JP5273736B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP5273736B2
JP5273736B2 JP2009265831A JP2009265831A JP5273736B2 JP 5273736 B2 JP5273736 B2 JP 5273736B2 JP 2009265831 A JP2009265831 A JP 2009265831A JP 2009265831 A JP2009265831 A JP 2009265831A JP 5273736 B2 JP5273736 B2 JP 5273736B2
Authority
JP
Japan
Prior art keywords
anodic oxidation
anodizing
electrolytic capacitor
solid electrolytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009265831A
Other languages
Japanese (ja)
Other versions
JP2011113985A (en
Inventor
裕司 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009265831A priority Critical patent/JP5273736B2/en
Publication of JP2011113985A publication Critical patent/JP2011113985A/en
Application granted granted Critical
Publication of JP5273736B2 publication Critical patent/JP5273736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor having no defect and a homogeneous oxide film. <P>SOLUTION: In a process of applying a prescribed voltage to an anode body manufactured by pressing and molding valve action metal powder such as tantalum and niobium and sintering them in an electrolyte for anodization, second anodization processing is executed by an aqueous nitrate solution with a conductivity of 50 S/m or larger after first anodization processing using an aqueous phosphate solution. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明はタンタル、ニオブ等の弁作用金属を使用した固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method of manufacturing a solid electrolytic capacitor using a valve metal such as tantalum or niobium.

タンタル、ニオブ等の弁作用金属を陽極に用いる固体電解コンデンサでは、弁作用金属からなる粉末と、陽極引出しとして作用する陽極リード線が成型金型により加圧成型された後、真空焼結することにより製造される焼結体を陽極体として用いることが知られている。陽極体の表面には陽極酸化法により弁作用金属の酸化皮膜が形成されることにより、この酸化皮膜が固体電解コンデンサの誘電体層となる。その上に、例えば二酸化マンガンや導電性高分子などからなる固体電解質層を形成し、更にその上にグラファイト層や銀ペースト層を形成することにより陰極層を形成し、固体電解コンデンサ素子を得る。   For solid electrolytic capacitors that use valve action metals such as tantalum and niobium for the anode, the powder consisting of the valve action metal and the anode lead wire that acts as the anode lead are pressure-molded by the molding die and then vacuum sintered. It is known to use a sintered body produced by the above as an anode body. An oxide film of a valve metal is formed on the surface of the anode body by an anodic oxidation method, and this oxide film becomes a dielectric layer of the solid electrolytic capacitor. A solid electrolyte layer made of, for example, manganese dioxide or a conductive polymer is formed thereon, and a cathode layer is formed by further forming a graphite layer or a silver paste layer thereon to obtain a solid electrolytic capacitor element.

このようにして得られた固体電解コンデンサ素子は、陽極リード線は外部陽極端子に溶接等により、陰極層は外部陰極端子に導電性接着剤等により接続され、最後に外装樹脂により封止成型される。   In the solid electrolytic capacitor element thus obtained, the anode lead wire is connected to the external anode terminal by welding or the like, the cathode layer is connected to the external cathode terminal by a conductive adhesive or the like, and finally sealed with an exterior resin. The

弁作用金属の表面に酸化皮膜を形成する陽極酸化工程においては、リン酸や硝酸、硫酸など種々の電解液を用いる技術が知られている。一般的には、例えば特許文献1に記載されているように0.1〜1.0重量%程度のリン酸を含む水溶液が電解液として使用されている。また、例えば特許文献2に記載されているように、0.001〜0.5%のリン酸水溶液で陽極酸化を実施した後、0.001〜0.1%の硝酸水溶液を電解液として使用する技術が提案されており、さらに特許文献3に記載されているように水、リン酸および硫酸からなる混合水溶液で陽極酸化する技術も提案されている。   In an anodic oxidation process in which an oxide film is formed on the surface of a valve action metal, techniques using various electrolytic solutions such as phosphoric acid, nitric acid and sulfuric acid are known. In general, for example, as described in Patent Document 1, an aqueous solution containing about 0.1 to 1.0% by weight of phosphoric acid is used as an electrolytic solution. For example, as described in Patent Document 2, after anodizing with 0.001 to 0.5% phosphoric acid aqueous solution, 0.001 to 0.1% nitric acid aqueous solution is used as the electrolyte. Further, as described in Patent Document 3, a technique for anodizing with a mixed aqueous solution composed of water, phosphoric acid and sulfuric acid is also proposed.

