JP2006108192A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2006108192A
JP2006108192A JP2004289449A JP2004289449A JP2006108192A JP 2006108192 A JP2006108192 A JP 2006108192A JP 2004289449 A JP2004289449 A JP 2004289449A JP 2004289449 A JP2004289449 A JP 2004289449A JP 2006108192 A JP2006108192 A JP 2006108192A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
voltage
aging
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289449A
Other languages
Japanese (ja)
Inventor
Mitsuharu Yagi
光春 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2004289449A priority Critical patent/JP2006108192A/en
Publication of JP2006108192A publication Critical patent/JP2006108192A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the leakage current of a solid electrolytic capacitor that has a conductive high polymer as a solid electrolyte. <P>SOLUTION: The solid electrolytic capacitor is manufactured by polymerizing a polymerizing monomer with an oxidant to form a solid electrolyte on the surface of a capacitor element that has a dielectric oxide film formed on the surface of an anode body which is made of a valve action metal. In the manufacturing method, aging is performed by applying voltage of 0.9 to 1.4 times the rated voltage under an atmosphere of 140°C or over after the capacitor element is provided with an external resin, and the solid electrolytic capacitor is completed by bending an external terminal along the external resin. The voltage application is set to start when the surface temperature of the solid electrolytic capacitor reaches 140°C or over. The solid electrolytic capacitor is left in a high temperature state of 140°C or over for a predetermined time period, and the voltage continues to be applied during a cooling-off period, thus performing aging. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は固体電解コンデンサの製造方法に関するもので、特に固体電解質として導電性高分子を用いた固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

固体電解コンデンサは、アルミニウム等からなる陽極箔と陰極箔をセパレータを介して巻回してなるコンデンサ素子に、固体電解質を保持してなるいわゆる巻回型の電解コンデンサや、タンタル微粉末を焼結してなるコンデンサ素子の表面に固体電解質層を形成してなる焼結型の固体電解コンデンサが知られている。   Solid electrolytic capacitors are obtained by sintering a so-called wound electrolytic capacitor holding a solid electrolyte or a fine tantalum powder on a capacitor element formed by winding an anode foil and a cathode foil made of aluminum or the like through a separator. A sintered solid electrolytic capacitor in which a solid electrolyte layer is formed on the surface of a capacitor element is known.

このような電解コンデンサに用いられる固体電解質としては、近年、低ESR化を目的として導電性高分子が着目され、導電性高分子を固体電解質として用いる固体電解コンデンサが実用化されている。一般に、これら導電性高分子としては、ポリチオフェン、ポリピロール又はポリアニリン等があり、中でもポリチオフェンは、ポリピロール又はポリアニリンと比較して、導電率が高く熱安定性が特に優れていることから近年注目されており、ポリチオフェンを固体電解質として用いた固体電解コンデンサとして特開平2−15611号公報等に開示されているものがある。   As a solid electrolyte used in such an electrolytic capacitor, in recent years, a conductive polymer has attracted attention for the purpose of reducing ESR, and a solid electrolytic capacitor using the conductive polymer as a solid electrolyte has been put into practical use. In general, these conductive polymers include polythiophene, polypyrrole, or polyaniline. Among them, polythiophene has attracted attention in recent years because it has high electrical conductivity and particularly excellent thermal stability compared to polypyrrole or polyaniline. JP-A-2-15611 discloses a solid electrolytic capacitor using polythiophene as a solid electrolyte.

特開平2−15611号公報JP-A-2-15611

導電性高分子を固体電解質に用いた固体電解コンデンサは、プリント基板に実装する際にハンダリフロー工程を経ると、漏れ電流が大きくなることがある。これは、弁金属を陽極酸化によって形成した誘電体酸化皮膜には、微細な欠陥部が残されており、リフロー工程を経ることにより誘電体酸化皮膜の微細な欠陥部が顕在化して、この部分で漏れ電流が流れてしまうためと考えられる。そして、この漏れ電流の増大は、製品毎のばらつきが極めて大きいという特徴がある。   When a solid electrolytic capacitor using a conductive polymer as a solid electrolyte is subjected to a solder reflow process when mounted on a printed circuit board, a leakage current may increase. This is because the dielectric oxide film formed by anodic oxidation of the valve metal has left a fine defect portion, and the fine defect portion of the dielectric oxide film becomes obvious through the reflow process. This is thought to be due to leakage current. This increase in leakage current is characterized by extremely large variations among products.

