面にポリピロールからなる導電性高分子を形成した。   Next, a part of the dielectric layer and the insulating layer formed on the tip side of the anode lead were removed by laser processing to expose the surface of the anode lead at the tip of the anode lead. Power was supplied from the exposed surface of the anode lead, and a conductive polymer made of polypyrrole was formed on the surface of the chemical polymerization layer by electrolytic polymerization.

陽極リードと固体電解質層の絶縁を可能にするため、陽極リードの固体電化質層をレーザ加工によって除去した。この時、レーザ加工はミヤチテクノス社製レーザ加工機ML−7064Aを用い、電流値は17.5A、周波数は9kHzに設定した。   In order to allow insulation between the anode lead and the solid electrolyte layer, the solid electrolyte layer of the anode lead was removed by laser processing. At this time, laser processing was performed using a laser processing machine ML-7064A manufactured by Miyachi Technos, and the current value was set to 17.5 A and the frequency was set to 9 kHz.

このレーザ加工によって、除去した近傍の化学重合層および電解重合層が絶縁層から剥離して絶縁層の表面が露出した。レーザ加工で絶縁層の表面が露出したことによって、陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面が階段状に形成していることが確認できた。陽極リードの表面から立ち上がる絶縁層の端部から、前記絶縁層の表面から立ち上がる前記固体電解質層の端部までの、露出した絶縁層の長さである絶縁距離は10μmであった。   By this laser processing, the removed chemical polymerization layer and electrolytic polymerization layer in the vicinity were separated from the insulating layer, and the surface of the insulating layer was exposed. It was confirmed that the surface of the insulating layer and the solid electrolyte layer were formed stepwise with respect to the surface of the anode lead by exposing the surface of the insulating layer by laser processing. The insulation distance, which is the length of the exposed insulating layer, from the end of the insulating layer rising from the surface of the anode lead to the end of the solid electrolyte layer rising from the surface of the insulating layer was 10 μm.

得られた固体電解コンデンサ素子をグラファイトペーストへ浸漬し、乾燥処理を行って電解重合層の表面にグラファイト層を形成した。次に、銀ペーストへ浸漬し、乾燥処理を行って銀ペースト層を形成した後、陽極リードと陽極端子を溶接で接続し、銀ペースト層と陰極端子を導電性接着剤で接続した。   The obtained solid electrolytic capacitor element was dipped in a graphite paste and dried to form a graphite layer on the surface of the electrolytic polymerization layer. Next, after dipping in a silver paste and performing a drying treatment to form a silver paste layer, the anode lead and the anode terminal were connected by welding, and the silver paste layer and the cathode terminal were connected by a conductive adhesive.

最後に、固体電解コンデンサ素子、陽極端子の一部および陰極端子の一部をエポキシ樹脂で覆って外装樹脂を形成し、固体電解コンデンサを得た。   Finally, a solid electrolytic capacitor element, a part of the anode terminal and a part of the cathode terminal were covered with an epoxy resin to form an exterior resin to obtain a solid electrolytic capacitor.

(比較例1)
実施例1と同様に、表面に誘電体層を形成した陽極体を作製した。その後、誘電体層の表面を覆うように、固体電解質層としてポリ3,4−エチレンジオキシチオフェンからなる導電性高分子を化学重合によって形成した。
(Comparative Example 1)
As in Example 1, an anode body having a dielectric layer formed on the surface was produced. Thereafter, a conductive polymer made of poly3,4-ethylenedioxythiophene was formed as a solid electrolyte layer by chemical polymerization so as to cover the surface of the dielectric layer.

次に、陽極リードの先端側に形成された一部の誘電体層をレーザ加工によって除去することで、陽極リードの先端に陽極リードの表面を露出させた。露出した陽極リードの表面から給電を行い、電解重合によって化学重合層の表面にポリピロールからなる導電性高分子を形成した。   Next, a part of the dielectric layer formed on the tip side of the anode lead was removed by laser processing, so that the surface of the anode lead was exposed at the tip of the anode lead. Power was supplied from the exposed surface of the anode lead, and a conductive polymer made of polypyrrole was formed on the surface of the chemical polymerization layer by electrolytic polymerization.

