JP2007012650A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2007012650A
JP2007012650A JP2005187593A JP2005187593A JP2007012650A JP 2007012650 A JP2007012650 A JP 2007012650A JP 2005187593 A JP2005187593 A JP 2005187593A JP 2005187593 A JP2005187593 A JP 2005187593A JP 2007012650 A JP2007012650 A JP 2007012650A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
temperature
heat treatment
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005187593A
Other languages
Japanese (ja)
Other versions
JP4724480B2 (en
Inventor
Keiichi Ogata
慶一 尾形
Kiyobumi Aoki
清文 青木
Naoki Kotani
直己 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005187593A priority Critical patent/JP4724480B2/en
Publication of JP2007012650A publication Critical patent/JP2007012650A/en
Application granted granted Critical
Publication of JP4724480B2 publication Critical patent/JP4724480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid electrolytic capacitor that reduces a leakage current, and prevents deterioration in ESR characteristics. <P>SOLUTION: In the method of the solid electrolytic capacitor: a dielectric oxide film, and a conductive polymer that becomes a solid electrolyte are formed on the surface of a sintered compact made of tantalum or niobium powder; heat treatment is applied to a capacitor element in which carbon and silver layers are formed successively; and then a voltage is applied for performing element aging treatment. A temperature of the heat treatment is 100-180°C and a time of the heat treatment is 10-30 minutes. A temperature of the element aging treatment is 40-100°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor.

従来、タンタル、もしくはニオブなどの弁作用金属粉末を成形・焼結して陽極体とし、ポリピロールやポリチオフェンに代表される導電性高分子を固体電解質とする固体電解コンデンサは、固体電解質形成時や陰極引出し層形成時に、加熱処理や硬化処理を繰返し行う。   Conventionally, a solid electrolytic capacitor in which a valve action metal powder such as tantalum or niobium is molded and sintered to form an anode body and a conductive polymer typified by polypyrrole or polythiophene is used as a solid electrolyte is used for forming a solid electrolyte or a cathode. At the time of forming the extraction layer, heat treatment and curing treatment are repeated.

この加熱処理や硬化処理を繰返すことにより増加する固体電解コンデンサの漏れ電流を低減するため、樹脂封入前のコンデンサ素子に、最高使用温度以上で電圧を印加する素子エージング処理を行い、樹脂封入後再度エージング処理する方法が開示されている(例えば特許文献1参照)。   In order to reduce the leakage current of the solid electrolytic capacitor that increases by repeating this heat treatment and curing treatment, element aging treatment is applied to the capacitor element before resin encapsulation at a temperature higher than the maximum operating temperature, and again after resin encapsulation. A method of aging processing is disclosed (for example, see Patent Document 1).

また、樹脂封入後の固体電解コンデンサに所定の電圧を印加し、室温から高温に急激に昇温させた後、室温まで冷却する熱衝撃を加えるエージング処理方法も開示されている(例えば特許文献2参照)。   Also disclosed is an aging treatment method in which a predetermined voltage is applied to a solid electrolytic capacitor after resin encapsulation, the temperature is rapidly increased from room temperature to high temperature, and then a thermal shock is applied to cool to room temperature (for example, Patent Document 2). reference).

さらに、コンデンサ素子内に導電性ポリマーを形成した後、エージング前に200℃未満の温度で熱処理を行う方法が開示されている(例えば特許文献3参照)。
特許第3515327号公報 特開2004−128032号公報 特開2003−17369号公報
Furthermore, a method is disclosed in which after a conductive polymer is formed in a capacitor element, heat treatment is performed at a temperature of less than 200 ° C. before aging (see, for example, Patent Document 3).
Japanese Patent No. 3515327 JP 2004-128032 A JP 2003-17369 A