ところで、電解液を用いた電解コンデンサでは、エージング処理を行うと電解液によって皮膜の欠陥部が修復されるために漏れ電流が低減することが知られているが、導電性高分子を固体電解質に用いた場合には、導電性高分子から皮膜修復のために必要な酸素が供給されにくいため、この欠陥部における皮膜修復が十分でないためと考えられる。そして、導電性高分子を固体電解質に用いた場合には、絶縁欠陥部で電流が流れた際に導電性高分子が絶縁化することによって漏れ電流が低減するものと考えられている。   By the way, in an electrolytic capacitor using an electrolytic solution, it is known that when an aging treatment is performed, a defective portion of the film is repaired by the electrolytic solution, so that leakage current is reduced. When used, it is considered that oxygen necessary for repairing the film is difficult to be supplied from the conductive polymer, so that the film repair at the defective portion is not sufficient. When a conductive polymer is used for the solid electrolyte, it is considered that the leakage current is reduced by insulating the conductive polymer when a current flows in the insulation defect portion.

以上のように、導電性高分子を固体電解質に用いた場合の漏れ電流の低減のメカニズムと考えられるために、導電性高分子の絶縁化の程度にばらつきがあり、結果として個々の製品の漏れ電流が増大する程度にばらつきが生じてしまうものと考えられる。   As described above, the conductive polymer is considered to be a mechanism for reducing the leakage current when the solid electrolyte is used, and therefore the degree of insulation of the conductive polymer varies, resulting in leakage of individual products. It is considered that variation occurs to the extent that the current increases.

そこで、この発明では、固体電解コンデンサの漏れ電流の増大を防止するとともに、ばらつきのない、安定した品質の固体電解コンデンサを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a solid electrolytic capacitor having stable quality with no variation while preventing an increase in leakage current of the solid electrolytic capacitor.

この出願の請求項1に係る発明は、弁作用金属からなる陽極体の表面に誘電体酸化皮膜を形成したコンデンサ素子の表面に、重合性モノマーを酸化剤によって重合して固体電解質を形成してなる固体電解コンデンサの製造方法において、コンデンサ素子に樹脂外装を施し、外部端子を樹脂外装に沿って折り曲げて固体電解コンデンサを完成した後に、140℃以上の雰囲気下で、定格電圧の0.9〜1.4倍の電圧を印加してエージングを行ったことを特徴とする。   In the invention according to claim 1 of this application, a solid electrolyte is formed by polymerizing a polymerizable monomer with an oxidizing agent on the surface of a capacitor element in which a dielectric oxide film is formed on the surface of an anode body made of a valve metal. In the manufacturing method for a solid electrolytic capacitor, a capacitor element is provided with a resin sheath, and external terminals are bent along the resin sheath to complete a solid electrolytic capacitor. Aging is performed by applying a voltage of 1.4 times.

この出願の請求項2に係る発明は、請求項1に記載の固体電解コンデンサの製造方法において、固体電解コンデンサの表面温度が140℃以上としてから、定格電圧の0.9〜1.4倍の電圧を印加したことを特徴とする。   The invention according to claim 2 of the present application is the method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the surface temperature of the solid electrolytic capacitor is set to 140 ° C. or more, and is 0.9 to 1.4 times the rated voltage. A voltage is applied.

