JP2007311629A - Method for manufacturing solid-state electrolytic capacitor - Google Patents

Method for manufacturing solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2007311629A
JP2007311629A JP2006140347A JP2006140347A JP2007311629A JP 2007311629 A JP2007311629 A JP 2007311629A JP 2006140347 A JP2006140347 A JP 2006140347A JP 2006140347 A JP2006140347 A JP 2006140347A JP 2007311629 A JP2007311629 A JP 2007311629A
Authority
JP
Japan
Prior art keywords
solution
dielectric film
electrolytic capacitor
solid electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140347A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
明弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2006140347A priority Critical patent/JP2007311629A/en
Publication of JP2007311629A publication Critical patent/JP2007311629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that in the case where, when a solid-state electrolytic capacitor is manufactured, a dielectric film covering near a surface of a sintered body is selectively thickly formed, and a basic anode oxidizing liquid is used in an anode oxidizing process for preventing a deterioration of a leakage current characteristic caused by a damage of the dielectric film occurred by a stress or mechanical stress, in a cathode forming process or armoring process without reducing a capacity of a capacitor, a conductivity of the anode oxidizing liquid is easy to reduce by a volatilization of an ammonia group in the anode oxidizing liquid, the dielectric film is not stably formed, and variations of an electric characteristic occur. <P>SOLUTION: In a step of forming the dielectric film in a porous sintered body composed of a metal having a valve action, this step contains the steps of: anode-oxidizing by use of a basic solution having a temperature of 30-50°C, and anode-oxidizing by use of an acid solution. It is preferable that this basic solution has a pH of 8-10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種電子機器に利用される固体電解コンデンサの製造方法に関し、特に、固体電解コンデンサの陽極酸化方法の改善に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor used in various electronic devices, and more particularly to an improvement in a method for anodizing a solid electrolytic capacitor.

従来の固体電解コンデンサは、タンタルまたはニオブ等の弁作用を有する金属粉末を加圧して多孔質成形体を形成し、この多孔質成形体を焼結して多孔質焼結体を形成し、さらに、この多孔質焼結体に誘電体皮膜を形成し、陰極として導電性高分子または二酸化マンガンからなる固体電解質層、陰極引出層となるグラファイト層と陰極銀層などを順次形成して構成される。
一般的に、前記誘電体皮膜を形成する場合、多孔質焼結体を60〜80℃に保持した陽極酸化液であるリン酸などの酸性電解質溶液に浸漬し、電解質溶液中で電圧を印加することにより形成する方法が使用されていた。
A conventional solid electrolytic capacitor pressurizes a metal powder having a valve action such as tantalum or niobium to form a porous molded body, and sinters the porous molded body to form a porous sintered body. In this porous sintered body, a dielectric film is formed, and a solid electrolyte layer made of a conductive polymer or manganese dioxide as a cathode, a graphite layer as a cathode lead layer, a cathode silver layer, and the like are sequentially formed. .
In general, when forming the dielectric film, the porous sintered body is immersed in an acidic electrolyte solution such as phosphoric acid, which is an anodizing solution maintained at 60 to 80 ° C., and a voltage is applied in the electrolyte solution. The method of forming by this was used.

一方、誘電体皮膜は非常に薄く、損傷しやすいため、陰極形成工程や外装工程における応力や機械的ストレスにより、焼結体表面の誘電体皮膜が損傷し漏れ電流特性の劣化が発生する問題がある。   On the other hand, since the dielectric film is very thin and easily damaged, the dielectric film on the surface of the sintered body is damaged by the stress and mechanical stress in the cathode forming process and the exterior process, resulting in deterioration of leakage current characteristics. is there.