しかしながら、樹脂封入前のコンデンサ素子に、最高使用温度以上で電圧を印加するエージング処理を行い、樹脂封入後再度エージング処理する方法は、エージング中に耐電圧の低い部分に流れる電流により誘電体酸化皮膜が修復される効果よりも、高温中でのエージング電流により発生するジュール熱により導電性高分子が絶縁化する問題が大きい。コンデンサ素子に、より表面積の大きい高CV弁作用金属粉末を使用した場合、機械的強度の低い一次粒子同士の結合部分が多く、耐電圧の低い部分が多くなるため、エージング電流が多く必要となり、絶縁化される高分子の面積が増え、ESR特性の劣化をもたらすという問題があった。
また、樹脂封入後の固体電解コンデンサに所定の電圧を印加し、室温から高温に急激に昇温後、室温まで冷却する熱衝撃を加えるエージング処理方法は、熱衝撃中も電圧を印加しているため、酸化し易い高CV弁作用金属粉末を使用した固体電解コンデンサ素子では、エージングおよび加熱による酸化で、過度のスクリーニングとなり、製品歩留が低下するという問題があった。
さらに、コンデンサ素子内に導電性ポリマーを形成した後、エージング前に200℃未満の温度で熱処理を行う方法は、酸化され易い高CV弁作用金属粉末を使用したコンデンサ素子では、エージング処理が150℃を超える高温になり、エージング中に陽極素子の酸化が進み、酸化膜の欠陥部が増えるため、漏れ電流を増加させるという問題があった。
However, the capacitor element before encapsulating the resin is subjected to aging treatment in which a voltage is applied at a temperature higher than the maximum operating temperature, and the aging treatment is performed again after encapsulating the resin. The problem that the conductive polymer is insulated by the Joule heat generated by the aging current at a high temperature is larger than the effect of repairing. When a high CV valve action metal powder with a larger surface area is used for the capacitor element, there are many bonding parts between primary particles with low mechanical strength, and there are many parts with low withstand voltage, so a large aging current is required, There is a problem in that the area of the polymer to be insulated increases, resulting in deterioration of ESR characteristics.
In addition, the aging treatment method in which a predetermined voltage is applied to the solid electrolytic capacitor after resin encapsulation, the temperature is rapidly increased from room temperature to a high temperature, and then the thermal shock is cooled to room temperature, the voltage is also applied during the thermal shock. Therefore, in the solid electrolytic capacitor element using the high CV valve action metal powder which is easily oxidized, there is a problem that the product yield is lowered due to excessive screening due to oxidation by aging and heating.
Furthermore, after the conductive polymer is formed in the capacitor element, the heat treatment is performed at a temperature of less than 200 ° C. before aging. Since the anode element was oxidized during aging and the number of defects in the oxide film increased during aging, there was a problem of increasing leakage current.

上記のような問題があったため、特に高CV弁作用金属粉末を使用した導電性高分子固体電解コンデンサの製造方法が求められていた。   Because of the above problems, a method for producing a conductive polymer solid electrolytic capacitor using a high CV valve action metal powder has been demanded.

本発明は、上記課題を解決するもので、弁作用金属粉末からなる焼結体表面に、誘電体酸化皮膜を形成後、固体電解質、カーボン層、銀層を形成したコンデンサ素子に加熱処理を行い、その後、電圧を印加して、素子エージング処理を行うことを特徴とする固体電解コンデンサの製造方法である。   The present invention solves the above problems, and after a dielectric oxide film is formed on the surface of a sintered body made of valve action metal powder, the capacitor element on which a solid electrolyte, a carbon layer, and a silver layer are formed is subjected to heat treatment. Then, a method for producing a solid electrolytic capacitor is characterized in that a voltage is applied to perform element aging treatment.

また、上記の加熱処理の温度が、100〜180℃であることを特徴とする固体電解コンデンサの製造方法である。   Moreover, the temperature of said heat processing is 100-180 degreeC, It is a manufacturing method of the solid electrolytic capacitor characterized by the above-mentioned.

さらに、上記の加熱処理の時間が、10〜30分であることを特徴とする固体電解コンデンサの製造方法である。   Furthermore, the time for the above heat treatment is 10 to 30 minutes.