この出願の請求項3に係る発明は、請求項2に記載の固体電解コンデンサの製造方法において、固体電解コンデンサを140℃以上の高温状態から常温まで冷却する冷却期間中、定格電圧の0.9〜1.4倍の電圧を印加し続けてエージングを行ったことを特徴とする。   The invention according to claim 3 of this application is the method of manufacturing a solid electrolytic capacitor according to claim 2, wherein the rated voltage is 0.9 during the cooling period in which the solid electrolytic capacitor is cooled from a high temperature state of 140 ° C. or higher to room temperature. Aging is performed by continuously applying a voltage of ˜1.4 times.

固体電解コンデンサを完成した後に、140℃以上の雰囲気の下に放置することにより、固体電解コンデンサ全体が温度上昇する。そのため、コンデンサ素子の誘電体酸化皮膜も温度上昇することになり、皮膜の電気抵抗が低減することになる。そして、この状態で定格電圧の0.9〜1.4倍の電圧を印加することにより、微細な欠陥部においても電流が流れるようになる。このため、固体電解コンデンサを通常使用する状態よりも電流が多く流れることになり、この電流によって導電性高分子の絶縁化が図られると考えられる。定格電圧の0.9倍未満の電圧では、エージング効果が十分でなく、固体電解コンデンサの漏れ電流が低減しない。一方、定格電圧の1.4倍を超えると、エージング途中にショート状態になり、電流暴走を起こすものが発生してしまう。   After the solid electrolytic capacitor is completed, the temperature of the entire solid electrolytic capacitor rises by leaving it in an atmosphere of 140 ° C. or higher. For this reason, the temperature of the dielectric oxide film of the capacitor element also rises, and the electrical resistance of the film is reduced. Then, by applying a voltage 0.9 to 1.4 times the rated voltage in this state, a current flows even in a minute defect portion. For this reason, more current flows than in a state where the solid electrolytic capacitor is normally used, and it is considered that the conductive polymer is insulated by this current. When the voltage is less than 0.9 times the rated voltage, the aging effect is not sufficient, and the leakage current of the solid electrolytic capacitor is not reduced. On the other hand, when the voltage exceeds 1.4 times the rated voltage, a short circuit occurs during aging, and a current runaway occurs.

このように、微細な欠陥部においても電流を流して、その欠陥部の上に形成された導電性高分子を絶縁化することにより、固体電解コンデンサのリフロー後の漏れ電流の増大を抑止することができる。   In this way, an increase in leakage current after reflow of the solid electrolytic capacitor is suppressed by flowing current even in a minute defect portion and insulating the conductive polymer formed on the defect portion. Can do.

特に、固体電解コンデンサの表面温度が140℃以上としてから、定格電圧の0.9〜1.4倍の電圧を印加すると、導電性高分子の絶縁化は円滑に行われるようになり好適である。   In particular, when the surface temperature of the solid electrolytic capacitor is 140 ° C. or higher and a voltage of 0.9 to 1.4 times the rated voltage is applied, the insulation of the conductive polymer is performed smoothly, which is preferable. .

さらに、固体電解コンデンサを140℃以上の高温状態に所定時間放置した後に常温まで冷却するとともに、常温までの冷却期間中、定格電圧の0.9〜1.4倍の電圧を印加してエージングを行うと、導電性高分子の絶縁化がより進行し、漏れ電流の低減効果が大きなものとなる。   In addition, the solid electrolytic capacitor is allowed to stand at a high temperature of 140 ° C. or higher for a predetermined time and then cooled to room temperature, and during the cooling period to room temperature, a voltage 0.9 to 1.4 times the rated voltage is applied for aging. If it does, insulation of a conductive polymer will progress further and the reduction effect of a leakage current will become a big thing.

この発明による固体電解コンデンサの製造方法では、漏れ電流を低減することができるようになる。また、固体電解コンデンサがショート状態となることもなく、ばらつきのない、安定した品質の固体電解コンデンサを提供することができる。   In the method for manufacturing a solid electrolytic capacitor according to the present invention, the leakage current can be reduced. In addition, the solid electrolytic capacitor can be provided in a stable quality with no variation without causing the solid electrolytic capacitor to be short-circuited.