上記問題の解決のため、誘電体皮膜を60〜80℃に保持した塩基性の陽極酸化液を用いて厚く形成することで、陰極形成工程や外装工程における応力や機械的ストレスによって発生する誘電体皮膜の損傷による漏れ電流特性の劣化を防止できることが知られている。(例えば、特許文献1参照)
特開昭58−190016号公報
In order to solve the above problem, the dielectric film is formed thick by using a basic anodic oxidation solution maintained at 60 to 80 ° C., so that the dielectric is generated by stress or mechanical stress in the cathode forming process or the exterior process. It is known that leakage current characteristics can be prevented from deteriorating due to damage to the film. (For example, see Patent Document 1)
Japanese Patent Laid-Open No. 58-190016

しかし、上記の従来法では、塩基性の陽極酸化液中に含まれる塩基が揮発することにより、時間の経過とともに、陽極酸化液の電導度が低下し、誘電体皮膜が安定して形成されないため、電導度が低下した陽極酸化液で形成した誘電体皮膜では、漏れ電流値が悪化するという課題を有していた。
本発明は、上記従来の問題点を解決するもので、誘電体皮膜を安定して厚く形成し、陰極形成工程や外装工程における応力や機械的ストレスによって発生する誘電体皮膜の損傷による漏れ電流特性の劣化を防止することで、長時間、塩基性陽極酸化液を使用しても、長期に渡って固体電解コンデンサを使用した際の漏れ電流が小さい固体電解コンデンサの製造方法を提供することを目的とするものである。
However, in the above conventional method, since the base contained in the basic anodic oxidation solution volatilizes, the conductivity of the anodic oxidation solution decreases with time, and the dielectric film is not stably formed. However, the dielectric film formed of the anodized liquid with reduced conductivity has a problem that the leakage current value is deteriorated.
The present invention solves the above-mentioned conventional problems, and forms a dielectric film stably and thickly, and leak current characteristics due to damage to the dielectric film caused by stress or mechanical stress in the cathode forming process or the exterior process. The purpose of the present invention is to provide a method for producing a solid electrolytic capacitor having a small leakage current when a solid electrolytic capacitor is used over a long period of time even when a basic anodizing solution is used for a long time It is what.

上記問題を解決可能な本発明の固体電解コンデンサの製造方法は、弁作用金属粉末を加圧成形し、焼結して得られた多孔質焼結体に誘電体皮膜、固体電解質層および陰極引出層を順次形成したコンデンサ素子を含む固体電解コンデンサの製造方法であって、
当該方法の陽極酸化にて誘電体皮膜を形成する工程が、塩基性溶液を用いて陽極酸化を行う工程と、酸性溶液を用いて陽極酸化を行う工程とを含むことを特徴とする。
The method for producing a solid electrolytic capacitor of the present invention capable of solving the above-mentioned problem is that a dielectric film, a solid electrolyte layer, and a cathode lead are formed on a porous sintered body obtained by pressure-molding and sintering a valve action metal powder. A method for producing a solid electrolytic capacitor including a capacitor element in which layers are sequentially formed,
The step of forming the dielectric film by anodic oxidation of the method includes a step of performing anodic oxidation using a basic solution and a step of performing anodic oxidation using an acidic solution.

また、本発明は、前述の特徴を有した固体電解コンデンサの製造方法において、前記塩基性溶液の温度が、30〜50℃であることを特徴とするものでもある。   The present invention is also characterized in that, in the method for producing a solid electrolytic capacitor having the above-described characteristics, the temperature of the basic solution is 30 to 50 ° C.

さらに、本発明は、前述の特徴を有した固体電解コンデンサの製造方法において、前記塩基性溶液のpHが、8〜10であることを特徴とするものでもある。   Furthermore, the present invention is characterized in that, in the method for producing a solid electrolytic capacitor having the above-described characteristics, the pH of the basic solution is 8 to 10.

また、本発明は、前述の特徴を有した固体電解コンデンサの製造方法において、前記塩基性溶液が、ホウ酸アンモニウム、または炭酸アンモニウムを含むことを特徴とするものでもある。   The present invention is also characterized in that, in the method for producing a solid electrolytic capacitor having the above-described characteristics, the basic solution contains ammonium borate or ammonium carbonate.