また、上記の素子エージング処理の温度が、40〜100℃であることを特徴とする固体電解コンデンサの製造方法である。   Moreover, the temperature of said element aging process is 40-100 degreeC, It is a manufacturing method of the solid electrolytic capacitor characterized by the above-mentioned.

本発明は、弁作用金属粉末からなる焼結体表面に、誘電体酸化皮膜を形成後、固体電解質、続けてカーボン層、銀層を形成したコンデンサ素子を100〜180℃の高温中で加熱処理した後、100℃以下の雰囲気中で素子エージングを行うため、100℃を超える高温中での素子エージングによる酸化膜の欠陥部の増加、および導電性高分子の劣化によるESR特性の悪化がなく、かつ、漏れ電流特性に優れた固体電解コンデンサを提供することができる。   In the present invention, a capacitor element in which a dielectric oxide film is formed on the surface of a sintered body made of a valve action metal powder and then a solid electrolyte, followed by a carbon layer and a silver layer is heat-treated at a high temperature of 100 to 180 ° C. After that, in order to perform element aging in an atmosphere of 100 ° C. or less, there is no increase in the defect portion of the oxide film due to element aging in a high temperature exceeding 100 ° C., and there is no deterioration of ESR characteristics due to deterioration of the conductive polymer, In addition, a solid electrolytic capacitor having excellent leakage current characteristics can be provided.

[実施例1]
以下に、本発明による固体電解コンデンサの製造方法を説明する。まず、100,000CV/gの弁作用金属粉末を0.7mm×0.9mm×0.6mmの寸法に加圧成形、焼結し、焼結体素子とする。該焼結体素子を酸性水溶液中で陽極酸化処理し、誘電体酸化皮膜を形成する。その後、該誘電体酸化皮膜上にポリピロール、ポリチオフェン、ポリアニリン等の導電性高分子からなる固体電解質を形成した後、カーボン層、銀層を形成しコンデンサ素子とする。
[Example 1]
Below, the manufacturing method of the solid electrolytic capacitor by this invention is demonstrated. First, 100,000 CV / g valve action metal powder is pressure-molded and sintered to a size of 0.7 mm × 0.9 mm × 0.6 mm to obtain a sintered body element. The sintered body element is anodized in an acidic aqueous solution to form a dielectric oxide film. Thereafter, a solid electrolyte made of a conductive polymer such as polypyrrole, polythiophene, or polyaniline is formed on the dielectric oxide film, and then a carbon layer and a silver layer are formed to form a capacitor element.

次に、加熱処理として100℃の恒温槽中に30分間コンデンサ素子を放置した後、40℃の雰囲気中で電圧を7V印加し、30分間の素子エージング処理を行った。エージング処理後、陽極リード、陰極銀層に引き出し用金属フレームをそれぞれ接続し、樹脂外装、4V、120分間のエージング工程、最終検査等の工程を経て、定格4V−33μFの固体電解コンデンサを作製した。   Next, as a heat treatment, the capacitor element was left in a constant temperature bath at 100 ° C. for 30 minutes, and then a voltage of 7 V was applied in an atmosphere at 40 ° C. to perform an element aging treatment for 30 minutes. After the aging treatment, a lead metal frame was connected to the anode lead and the cathode silver layer, respectively, and a 4V-33 μF rated solid electrolytic capacitor was produced through a resin exterior, 4 V, 120 minutes aging process, final inspection, and the like. .

[実施例2]
加熱処理の温度を150℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 2]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C.

[実施例3]
加熱処理の温度を180℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 3]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 180 ° C.

[実施例4]
加熱処理の温度を150℃、素子エージング処理を60℃で行った以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 4]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the element aging treatment was performed at 60 ° C.

[実施例5]
加熱処理の温度を150℃、素子エージング処理を80℃で行った以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 5]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the element aging treatment was carried out at 80 ° C.