次にこの発明の実施の形態について詳細に説明する。
図1は固体電解コンデンサの内部構造を示す断面図である。1はコンデンサ素子であり、タンタル微粉末を所定形状に成型するとともに、タンタル線等の陽極導出線を埋設して、さらに焼結してタンタル焼結体を得、さらにリン酸水溶液等に浸漬し、所定電圧を印加してタンタル微粉末の表面に誘電体となる陽極酸化皮膜を形成したものである。なお、焼結体はタンタルに限らず、アルミニウム、ニオブ、チタン等の弁作用金属を用いることができる。
Next, embodiments of the present invention will be described in detail.
FIG. 1 is a cross-sectional view showing the internal structure of the solid electrolytic capacitor. Reference numeral 1 denotes a capacitor element, in which fine tantalum powder is molded into a predetermined shape, and an anode lead wire such as a tantalum wire is embedded and further sintered to obtain a tantalum sintered body, which is further immersed in a phosphoric acid aqueous solution or the like. A predetermined voltage is applied to form an anodic oxide film serving as a dielectric on the surface of the fine tantalum powder. The sintered body is not limited to tantalum, and valve action metals such as aluminum, niobium, and titanium can be used.

2は、陽極酸化皮膜の上に形成された導電性高分子層である。導電性高分子層は、3,4−エチレンジオキシチオフェンを所定溶媒で希釈したモノマー溶液にコンデンサ素子を浸漬し、さらに所定の酸化剤を所定の溶媒に溶解した酸化剤溶液に浸漬する工程を繰り返すことにより、3,4−エチレンジオキシチオフェンを酸化重合して形成したものである。   2 is a conductive polymer layer formed on the anodized film. The conductive polymer layer includes a step of immersing the capacitor element in a monomer solution obtained by diluting 3,4-ethylenedioxythiophene with a predetermined solvent, and further immersing in a oxidant solution in which a predetermined oxidant is dissolved in the predetermined solvent. By repeating, 3,4-ethylenedioxythiophene is formed by oxidative polymerization.

3は、導電性高分子層2の上に形成されたカーボン層であり、4は、カーボン層の上に形成された銀ペースト層である。   3 is a carbon layer formed on the conductive polymer layer 2, and 4 is a silver paste layer formed on the carbon layer.

5は陽極リード線であり、コンデンサ素子の陽極導出線と溶接され、外部と電気的に連絡する。6は陰極リード線であり、銀ペースト層によって接続され、外部と電気的に連絡する。さらに、全体を樹脂でモールドして樹脂外装7を施す。さらに、陽極リード線5、陰極リード線6を樹脂外装7に沿って折り曲げている。   Reference numeral 5 denotes an anode lead wire, which is welded to the anode lead-out line of the capacitor element and is in electrical communication with the outside. Reference numeral 6 denotes a cathode lead wire, which is connected by a silver paste layer and is in electrical communication with the outside. Further, the whole is molded with a resin and a resin sheath 7 is applied. Further, the anode lead wire 5 and the cathode lead wire 6 are bent along the resin sheath 7.

以上のような固体電解コンデンサは公知の方法によって作成することができ、ここでは、製造工程の詳細は省略する。このような固体電解コンデンサは、さらにその特性を安定なものとするために、エージング処理を行う。エージング処理は陽極リード線および陰極リード線のそれぞれに電極を取り付け、陽極リード線にプラス、陰極リード線にマイナスとなるように固体電解コンデンサに所定の直流電圧を印加してエージングを行う。   The solid electrolytic capacitor as described above can be produced by a known method, and the details of the manufacturing process are omitted here. Such a solid electrolytic capacitor is subjected to an aging treatment in order to further stabilize its characteristics. In the aging treatment, an electrode is attached to each of the anode lead wire and the cathode lead wire, and aging is performed by applying a predetermined DC voltage to the solid electrolytic capacitor so that the anode lead wire is positive and the cathode lead wire is negative.