本発明の固体電解コンデンサの製造方法によれば、前述の従来の問題点を解決できる。即ち、塩基性溶液にて陽極酸化を行った後、酸性溶液にて陽極酸化を行うことで、誘電体皮膜を安定して厚く形成できるため、陰極形成工程や外装工程における応力や機械的ストレスによって発生する誘電体皮膜の損傷による漏れ電流特性の劣化を安定して防止できる。
よって、塩基性陽極酸化液を長期に渡って使用しても漏れ電流が小さい固体電解コンデンサを得ることができる。
According to the method for manufacturing a solid electrolytic capacitor of the present invention, the above-described conventional problems can be solved. In other words, after anodizing with a basic solution and then anodizing with an acidic solution, the dielectric film can be stably and thickly formed. It is possible to stably prevent the deterioration of the leakage current characteristic due to the damage of the generated dielectric film.
Therefore, a solid electrolytic capacitor having a small leakage current can be obtained even when the basic anodizing solution is used for a long period of time.

以下、本発明の固体電解コンデンサの製造方法における各工程について説明する。
まず、タンタルやニオブ等の弁作用を有する金属粉末を加圧して形成した多孔質成形体を焼結することにより多孔質焼結体を作製した。
Hereinafter, each process in the manufacturing method of the solid electrolytic capacitor of this invention is demonstrated.
First, a porous sintered body was produced by sintering a porous molded body formed by pressing metal powder having a valve action such as tantalum or niobium.

そして、弁作用を有する金属の表面を陽極酸化して誘電体皮膜を形成する第1の工程である、温度が30〜50℃の塩基性溶液を用いて陽極酸化を行う。
この際、塩基性溶液の温度が30℃よりも低い場合には、漏れ電流が高くなる傾向が見られ、逆に塩基性溶液の温度が50℃よりも高い場合には、固体電解コンデンサを長期に渡って使用した際の漏れ電流値が高くなる傾向がみられるので好ましくない。本発明では、塩基性溶液としては、例えば、ホウ酸アンモニウム、炭酸アンモニウム、蓚酸アンモニウムが好ましく、陽極酸化の条件としては、35〜40℃、10〜150V、5〜120秒間の範囲が望ましい。
Then, anodic oxidation is performed using a basic solution having a temperature of 30 to 50 ° C., which is a first step of forming the dielectric film by anodizing the surface of the metal having a valve action.
At this time, when the temperature of the basic solution is lower than 30 ° C., the leakage current tends to increase. Conversely, when the temperature of the basic solution is higher than 50 ° C., the solid electrolytic capacitor is used for a long time. It is not preferable because the leakage current value tends to be high when used over a wide range. In the present invention, as the basic solution, for example, ammonium borate, ammonium carbonate, and ammonium succinate are preferable, and the conditions for anodization are preferably in the range of 35 to 40 ° C., 10 to 150 V, and 5 to 120 seconds.

更に、第2の工程である、酸性溶液を用いて陽極酸化を行う。
一般的には、40〜90℃、6〜140V、0.5〜10時間の条件にて陽極酸化を行う。酸性溶液としては、リン酸、硝酸、アジピン酸、クエン酸、酢酸、蓚酸、酒石酸、ホウ酸が好適である。
以下、本発明の実施例を挙げて本発明を説明するが、本発明はこれらに限定されるものではない。
Furthermore, anodization is performed using an acidic solution, which is the second step.
In general, anodization is performed under conditions of 40 to 90 ° C., 6 to 140 V, and 0.5 to 10 hours. As the acidic solution, phosphoric acid, nitric acid, adipic acid, citric acid, acetic acid, succinic acid, tartaric acid, and boric acid are suitable.
EXAMPLES Hereinafter, although an Example of this invention is given and this invention is demonstrated, this invention is not limited to these.