特開2003−338432号公報JP 2003-338432 A 特開平7−220982号公報JP-A-7-220982 特開2007−242742号公報JP 2007-242742 A

しかしながら上述のような従来の陽極酸化では、欠陥が無く、且つ均質な酸化皮膜を持つ固体電解コンデンサを製造することは困難であった。   However, with the conventional anodic oxidation as described above, it has been difficult to produce a solid electrolytic capacitor having no defects and having a uniform oxide film.

例えば、特許文献1に記載のリン酸水溶液を用いて陽極酸化を行った後に、形成された酸化皮膜の断面を電子顕微鏡により観察したところ、幅5〜10nm程度の極めて微小な亀裂状の欠陥(以下、マイクロクラックと記す)が存在し、その亀裂は陽極体である弁作用金属部分にまで到達していることが、本発明者等の分析により確認された。このようなマイクロクラックは固体電解コンデンサの製造工程中での漏れ電流増大の原因となりうるため、より少ないほうが望ましい。   For example, after anodic oxidation using the phosphoric acid aqueous solution described in Patent Document 1, the cross section of the formed oxide film was observed with an electron microscope. As a result, a very small crack-like defect having a width of about 5 to 10 nm ( Hereinafter, it was confirmed by analysis of the present inventors that there is a micro-crack) and that the crack has reached the valve metal part which is the anode body. Since such micro cracks may cause an increase in leakage current during the manufacturing process of the solid electrolytic capacitor, it is desirable that the number is smaller.

特許文献1のような0.1〜1.0重量%濃度で60℃程度の液温にしたリン酸水溶液の場合、その導電率はおよそ1S/mである。このような低い導電率の電解液がマイクロクラック部分に浸透した場合の電気抵抗値は、陽極酸化により形成された酸化皮膜の電気抵抗値と同程度かそれより高いため、マイクロクラック部分では電圧降下が大きく陽極酸化が起こらないと考えられる。0.001%〜0.1%の硝酸水溶液でも導電率は同じく1S/m以下であるから、特許文献2についても同様のことがいえる。   In the case of a phosphoric acid aqueous solution having a concentration of 0.1 to 1.0% by weight and a liquid temperature of about 60 ° C. as in Patent Document 1, the conductivity is about 1 S / m. The electrical resistance when such low conductivity electrolyte penetrates into the microcrack part is equal to or higher than the electrical resistance value of the oxide film formed by anodic oxidation. It is considered that anodic oxidation does not occur. The same can be said for Patent Document 2 because the conductivity is similarly 1 S / m or less even in a 0.001% to 0.1% nitric acid aqueous solution.

また、特許文献3に記載の製造方法の場合には、陽極酸化直後に測定する漏れ電流値は特許文献1のような方法と比較して優れるという利点があるが、完成品としての固体電解コンデンサまで製造した後、長期信頼性の評価を実施すると漏れ電流が増加する場合があった。   In addition, in the case of the manufacturing method described in Patent Document 3, there is an advantage that the leakage current value measured immediately after anodic oxidation is superior to the method described in Patent Document 1, but the solid electrolytic capacitor as a finished product is advantageous. In some cases, leakage current increased when long-term reliability evaluation was performed.

この理由として、特許文献3のような高濃度で高導電率のような電解液を用いる場合、陽極酸化時に陽極体を支持するために用いられる金属片が腐食するなど作業性が悪化するために、長時間の陽極酸化を実施することが困難である。陽極酸化の時間が短い場合には、一般的に均質な酸化皮膜を形成することが困難であるため、長期信頼性に悪影響を及ぼす場合があった。   The reason for this is that when an electrolytic solution having a high concentration and high conductivity as in Patent Document 3 is used, workability deteriorates, such as corrosion of a metal piece used to support the anode body during anodization. It is difficult to perform anodization for a long time. When the anodic oxidation time is short, it is generally difficult to form a homogeneous oxide film, which may adversely affect long-term reliability.

この状況にあって、本発明の課題は、陽極酸化皮膜に欠陥のない、均質な酸化皮膜を持つ固体電解コンデンサの製造方法を提供することにある。   In this situation, an object of the present invention is to provide a method for producing a solid electrolytic capacitor having a uniform oxide film in which the anodized film is free from defects.