このエージングを行う場合には、予め固体電解コンデンサを恒温漕等に入れ140℃以上に加熱しておく。固体電解コンデンサの表面温度が140℃以上になった状態で定格電圧の0.9から1.4倍の電圧を印加し、エージングを行う。このエージング時間は固体電解コンデンサの大きさ等によっても異なるが、例えば、3.5mm×2.8mm×1.2mm程度の大きさの固体電解コンデンサでは60分程度電圧を印加する。さらに、恒温漕より固体電解コンデンサを取り出し、あるいは、恒温漕を強制空冷する等により、固体電解コンデンサを冷却する。この冷却過程においても、固体電解コンデンサには電圧を印加しつづける。   When performing this aging, the solid electrolytic capacitor is previously placed in a thermostatic oven or the like and heated to 140 ° C. or higher. Aging is performed by applying a voltage 0.9 to 1.4 times the rated voltage while the surface temperature of the solid electrolytic capacitor is 140 ° C. or higher. Although this aging time varies depending on the size of the solid electrolytic capacitor, for example, in the case of a solid electrolytic capacitor having a size of about 3.5 mm × 2.8 mm × 1.2 mm, a voltage is applied for about 60 minutes. Further, the solid electrolytic capacitor is cooled by taking out the solid electrolytic capacitor from the thermostat or by forced air cooling of the thermostat. In this cooling process, a voltage is continuously applied to the solid electrolytic capacitor.

この固体電解コンデンサのエージングにより、固体電解コンデンサの誘電体酸化皮膜の欠陥部では、電流が流れることにより導電性高分子の絶縁化が起こり、固体電解コンデンサの漏れ電流の低減が図れるようになる。   Due to the aging of the solid electrolytic capacitor, insulation of the conductive polymer occurs due to the current flowing in the defective portion of the dielectric oxide film of the solid electrolytic capacitor, and the leakage current of the solid electrolytic capacitor can be reduced.

以上のような、工程を経て、固体電解コンデンサを完成する。   The solid electrolytic capacitor is completed through the steps as described above.

次により具体的な実施例について説明する。
固体電解コンデンサは、定格電圧4V、外径寸法3.5mm×2.8mm×1.2mmのものである。この固体電解コンデンサのエージング処理を行った。エージング条件は、印加電圧が5.2Vで、定格電圧の1.3倍とした。エージングする際の雰囲気を175℃、140℃、130℃、105℃の4水準で行った。105℃、130℃でのエージングは比較例となる。
Specific examples will be described below.
The solid electrolytic capacitor has a rated voltage of 4 V and an outer diameter of 3.5 mm × 2.8 mm × 1.2 mm. This solid electrolytic capacitor was aged. The aging conditions were an applied voltage of 5.2V and 1.3 times the rated voltage. The aging atmosphere was performed at four levels of 175 ° C., 140 ° C., 130 ° C., and 105 ° C. Aging at 105 ° C. and 130 ° C. is a comparative example.

また、エージングに際し、電圧印加を開始する際、また電圧印加を終了する際の固体電解コンデンサの温度を変化させてエージングを行った。より具体的には、常温状態の恒温漕に固体電解コンデンサを収納し、その後加熱を行って一定温度とした後、さらに恒温漕を開放して常温まで冷却した後に恒温漕より固体電解コンデンサを取り出すが、この工程の中で電圧印加を開始または終了する時期を変化させて、その影響を調査した。   Further, during aging, aging was performed by changing the temperature of the solid electrolytic capacitor at the start of voltage application and at the end of voltage application. More specifically, the solid electrolytic capacitor is housed in a constant temperature bath at room temperature, and then heated to a constant temperature, and then the constant temperature bath is opened and cooled to room temperature, and then the solid electrolytic capacitor is taken out from the constant temperature bath. However, the effect of investigating the effect of changing the timing of starting or ending voltage application in this process was investigated.

このエージング条件をまとめると次の表1の通りである。   Table 1 below summarizes the aging conditions.