陽極リードと固体電解質層の絶縁および陽極リードと陽極端子の接続を可能にするため、陽極リードの一部の誘電体層から固体電化質層までをレーザ加工によって除去した。この時、レーザ加工は実施例1と同じ装置、同じ条件で行った。このレーザ加工によって、陽極リードの表面の誘電体層と固体電解質層の端面は同一平面に形成されていた。   In order to allow the insulation between the anode lead and the solid electrolyte layer and the connection between the anode lead and the anode terminal, a part from the dielectric layer of the anode lead to the solid electrolyte layer was removed by laser processing. At this time, laser processing was performed under the same apparatus and conditions as in Example 1. By this laser processing, the end surfaces of the dielectric layer and the solid electrolyte layer on the surface of the anode lead were formed in the same plane.

得られた固体電解コンデンサ素子をグラファイトペーストへ浸漬し、乾燥処理を行って電解重合層の表面にグラファイト層を形成した。次に、銀ペーストへ浸漬し、乾燥処理を行って銀ペースト層を形成した後、陽極リードと陽極端子を溶接で接続し、銀ペースト層と陰極端子を導電性接着剤で接続した。   The obtained solid electrolytic capacitor element was dipped in a graphite paste and dried to form a graphite layer on the surface of the electrolytic polymerization layer. Next, after dipping in a silver paste and performing a drying treatment to form a silver paste layer, the anode lead and the anode terminal were connected by welding, and the silver paste layer and the cathode terminal were connected by a conductive adhesive.

最後に、固体電解コンデンサ素子、陽極端子の一部および陰極端子の一部をエポキシ樹脂で覆って外装樹脂を形成し、固体電解コンデンサを得た。   Finally, a solid electrolytic capacitor element, a part of the anode terminal and a part of the cathode terminal were covered with an epoxy resin to form an exterior resin to obtain a solid electrolytic capacitor.

実施例1、比較例1のサンプルをそれぞれ100個作製した後、温度85℃、湿度85%RHの雰囲気下にて10Vの電圧を印加した。500時間電圧を印加し、ショートが発生した個数を調査した。その結果を表1に示す。   After preparing 100 samples of Example 1 and Comparative Example 1, respectively, a voltage of 10 V was applied in an atmosphere of a temperature of 85 ° C. and a humidity of 85% RH. A voltage was applied for 500 hours, and the number of shorts occurred was investigated. The results are shown in Table 1.

Figure 0006475417
Figure 0006475417

表1から明らかなように、本発明を適用した実施例1の固体電解コンデンサではショートの発生が見られなかったが、比較例1の固体電解コンデンサでは8個のショート不良が発生した。このことから、陽極リードの表面に対し前記絶縁層と前記固体電解質層の表面を階段状に形成することによって、ショート不良を抑制している事がわかる。   As apparent from Table 1, no short circuit was observed in the solid electrolytic capacitor of Example 1 to which the present invention was applied, but eight short circuit defects occurred in the solid electrolytic capacitor of Comparative Example 1. From this, it can be understood that short-circuit defects are suppressed by forming the surfaces of the insulating layer and the solid electrolyte layer stepwise with respect to the surface of the anode lead.

以上より、陽極リードと固体電解質層との絶縁距離を確保し、ショート不良を抑制した固体電解コンデンサ素子およびその製造方法ならびに固体電解コンデンサが得られる。   As described above, a solid electrolytic capacitor element that secures an insulation distance between the anode lead and the solid electrolyte layer and suppresses short-circuit defects, a manufacturing method thereof, and a solid electrolytic capacitor can be obtained.

以上、本発明の実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であれば成し得るであろう各種変形、修正もまた本発明に含まれることは勿論である。   As mentioned above, although the Example of this invention was described, this invention is not limited above, The change and correction of a structure are possible in the range which does not deviate from the summary of this invention. That is, it is a matter of course that various modifications and corrections that can be made by those skilled in the art are also included in the present invention.