[実施例6]
加熱処理の温度を150℃、素子エージング処理を100℃で行った以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 6]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the element aging treatment was performed at 100 ° C.

[実施例7]
加熱処理を150℃、10分間とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 7]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the heat treatment was performed at 150 ° C. for 10 minutes.

[実施例8]
加熱処理を150℃、20分間とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 8]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the heat treatment was performed at 150 ° C. for 20 minutes.

[比較例1]
コンデンサ素子に加熱処理を行わない以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 1]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that no heat treatment was performed on the capacitor element.

[比較例2]
加熱処理の温度を80℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 2]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 80 ° C.

[比較例3]
加熱処理の温度を200℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 3]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 200 ° C.

[比較例4]
加熱処理の温度を150℃、素子エージング処理の温度を20℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 4]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the temperature of the element aging treatment was 20 ° C.

[比較例5]
加熱処理の温度を150℃、素子エージング処理の温度を120℃とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 5]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the temperature of the element aging treatment was 120 ° C.

[比較例6]
加熱処理を150℃、5分間とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 6]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the heat treatment was performed at 150 ° C. for 5 minutes.

[比較例7]
加熱処理を150℃、40分間とした以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 7]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the heat treatment was performed at 150 ° C. for 40 minutes.

(従来例)
コンデンサ素子に、加熱処理を行わず、125℃の高温下で素子エージング処理を行った以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
表1に実施例1〜3、従来例、比較例1〜3における電気特性の測定結果を示す。
また、表2に実施例4〜6、比較例4、5における電気特性の測定結果を示す。
さらに、表3に実施例7、8、比較例6、7における電気特性の測定結果を示す。
(Conventional example)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the capacitor element was not subjected to heat treatment and was subjected to element aging treatment at a high temperature of 125 ° C.
Table 1 shows measurement results of electrical characteristics in Examples 1 to 3, conventional examples, and Comparative Examples 1 to 3.
Table 2 shows measurement results of electrical characteristics in Examples 4 to 6 and Comparative Examples 4 and 5.
Further, Table 3 shows the measurement results of electrical characteristics in Examples 7 and 8 and Comparative Examples 6 and 7.

Figure 2007012650
Figure 2007012650

表1より明らかなように、実施例1〜3は、比較例1、従来例と比較し、漏れ電流が改善された。また、加熱温度が80℃(比較例2)では、漏れ電流が十分に低減せず、加熱温度が200℃(比較例3)ではESRが悪化するため、加熱温度の範囲は100〜180℃が望ましい。   As apparent from Table 1, Examples 1 to 3 have improved leakage current as compared with Comparative Example 1 and the conventional example. In addition, when the heating temperature is 80 ° C. (Comparative Example 2), the leakage current is not sufficiently reduced, and when the heating temperature is 200 ° C. (Comparative Example 3), the ESR deteriorates, so the range of the heating temperature is 100 to 180 ° C. desirable.

Figure 2007012650
Figure 2007012650

表2より明らかなように、実施例4〜6は、ほぼ同じ低い漏れ電流を示す。しかし、素子エージング処理温度が20℃(比較例4)および、120℃(比較例5)では、漏れ電流が高くなるため、素子エージング処理温度は40〜100℃が望ましい。   As is apparent from Table 2, Examples 4 to 6 show approximately the same low leakage current. However, when the element aging treatment temperature is 20 ° C. (Comparative Example 4) and 120 ° C. (Comparative Example 5), the leakage current increases, and thus the element aging treatment temperature is desirably 40 to 100 ° C.

Figure 2007012650
Figure 2007012650

表3より明らかなように、実施例7、8は、ほぼ同じ低い漏れ電流を示す。しかし、加熱時間が5分(比較例6)では、漏れ電流が高く、40分(比較例7)では、工数がかかるため、加熱時間は10〜30分が望ましい。   As is apparent from Table 3, Examples 7 and 8 show almost the same low leakage current. However, when the heating time is 5 minutes (Comparative Example 6), the leakage current is high, and when the heating time is 40 minutes (Comparative Example 7), the number of steps is required.