以上の条件で、エージングを行った後、固体電解コンデンサの漏れ電流特性を調査した。調査項目は漏れ電流の平均値を求めた。サンプルによっては、固体電解コンデンサがショート状態となっているものもあり、そのショート状態になっているものを漏れ電流大による不良とした。この場合、漏れ電流の平均値は、漏れ電流大となったものを除いて、その他の良品のサンプルの平均値を算出したものである。その結果を次の表2に示す   After aging under the above conditions, the leakage current characteristics of the solid electrolytic capacitor were investigated. The survey item was the average leakage current. Some samples have a solid electrolytic capacitor in a short-circuit state, and the short-circuited state is regarded as a failure due to a large leakage current. In this case, the average value of the leakage current is obtained by calculating the average value of the other non-defective samples except for the one having a large leakage current. The results are shown in Table 2 below.

表2から判るように、実施例1ないし実施例4では、漏れ電流の平均値が0.4〜0.6μAと低い値となっているのに対し、比較的低温でエージングを行った比較例1、比較例2では、漏れ電流の平均値が0.9〜1.0μAと高い値となっている。従って、エージングを140℃以上で行うことにより、漏れ電流を低減できることが判る。   As can be seen from Table 2, in Examples 1 to 4, the average value of the leakage current is a low value of 0.4 to 0.6 μA, whereas the comparative example was aged at a relatively low temperature. 1. In Comparative Example 2, the average value of the leakage current is as high as 0.9 to 1.0 μA. Therefore, it can be seen that leakage current can be reduced by performing aging at 140 ° C. or higher.

また、エージングを固体電解コンデンサの表面温度が上昇してから行った場合(実施例1、実施例3、実施例4)では、漏れ電流大による不良が発生しなかったのに対し、エージングを常温より行った場合(実施例2)では、漏れ電流大による不良が発生した。従って、エージングは固体電解コンデンサの表面温度が上昇してから行うことが好ましいことが判る。   In addition, when the aging was performed after the surface temperature of the solid electrolytic capacitor was increased (Example 1, Example 3, Example 4), no defect due to a large leakage current occurred, whereas aging was performed at room temperature. In the case of performing more (Example 2), a defect due to a large leakage current occurred. Therefore, it can be seen that aging is preferably performed after the surface temperature of the solid electrolytic capacitor is increased.

さらに、エージングを固体電解コンデンサの表面温度が上昇してから、常温に冷却するまで行った場合(実施例1)には、エージングを固体電解コンデンサの表面温度が上昇した状態で終了した場合(実施例3)に比べ、漏れ電流の平均値が小さなものとなる。このことより、エージングを固体電解コンデンサの表面温度が上昇してから、常温に冷却するまで行うことがより好ましいことが判る。   Furthermore, when the aging is performed after the surface temperature of the solid electrolytic capacitor is increased until it is cooled to room temperature (Example 1), the aging is completed in a state where the surface temperature of the solid electrolytic capacitor is increased (implementation). Compared with Example 3), the average value of the leakage current is small. From this, it can be seen that it is more preferable to perform aging after the surface temperature of the solid electrolytic capacitor rises until it is cooled to room temperature.

固体電解コンデンサの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of a solid electrolytic capacitor.

符号の説明Explanation of symbols

1 コンデンサ素子
2 固体電解質層
3 カーボン層
4 銀ペースト層
5 陽極リード線
6 陰極リード線
7 樹脂外装
1 Capacitor Element 2 Solid Electrolyte Layer 3 Carbon Layer 4 Silver Paste Layer 5 Anode Lead Wire 6 Cathode Lead Wire 7 Resin Exterior

Claims (3)