上記の課題を解決するため、本発明による固体電解コンデンサの製造方法は、タンタル、ニオブ等の弁作用金属の多孔質体からなる陽極体を陽極酸化する工程において、導電率が0.01〜1S/mである電解液を用いて、3〜20時間の陽極酸化処理を行う第一の陽極酸化工程と、前記第一の陽極酸化工程後に前記陽極体を、導電率が50〜100S/mである電解液を用いて、30分〜2時間の陽極酸化処理を行う第二の陽極酸化工程とを含むことを特徴とする。また、前記第一の陽極酸化工程に用いる電解液はリン酸水溶液であることを特徴とする。また、前記第二の陽極酸化工程に用いる電解液は硝酸水溶液であることを特徴とする。   In order to solve the above-described problems, the method for manufacturing a solid electrolytic capacitor according to the present invention has a conductivity of 0.01 to 1S in the step of anodizing an anode body made of a porous body of a valve metal such as tantalum or niobium. A first anodic oxidation step of performing anodizing treatment for 3 to 20 hours using an electrolyte solution having an electric conductivity of 50 m / m, and an electric conductivity of 50 to 100 S / m after the first anodic oxidation step. And a second anodic oxidation step of performing an anodic oxidation treatment for 30 minutes to 2 hours using a certain electrolytic solution. The electrolytic solution used in the first anodic oxidation step is a phosphoric acid aqueous solution. The electrolytic solution used in the second anodic oxidation step is a nitric acid aqueous solution.

すなわち、本発明の固体電解コンデンサの製造方法は、陽極酸化工程において低濃度の例えばリン酸水溶液を用いた第一の陽極酸化工程の後に、比較的高濃度の例えば硝酸水溶液で第二の陽極酸化工程を実施することにより、欠陥が無く、且つ均質な酸化皮膜を持つ固体電解コンデンサを製造することが可能になる。   That is, in the method for producing a solid electrolytic capacitor of the present invention, after the first anodizing step using, for example, a phosphoric acid aqueous solution having a low concentration in the anodizing step, the second anodizing is performed with a relatively high concentration nitric acid aqueous solution. By performing the process, it is possible to manufacture a solid electrolytic capacitor having no defects and having a uniform oxide film.

上記のように本発明によれば、第一の陽極酸化工程において、比較的低濃度、即ち低導電率のリン酸水溶液等を用いて長時間の処理を行うことにより均質な酸化皮膜を形成した上で、第二の陽極酸化工程において、50〜100S/mという高導電率の硝酸水溶液等を用いた処理を行うことにより、マイクロクラック等の欠陥の無い酸化皮膜を形成することが可能になる。   As described above, according to the present invention, in the first anodizing step, a uniform oxide film is formed by performing a long-time treatment using a phosphoric acid aqueous solution having a relatively low concentration, that is, a low conductivity. In the second anodic oxidation step, it is possible to form an oxide film having no defects such as microcracks by performing a treatment using a nitric acid aqueous solution having a high conductivity of 50 to 100 S / m. .

この理由としては第二の陽極酸化工程における導電率が50S/m以上という電解液のマイクロクラック部分に浸透した場合の電気抵抗値は、陽極酸化により形成された酸化皮膜の電気抵抗値よりも低くなるためであり、マイクロクラック部分においても陽極酸化が起こることになる。   The reason for this is that the electrical resistance value in the second anodic oxidation step when the electrical conductivity penetrates into the microcrack portion of the electrolyte solution of 50 S / m or more is lower than the electrical resistance value of the oxide film formed by anodic oxidation. This is because anodization also occurs in the microcrack portion.

固体電解コンデンサの製造方法における陽極酸化工程の模式図。The schematic diagram of the anodizing process in the manufacturing method of a solid electrolytic capacitor. 本発明における実施例および比較例による第二の陽極酸化処理中の電流の時間変化。The time change of the electric current in the 2nd anodizing process by the Example and comparative example in this invention.