1 陽極リード
2 陽極体
3 誘電体層
4 絶縁層
5 化学重合層
6 電解重合層
7 陽極端子
8 陰極端子
9 外装樹脂
10 固体電解コンデンサ素子
300 固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Anode lead 2 Anode body 3 Dielectric layer 4 Insulating layer 5 Chemical polymerization layer 6 Electrolytic polymerization layer 7 Anode terminal 8 Cathode terminal 9 Exterior resin 10 Solid electrolytic capacitor element 300 Solid electrolytic capacitor

Claims (1)

陽極リードが導出した弁作用金属の多孔質体からなる陽極体の表面に誘電体層を形成し、
前記陽極リードの表面に形成した前記誘電体層の少なくとも一部の表面に絶縁層を形成し、
前記誘電体層および前記絶縁層の表面に導電性高分子からなる固体電解質層を形成し、
前記陽極リードに形成した一部の前記誘電体層、前記絶縁層、および前記固体電解質層を除去するレーザ加工で、除去する近傍の前記固体電解質層が前記絶縁層から剥離し、
前記陽極リードの導出した表面において、前記陽極リードのみが露出した部分と、前記誘電体層の表面に形成された前記絶縁層のみが露出した部分と、前記絶縁層の表面に形成された前記固体電解質層のみが露出した部分を有し、前記誘電体層、前記絶縁層、前記固体電解質層の端部の位置が前記陽極体に向かって順に低くなるよう階段状に形成すること特徴とする固体電解コンデンサ素子の製造方法。
A dielectric layer is formed on the surface of the anode body made of a porous body of the valve action metal derived from the anode lead,
Forming an insulating layer on at least a portion of the surface of the dielectric layer formed on the surface of the anode lead;
Forming a solid electrolyte layer made of a conductive polymer on the surfaces of the dielectric layer and the insulating layer;
In the laser processing for removing a part of the dielectric layer , the insulating layer, and the solid electrolyte layer formed on the anode lead, the solid electrolyte layer in the vicinity to be removed peels from the insulating layer,
In the lead-out surface of the anode lead, a portion where only the anode lead is exposed, a portion where only the insulating layer formed on the surface of the dielectric layer is exposed, and the solid formed on the surface of the insulating layer Solid having a portion where only the electrolyte layer is exposed, and is formed in a staircase shape so that the positions of the end portions of the dielectric layer, the insulating layer, and the solid electrolyte layer are lowered in order toward the anode body. Manufacturing method of electrolytic capacitor element.
JP2014053185A 2014-03-17 2014-03-17 Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor Active JP6475417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053185A JP6475417B2 (en) 2014-03-17 2014-03-17 Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053185A JP6475417B2 (en) 2014-03-17 2014-03-17 Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2015177088A JP2015177088A (en) 2015-10-05
JP6475417B2 true JP6475417B2 (en) 2019-02-27

Family

ID=54255967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053185A Active JP6475417B2 (en) 2014-03-17 2014-03-17 Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP6475417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022187911A (en) * 2021-06-08 2022-12-20 ローム株式会社 Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor
JPH01223716A (en) * 1988-03-02 1989-09-06 Matsushita Electric Ind Co Ltd Manufacture of electrolytic capacitor
JP2640864B2 (en) * 1989-08-22 1997-08-13 マルコン電子株式会社 Manufacturing method of tantalum solid electrolytic capacitor
JP2700420B2 (en) * 1989-11-22 1998-01-21 日本カーリット株式会社 Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2009266931A (en) * 2008-04-23 2009-11-12 Nec Tokin Corp Solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP2015177088A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6819691B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
TWI436391B (en) Solid electrolytic capacitor element and method for producing solid electrolytic capacitor element
JP4739982B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007294495A (en) Multilayer solid electrolytic capacitor and its manufacturing process
JP6391944B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004047886A (en) Solid electrolytic capacitor and its manufacturing method
JP4614269B2 (en) Solid electrolytic capacitor
JP6223800B2 (en) Method for forming solid electrolytic capacitor
JP2009105369A (en) Metal capacitor, and manufacturing method therefor
JP5232899B2 (en) Solid electrolytic capacitor
JP4770750B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2011193035A5 (en)
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP2011014663A (en) Solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
WO2017094219A1 (en) Electrode foil production method and capacitor production method
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4900851B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP4818006B2 (en) Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4596939B2 (en) Manufacturing method of three-terminal solid electrolytic capacitor element
JP4124360B2 (en) Manufacturing method of solid electrolytic capacitor
JP6309198B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5642508B2 (en) Surface mount thin capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250