弁作用金属からなる陽極体の表面に誘電体酸化皮膜を形成したコンデンサ素子の表面に、重合性モノマーを酸化剤によって重合して固体電解質を形成し、このコンデンサ素子に樹脂外装を施し、外部端子を樹脂外装に沿って折り曲げた後に、140℃以上の雰囲気下で、定格電圧の0.9〜1.4倍の電圧を印加してエージングを行ったことを特徴とする固体電解コンデンサの製造方法。 A solid electrolyte is formed by polymerizing a polymerizable monomer with an oxidizing agent on the surface of a capacitor element in which a dielectric oxide film is formed on the surface of an anode body made of a valve metal, and a resin sheath is applied to the capacitor element to provide an external terminal. A method for producing a solid electrolytic capacitor, wherein the aging is performed by applying a voltage of 0.9 to 1.4 times the rated voltage in an atmosphere of 140 ° C. or higher after being bent along the resin sheath . 固体電解コンデンサの表面温度が140℃以上としてから、定格電圧の0.9〜1.4倍の電圧を印加したことを特徴とする請求項1に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein a voltage 0.9 to 1.4 times the rated voltage is applied after the surface temperature of the solid electrolytic capacitor is 140 ° C. or higher. 固体電解コンデンサを140℃以上の高温状態から常温まで冷却する冷却期間中、定格電圧の0.9〜1.4倍の電圧を印加し続けてエージングを行ったことを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。 The aging is performed by continuously applying a voltage of 0.9 to 1.4 times the rated voltage during a cooling period in which the solid electrolytic capacitor is cooled from a high temperature state of 140 ° C or higher to room temperature. 2. A method for producing a solid electrolytic capacitor according to 2.
JP2004289449A 2004-09-30 2004-09-30 Solid electrolytic capacitor Pending JP2006108192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289449A JP2006108192A (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289449A JP2006108192A (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2006108192A true JP2006108192A (en) 2006-04-20

Family

ID=36377592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289449A Pending JP2006108192A (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2006108192A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012650A (en) * 2005-06-28 2007-01-18 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
CN102254684A (en) * 2010-04-22 2011-11-23 三洋电机株式会社 Solid electrolytic capacitor and method of manufacturing the same
CN103646793A (en) * 2013-11-06 2014-03-19 中国振华(集团)新云电子元器件有限责任公司 Aging method for improving breakdown voltage of solid electrolyte tantalum capacitor
CN103675515A (en) * 2012-08-31 2014-03-26 Avx公司 Screening method for electrolytic capacitors
CN116344220A (en) * 2023-03-20 2023-06-27 广东风华高新科技股份有限公司 Aging method of aluminum electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012650A (en) * 2005-06-28 2007-01-18 Nichicon Corp Method of manufacturing solid electrolytic capacitor
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
CN102254684A (en) * 2010-04-22 2011-11-23 三洋电机株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2011243958A (en) * 2010-04-22 2011-12-01 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
CN103675515A (en) * 2012-08-31 2014-03-26 Avx公司 Screening method for electrolytic capacitors
CN103646793A (en) * 2013-11-06 2014-03-19 中国振华(集团)新云电子元器件有限责任公司 Aging method for improving breakdown voltage of solid electrolyte tantalum capacitor
CN116344220A (en) * 2023-03-20 2023-06-27 广东风华高新科技股份有限公司 Aging method of aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2011155236A (en) Solid-state electrolytic capacitor element and method for manufacturing the same
US7436652B2 (en) Solid electrolyte capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JPWO2009113285A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006108192A (en) Solid electrolytic capacitor
US7609505B2 (en) Chip solid electrolyte capacitor and production method of the same
EP2461337A1 (en) Manufacturing method for solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element
JP2003257795A (en) Solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP4934788B2 (en) Capacitor, capacitor element and manufacturing method thereof
JP4671350B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4822362B2 (en) Method for manufacturing element for solid electrolytic capacitor
JP2000340462A (en) Solid electrolytic capacitor
JP2006324656A (en) Solid electrolytic capacitor and its manufacturing method
JP2001102256A (en) Method for manufacturing solid electrolytic capacitor
JP2007048947A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008226971A (en) Manufacturing method for solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100310