また、本発明は、固体電解質として導電性高分子を使用したが、二酸化マンガンを使用しても同様の効果が得られる。   In the present invention, a conductive polymer is used as the solid electrolyte, but the same effect can be obtained even when manganese dioxide is used.

コンデンサ素子の素子エージング処理方法を示す概略図である。It is the schematic which shows the element aging processing method of a capacitor | condenser element.

符号の説明Explanation of symbols

1 陽極リード
2 コンデンサ素子
3 陰極用フィルム
4 エージング用電源
1 Anode lead 2 Capacitor element 3 Cathode film 4 Aging power source

Claims (4)

弁作用金属粉末からなる焼結体表面に、誘電体酸化皮膜を形成後、固体電解質、カーボン層、銀層を形成したコンデンサ素子に加熱処理を行い、その後、電圧を印加して、素子エージング処理を行うことを特徴とする固体電解コンデンサの製造方法。   After forming a dielectric oxide film on the surface of the sintered body made of valve metal powder, heat treatment is performed on the capacitor element on which the solid electrolyte, carbon layer, and silver layer are formed, and then voltage is applied to the element aging process. A method for producing a solid electrolytic capacitor, comprising: 請求項1記載の加熱処理の温度が、100〜180℃であることを特徴とする固体電解コンデンサの製造方法。   The temperature of the heat processing of Claim 1 is 100-180 degreeC, The manufacturing method of the solid electrolytic capacitor characterized by the above-mentioned. 請求項1記載の加熱処理の時間が、10〜30分であることを特徴とする固体電解コンデンサの製造方法。   The method of manufacturing a solid electrolytic capacitor, wherein the heat treatment time according to claim 1 is 10 to 30 minutes. 請求項1記載の素子エージング処理の温度が、40〜100℃であることを特徴とする固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor, wherein the temperature of the element aging treatment according to claim 1 is 40 to 100 ° C.
JP2005187593A 2005-06-28 2005-06-28 Manufacturing method of solid electrolytic capacitor Active JP4724480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187593A JP4724480B2 (en) 2005-06-28 2005-06-28 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187593A JP4724480B2 (en) 2005-06-28 2005-06-28 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2007012650A true JP2007012650A (en) 2007-01-18
JP4724480B2 JP4724480B2 (en) 2011-07-13

Family

ID=37750806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187593A Active JP4724480B2 (en) 2005-06-28 2005-06-28 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4724480B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246114A (en) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JP2000331889A (en) * 1999-05-24 2000-11-30 Hitachi Aic Inc Manufacture of solid-state electrolytic capacitor
JP2004128032A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2005057255A (en) * 2003-07-18 2005-03-03 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP2006108192A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246114A (en) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JP2000331889A (en) * 1999-05-24 2000-11-30 Hitachi Aic Inc Manufacture of solid-state electrolytic capacitor
JP2004128032A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid-state electrolytic capacitor
JP2005057255A (en) * 2003-07-18 2005-03-03 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP2006108192A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4724480B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4275044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5411156B2 (en) Capacitor element manufacturing method
JP4794521B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4776522B2 (en) Solid electrolytic capacitor
JP2011193035A (en) Solid electrolytic capacitor element, method for manufacturing the same, and solid electrolytic capacitor
JP4724480B2 (en) Manufacturing method of solid electrolytic capacitor
JP2017022281A (en) Electrolytic capacitor
JP4804235B2 (en) Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP2006108626A (en) Solid electrolytic capacitor and its manufacturing method
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2008053512A (en) Solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007035997A (en) Manufacturing method of solid electrolytic capacitor
JP4671350B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4545204B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP4863509B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4571040B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010141180A (en) Solid-state electrolytic capacitor, and method of manufacturing the same
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP2007311629A (en) Method for manufacturing solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250