以下、本発明の実施の形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

例えば、タンタル、ニオブ等の弁作用金属からなる粉末と、陽極引出しとして作用する陽極リード線が成型金型により加圧成型された後、真空焼結することにより製造される焼結体等の多孔質体を固体電解コンデンサの陽極体として用いる。図1に示すように多孔質体からなる陽極体1から引き出された陽極リード線2を抵抗溶接等により金属片3に適当な間隔で接続することにより陽極体1を保持する。この後、第一の陽極酸化工程として導電率は0.01〜1S/mである電解液を用いて陽極酸化を実施する。このとき用いる電解液は、リン酸、硫酸、硝酸などを用いることができ、特に限定されないが、リン酸水溶液が望ましい。液温は、選択する液種と作業性を考慮して、室温〜95℃程度まで任意に決定することができる。第一の陽極酸化の処理時間は均質な酸化皮膜を形成するために、3〜20時間の範囲の長時間実施するのが望ましい。低濃度の電解液を用いることにより長時間の処理が可能となる。3時間以上の実施によりほぼ均質の酸化皮膜を形成することができる。また、20時間を超えて陽極酸化を続けてもほとんど電流値が変化せず、陽極酸化が進行しないため上限は20時間とした。その後、付着したリン酸水溶液を除去するために洗浄・乾燥を実施し、さらに第二の陽極酸化として導電率が50〜100S/mである電解液を用いて陽極酸化を実施する。このとき用いる電解液は、リン酸、硫酸、硝酸などを用いることができ、特に限定されないが、導電率が高く粘性も低い硝酸水溶液が望ましい。液温は、選択する液種と作業性を考慮して、室温〜95℃程度まで任意に決定することができる。ただし、硝酸水溶液を選択する場合には、作業性を考慮して室温程度で実施するのが望ましい。第二の陽極酸化の処理時間はマイクロクラック部分のみを陽極酸化するために、30分〜2時間の範囲の短時間で実施するのが望ましい。マイクロクラックの陽極酸化には30分程度から効果があるが2時間を超えると高濃度の電解液による金属の腐食等が懸念され好ましくない。また第一の陽極酸化と第二の陽極酸化における印加電圧は同一であることが望ましい。   For example, a powder made of a valve metal such as tantalum or niobium and a porous body such as a sintered body produced by vacuum sintering after an anode lead wire acting as an anode drawer is pressure-molded by a molding die The material is used as the anode body of the solid electrolytic capacitor. As shown in FIG. 1, the anode body 1 is held by connecting anode lead wires 2 drawn out from the anode body 1 made of a porous body to metal pieces 3 by resistance welding or the like at appropriate intervals. Thereafter, as the first anodic oxidation step, anodic oxidation is performed using an electrolytic solution having a conductivity of 0.01 to 1 S / m. As the electrolytic solution used at this time, phosphoric acid, sulfuric acid, nitric acid or the like can be used, and is not particularly limited, but an aqueous phosphoric acid solution is desirable. The liquid temperature can be arbitrarily determined from room temperature to about 95 ° C. in consideration of the liquid type to be selected and workability. The first anodic oxidation treatment is preferably carried out for a long time in the range of 3 to 20 hours in order to form a homogeneous oxide film. By using a low concentration electrolytic solution, it is possible to perform a long-time treatment. An almost homogeneous oxide film can be formed by performing for 3 hours or more. Further, even if the anodic oxidation was continued for more than 20 hours, the current value hardly changed and the anodic oxidation did not proceed, so the upper limit was set to 20 hours. Thereafter, washing and drying are carried out to remove the adhering phosphoric acid aqueous solution, and anodic oxidation is performed using an electrolytic solution having a conductivity of 50 to 100 S / m as second anodic oxidation. As the electrolytic solution used at this time, phosphoric acid, sulfuric acid, nitric acid, or the like can be used. Although not particularly limited, an aqueous nitric acid solution having high conductivity and low viscosity is desirable. The liquid temperature can be arbitrarily determined from room temperature to about 95 ° C. in consideration of the liquid type to be selected and workability. However, when an aqueous nitric acid solution is selected, it is desirable to carry out at about room temperature in consideration of workability. The treatment time for the second anodic oxidation is preferably carried out in a short time in the range of 30 minutes to 2 hours in order to anodize only the microcrack portion. Anodization of microcracks is effective for about 30 minutes. However, if it exceeds 2 hours, corrosion of the metal due to a high concentration electrolyte is concerned, which is not preferable. Further, it is desirable that the applied voltages in the first anodization and the second anodization are the same.

以下に本発明の実施例と比較例を詳述する。   Examples of the present invention and comparative examples will be described in detail below.