[実施例1]
タンタル粉末を加圧成形した多孔質成形体を高温で真空焼結した後、陽極酸化液として温度が30℃でかつpHが8であり、経過時間が0hのホウ酸アンモニウム水溶液中にて、電圧60Vを30秒間印加して、多孔質焼結体を陽極酸化した。
続いて、リン酸水溶液中にて陽極酸化電圧20Vを3時間印加して、塩基性溶液による誘電体皮膜上に酸性溶液による誘電体皮膜を更に形成し、硝酸マンガン水溶液に含浸した後、200〜400℃での熱分解を複数回数繰り返し、誘電体皮膜上に二酸化マンガン層を充分に形成した。
さらに、黒鉛粉末を懸濁させたグラファイト液に浸漬し、恒温槽で乾燥後、銀ペーストに浸漬・乾燥して陰極引出層を形成してコンデンサ素子を構成した。
[Example 1]
After the porous molded body obtained by pressure-molding tantalum powder is vacuum-sintered at a high temperature, a voltage is applied as an anodizing solution in an aqueous ammonium borate solution having a temperature of 30 ° C. and a pH of 8, and an elapsed time of 0 h. 60 V was applied for 30 seconds to anodize the porous sintered body.
Subsequently, an anodic oxidation voltage of 20 V was applied in an aqueous phosphoric acid solution for 3 hours to further form a dielectric film made of an acidic solution on the dielectric film made of a basic solution, and impregnated with an aqueous manganese nitrate solution. Thermal decomposition at 400 ° C. was repeated a plurality of times to sufficiently form a manganese dioxide layer on the dielectric film.
Furthermore, it was immersed in a graphite liquid in which graphite powder was suspended, dried in a thermostatic bath, and then immersed and dried in a silver paste to form a cathode lead layer to constitute a capacitor element.

その後、陽極リード線と陽極端子とを溶接により接続し、コンデンサ素子を形成する陰極引出層と陰極端子とを導電性接着剤で接続し、その後トランスファーモールドを行い、チップ型タンタル固体電解コンデンサを100個作製した。   Thereafter, the anode lead wire and the anode terminal are connected by welding, the cathode lead layer forming the capacitor element and the cathode terminal are connected by a conductive adhesive, and then transfer molding is performed, so that the chip-type tantalum solid electrolytic capacitor is 100. Individually produced.

[実施例2]
陽極酸化液として、168h使用したホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、実施例2のチップ型タンタル固体電解コンデンサを得た。
[Example 2]
A chip type tantalum solid electrolytic capacitor of Example 2 was obtained in the same manner as in Example 1 except that the ammonium borate aqueous solution used for 168 h was used as the anodizing solution.

[実施例3]
陽極酸化液として、温度を50℃とし、168h使用したホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、実施例3のチップ型タンタル固体電解コンデンサを得た。
[Example 3]
A chip-type tantalum solid electrolytic capacitor of Example 3 was obtained in the same manner as in Example 1 except that the temperature of the anodic oxidation solution was 50 ° C. and an aqueous ammonium borate solution used for 168 h was used.

[実施例4]
陽極酸化液として、pHを10とし、168h経過したホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、実施例4のチップ型タンタル固体電解コンデンサを得た。
[Example 4]
A chip-type tantalum solid electrolytic capacitor of Example 4 was obtained in the same manner as in Example 1 except that an anodic oxidation solution was an ammonium borate aqueous solution having a pH of 10 and 168 hours passed.

[実施例5]
多孔質焼結体を作製後、第1の工程の陽極酸化液として、168h経過した炭酸アンモニウム水溶液を用いて陽極酸化を行った点を除き、実施例1と同一手段にて製造し、実施例5のチップ型タンタル固体電解コンデンサを得た。
[Example 5]
After producing the porous sintered body, the same procedure as in Example 1 was performed, except that anodic oxidation was performed using an aqueous ammonium carbonate solution after 168 hours as the anodizing solution in the first step. 5 chip-type tantalum solid electrolytic capacitors were obtained.

[従来例1]
塩基性溶液による陽極酸化工程として、液温度が60℃のホウ酸アンモニウム水溶液を用い、酸性溶液による陽極酸化工程を行わなかった点を除き、実施例1と同一手段にて製造し、従来例1のチップ型タンタル固体電解コンデンサを得た。
[Conventional example 1]
As an anodic oxidation step using a basic solution, an aqueous solution of ammonium borate having a liquid temperature of 60 ° C. was used, and the anodization step using an acidic solution was not performed. The chip type tantalum solid electrolytic capacitor was obtained.

[従来例2]
塩基性溶液による陽極酸化工程として、陽極酸化槽中で168h経過したホウ酸アンモニウム水溶液を用いた点を除き、従来例1と同一手段にて製造し、従来例2のチップ型タンタル固体電解コンデンサを得た。
[Conventional example 2]
The chip type tantalum solid electrolytic capacitor of the conventional example 2 is manufactured by the same means as the conventional example 1 except that the aqueous solution of ammonium borate which has passed 168 hours in the anodizing tank is used as the anodic oxidation step with the basic solution. Obtained.

[比較例1]
液温度が20℃のホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、比較例1のチップ型タンタル固体電解コンデンサを得た。
[Comparative Example 1]
A chip type tantalum solid electrolytic capacitor of Comparative Example 1 was obtained in the same manner as in Example 1 except that an aqueous solution of ammonium borate having a liquid temperature of 20 ° C. was used.

[比較例2]
pHが7のホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、比較例2のチップ型タンタル固体電解コンデンサを得た。
[Comparative Example 2]
A chip type tantalum solid electrolytic capacitor of Comparative Example 2 was obtained in the same manner as in Example 1 except that an ammonium borate aqueous solution having a pH of 7 was used.

[比較例3]
pHが11のホウ酸アンモニウム水溶液を用いた点を除き、実施例1と同一手段にて製造し、比較例3のチップ型タンタル固体電解コンデンサを得た。
[Comparative Example 3]
A chip type tantalum solid electrolytic capacitor of Comparative Example 3 was obtained in the same manner as in Example 1 except that an aqueous ammonium borate solution having a pH of 11 was used.

上記実施例と比較例のチップ型タンタル固体電解コンデンサについて、初期と高温負荷(85℃/RV)で2000時間後の漏れ電流値の平均値を比較した結果を表1に示す。   Table 1 shows the results of comparing the average values of the leakage current values after 2000 hours for the chip-type tantalum solid electrolytic capacitors of the above examples and comparative examples at the initial time and high temperature load (85 ° C./RV).

Figure 2007311629
Figure 2007311629

表1から明らかなように、実施例1及び実施例2は、従来例1及び従来例2と比較し、良好な漏れ電流値を得ることができた。これは、塩基性の陽極酸化液を30℃で保持することで、60℃で保持した場合より陽極酸化槽中で長時間経過しても揮発する塩基が少なくなるとともに、塩基性溶液による陽極酸化皮膜上に酸性溶液にて陽極酸化皮膜を形成したためと考えられる。
また、作製後長時間経過した溶液を用い陽極酸化しても良好な漏れ電流値を得ることができ、本発明の優位性が実証された。
As is clear from Table 1, Examples 1 and 2 were able to obtain good leakage current values as compared with Conventional Examples 1 and 2. This is because the basic anodic oxidation solution is kept at 30 ° C., so that less base is volatilized in the anodizing tank for a long time than when kept at 60 ° C., and the anodic oxidation by the basic solution is performed. This is probably because an anodic oxide film was formed on the film with an acidic solution.
Moreover, even if anodization is performed using a solution that has passed for a long time after fabrication, a good leakage current value can be obtained, and the superiority of the present invention has been demonstrated.

また、表1から明らかなように、実施例5は実施例2と比較し、漏れ電流値がほぼ同等の特性を得ることができた。
よって、ホウ酸アンモニウム溶液、または炭酸アンモニウム溶液のいずれの塩基性の陽極酸化液を用いても、本発明の効果が得られることが実証された。
Further, as is clear from Table 1, Example 5 was able to obtain characteristics with substantially the same leakage current value as compared with Example 2.
Therefore, it was demonstrated that the effect of the present invention can be obtained by using any basic anodizing solution of ammonium borate solution or ammonium carbonate solution.

さらに、表1から明らかなように、実施例1は比較例1と比較し、漏れ電流値が良好であった。よって、塩基性の陽極酸化液を30℃で保持することで、20℃で保持した場合より、良好な特性が得られることが実証された。   Further, as is clear from Table 1, the leakage current value of Example 1 was better than that of Comparative Example 1. Therefore, it was demonstrated that better characteristics can be obtained by holding the basic anodic oxidation solution at 30 ° C. than at 20 ° C.