(実施例)
本発明の固体電解コンデンサの製造方法の具体的な実施例について説明する。タンタル粉末(粉末CV値:150,000μF・V/g)と、陽極リードとなる直径0.5mmのタンタル線材を成型金型により加圧成型することにより、多孔質体部分の寸法が2.2mm×1.2mm×1.7mmである成型体を製造した。このようにして製造される加圧成型体を1,200℃で真空焼結することにより陽極体を得た。さらに得られた陽極体の陽極リード線部分をアルミニウムからなる金属片に一定の間隔で抵抗溶接し、陽極体を保持した。
(Example)
Specific examples of the method for producing a solid electrolytic capacitor of the present invention will be described. By pressing a tantalum powder (powder CV value: 150,000 μF · V / g) and a tantalum wire having a diameter of 0.5 mm to be an anode lead with a molding die, the size of the porous body portion is 2.2 mm. A molded body having a size of × 1.2 mm × 1.7 mm was produced. The pressure-molded body produced in this manner was vacuum sintered at 1,200 ° C. to obtain an anode body. Further, the anode lead wire portion of the obtained anode body was resistance-welded to a metal piece made of aluminum at a constant interval to hold the anode body.

次に第一の陽極酸化工程として、濃度0.6%のリン酸水溶液を使用し、液温を80℃に保持して8Vの直流電圧を印加し、10時間の陽極酸化処理を実施した。このときの第一の陽極酸化工程に用いた電解液の導電率は0.9S/mであった。   Next, as the first anodizing step, an aqueous solution of phosphoric acid having a concentration of 0.6% was used, the liquid temperature was kept at 80 ° C., and a DC voltage of 8 V was applied to carry out an anodizing treatment for 10 hours. The conductivity of the electrolytic solution used in the first anodic oxidation process at this time was 0.9 S / m.

さらに陽極体を洗浄・乾燥した後、第二の陽極酸化工程として、濃度50%の硝酸水溶液を使用し、液温を室温にして8Vの直流電圧を印加して、90分間の陽極酸化処理を実施した。このときの第二の陽極酸化工程に用いた電解液の導電率は、60S/mであった。   Further, after washing and drying the anode body, as a second anodizing process, an aqueous nitric acid solution having a concentration of 50% is used, the liquid temperature is set to room temperature, and a DC voltage of 8 V is applied to perform anodizing treatment for 90 minutes. Carried out. The electrical conductivity of the electrolytic solution used in the second anodic oxidation process at this time was 60 S / m.

(比較例)
比較例として従来技術の固体電解コンデンサの製造方法について具体的に説明するが陽極体を保持する工程までは前述の実施例の場合と同様であるため省略する。
(Comparative example)
As a comparative example, a method for manufacturing a solid electrolytic capacitor according to the prior art will be specifically described.

第一の陽極酸化として、濃度0.6%のリン酸水溶液を使用し、液温を80℃に保持して8Vの直流電圧を印加し、10時間の陽極酸化処理を実施した。このときの第一の陽極酸化の電解液の導電率は0.9S/mであった。   As the first anodic oxidation, an aqueous solution of phosphoric acid having a concentration of 0.6% was used, and the anodic oxidation treatment was carried out for 10 hours by applying a DC voltage of 8 V while maintaining the liquid temperature at 80 ° C. The electrical conductivity of the first anodizing electrolyte at this time was 0.9 S / m.

さらに陽極体を洗浄・乾燥した後、第二の陽極酸化として、濃度0.1%の硝酸水溶液を使用し、液温を室温程度にして8Vの直流電圧を印加して、90分間の陽極酸化処理を実施した。このときの第二の陽極酸化の電解液の導電率は、1.0S/mであった。   Further, after washing and drying the anode body, as a second anodic oxidation, a nitric acid aqueous solution having a concentration of 0.1% is used, the liquid temperature is set to about room temperature, and a DC voltage of 8 V is applied to perform an anodic oxidation for 90 minutes. Processing was carried out. The conductivity of the second anodic oxidation electrolyte at this time was 1.0 S / m.