また、表1から明らかなように、実施例1及び実施例4は、比較例2及び比較例3と比較し、漏れ電流値が良好であった。よって、塩基性陽極酸化液のpHを8〜10とすることで、誘電体皮膜が安定的に形成され良好な特性が得られることが実証された。   As is clear from Table 1, Example 1 and Example 4 had better leakage current values than Comparative Example 2 and Comparative Example 3. Therefore, it was demonstrated that the dielectric film is stably formed and good characteristics can be obtained by setting the pH of the basic anodizing solution to 8 to 10.

本実施例においては、弁作用を有する金属としてタンタルを用いたが、ニオブ、アルミニウム等公知の弁作用を有する金属の場合であっても、タンタルの場合と同等の効果が得られることが確認された。   In this example, tantalum was used as the metal having a valve action, but it was confirmed that the same effect as in the case of tantalum can be obtained even in the case of a metal having a known valve action such as niobium or aluminum. It was.

Claims (4)

弁作用金属粉末を加圧成形し、焼結して得られた多孔質焼結体に誘電体皮膜、固体電解質層および陰極引出層を順次形成したコンデンサ素子を含む固体電解コンデンサの製造方法であって、
当該方法の陽極酸化にて誘電体皮膜を形成する工程が、塩基性溶液を用いて陽極酸化を行う工程と、酸性溶液を用いて陽極酸化を行う工程とを含むことを特徴とする固体電解コンデンサの製造方法。
A method of manufacturing a solid electrolytic capacitor including a capacitor element in which a dielectric film, a solid electrolyte layer, and a cathode lead layer are sequentially formed on a porous sintered body obtained by pressure-molding and sintering a valve action metal powder. And
The step of forming a dielectric film by anodic oxidation of the method includes a step of performing anodic oxidation using a basic solution and a step of performing anodic oxidation using an acidic solution. Manufacturing method.
上記塩基性溶液の温度が、30〜50℃であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。 2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the temperature of the basic solution is 30 to 50 ° C. 3. 上記塩基性溶液のpHが、8〜10であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein the pH of the basic solution is 8 to 10. 上記塩基性溶液が、ホウ酸アンモニウム、または炭酸アンモニウムを含むことを特徴とする請求項1または2に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein the basic solution contains ammonium borate or ammonium carbonate.
JP2006140347A 2006-05-19 2006-05-19 Method for manufacturing solid-state electrolytic capacitor Pending JP2007311629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140347A JP2007311629A (en) 2006-05-19 2006-05-19 Method for manufacturing solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140347A JP2007311629A (en) 2006-05-19 2006-05-19 Method for manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2007311629A true JP2007311629A (en) 2007-11-29

Family

ID=38844195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140347A Pending JP2007311629A (en) 2006-05-19 2006-05-19 Method for manufacturing solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2007311629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113985A (en) * 2009-11-24 2011-06-09 Nec Tokin Corp Method of manufacturing solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325380A (en) * 2004-05-12 2005-11-24 Companhia Brasileira De Metalurgia & Mineracao Method of anodizing niobium for electrolytic capacitor and electrolytic capacitor
JP2005340714A (en) * 2004-05-31 2005-12-08 Nichicon Corp Method of manufacturing solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325380A (en) * 2004-05-12 2005-11-24 Companhia Brasileira De Metalurgia & Mineracao Method of anodizing niobium for electrolytic capacitor and electrolytic capacitor
JP2005340714A (en) * 2004-05-31 2005-12-08 Nichicon Corp Method of manufacturing solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113985A (en) * 2009-11-24 2011-06-09 Nec Tokin Corp Method of manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR20150048703A (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2012069788A (en) Solid electrolytic capacitor
JP4555157B2 (en) Manufacturing method of solid electrolytic capacitor
JP4454526B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP2461337A1 (en) Manufacturing method for solid electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007311629A (en) Method for manufacturing solid-state electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007242932A (en) Method of manufacturing solid-state electrolytic capacitor and of transmission line element
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
US7717967B2 (en) Method for manufacturing a solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2008053512A (en) Solid electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP4401218B2 (en) Solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4571040B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010141180A (en) Solid-state electrolytic capacitor, and method of manufacturing the same
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2008226971A (en) Manufacturing method for solid electrolytic capacitor
JP5271023B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007035997A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110706

Free format text: JAPANESE INTERMEDIATE CODE: A02