上記の実施例および比較例により第二の陽極酸化を実施したときの陽極酸化処理中の電流の時間変化を図2に示す。なお処理した陽極体の数は各50個であった。90分間の処理後では、実施例における電流値は、比較例のそれと比較して1/10程度まで低減している。これは、高導電率の電解液で処理したことにより、マイクロクラック部分も陽極酸化されたために電流値が低減したものと考えられる。   FIG. 2 shows a change in current over time during the anodizing process when the second anodizing is performed according to the above-described examples and comparative examples. In addition, the number of processed anode bodies was 50 each. After the treatment for 90 minutes, the current value in the example is reduced to about 1/10 compared with that in the comparative example. This is considered to be because the current value was reduced because the microcrack portion was also anodized by the treatment with the electrolyte having a high conductivity.

以上、本発明の実施の形態の例を説明したが、本発明はこれに限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち当業者であれば、なしえる各種変形、修正を含むことはもちろんである。   As mentioned above, although the example of embodiment of this invention was demonstrated, this invention is not limited to this, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, it goes without saying that various modifications and corrections can be made by those skilled in the art.

1 陽極体
2 陽極リード線
3 金属片
4 電解液
5 陰極板
DESCRIPTION OF SYMBOLS 1 Anode body 2 Anode lead wire 3 Metal piece 4 Electrolyte solution 5 Cathode plate

Claims (3)

タンタル、ニオブ等の弁作用金属の多孔質体からなる陽極体を陽極酸化する工程において、導電率が0.01〜1S/mである電解液を用いて、3〜20時間の陽極酸化処理を行う第一の陽極酸化工程と、前記第一の陽極酸化工程後に前記陽極体を、導電率が50〜100S/mである電解液を用いて、30分〜2時間の陽極酸化処理を行う第二の陽極酸化工程とを含むことを特徴とする固体電解コンデンサの製造方法。   In the step of anodizing an anode body made of a porous body of valve action metal such as tantalum or niobium, an anodizing treatment for 3 to 20 hours is performed using an electrolytic solution having an electrical conductivity of 0.01 to 1 S / m. A first anodizing step to be performed, and after the first anodizing step, the anode body is subjected to an anodizing treatment for 30 minutes to 2 hours using an electrolytic solution having a conductivity of 50 to 100 S / m. And a second anodizing step. A method for producing a solid electrolytic capacitor, comprising: 前記第一の陽極酸化工程に用いる電解液はリン酸水溶液であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the electrolytic solution used in the first anodizing step is a phosphoric acid aqueous solution. 前記第二の陽極酸化工程に用いる電解液は硝酸水溶液であることを特徴とする請求項1または2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the electrolytic solution used in the second anodic oxidation step is a nitric acid aqueous solution.
JP2009265831A 2009-11-24 2009-11-24 Manufacturing method of solid electrolytic capacitor Active JP5273736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265831A JP5273736B2 (en) 2009-11-24 2009-11-24 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265831A JP5273736B2 (en) 2009-11-24 2009-11-24 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011113985A JP2011113985A (en) 2011-06-09
JP5273736B2 true JP5273736B2 (en) 2013-08-28

Family

ID=44236119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265831A Active JP5273736B2 (en) 2009-11-24 2009-11-24 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5273736B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074487B2 (en) 2015-05-18 2018-09-11 Avx Corporation Solid electrolytic capacitor having a high capacitance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474406A (en) * 1990-07-16 1992-03-09 Matsushita Electric Ind Co Ltd Manufacture of electrode foil for aluminum electrolytic capacitor
JP4548730B2 (en) * 2005-09-27 2010-09-22 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2007184301A (en) * 2005-12-29 2007-07-19 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2007311629A (en) * 2006-05-19 2007-11-29 Nichicon Corp Method for manufacturing solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP2011113985A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4703400B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009010238A (en) Solid-state electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP2008182098A (en) Solid electrolytic capacitor and its manufacturing method
JP2010192831A (en) Solid electrolytic capacitor
JP2003217980A (en) Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR
JP4931776B2 (en) Solid electrolytic capacitor
JP4776522B2 (en) Solid electrolytic capacitor
JP2011216649A (en) Method of manufacturing solid-state electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007250920A (en) Method for manufacturing solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008053512A (en) Solid electrolytic capacitor
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP4863509B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP5276566B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4891186B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007035997A (en) Manufacturing method of solid electrolytic capacitor
JP2007242742A (en) Manufacturing method for solid electrolytic capacitor
JP2007311629A (en) Method for manufacturing solid-state electrolytic capacitor
JP4947888B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250