JP2007184301A - Method of manufacturing electrode foil for electrolytic capacitor - Google Patents

Method of manufacturing electrode foil for electrolytic capacitor Download PDF

Info

Publication number
JP2007184301A
JP2007184301A JP2005380524A JP2005380524A JP2007184301A JP 2007184301 A JP2007184301 A JP 2007184301A JP 2005380524 A JP2005380524 A JP 2005380524A JP 2005380524 A JP2005380524 A JP 2005380524A JP 2007184301 A JP2007184301 A JP 2007184301A
Authority
JP
Japan
Prior art keywords
electrode foil
solution
electrolytic capacitor
foil
anodic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005380524A
Other languages
Japanese (ja)
Inventor
Junichi Kiyozawa
潤一 清澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005380524A priority Critical patent/JP2007184301A/en
Publication of JP2007184301A publication Critical patent/JP2007184301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode foil for an electrolytic capacitor which can positively restore even an electrode foil having high leakage current to make it usable. <P>SOLUTION: In reapplying anodic oxidation to an electrode foil obtained by applying anodic oxidation and drying to an aluminum etching foil, the electrode foil is immersed in an acid solution as depolarization processing ST1, and then, anodic oxidation is reapplied using in-solution power feed as restoring chemical treatment ST2. The acid solution is a nitric acid solution, a sulphuric acid solution or a phosphorous acid solution having acid density of 2.5-25.0 wt.%, and has a liquid temperature of 50-80°C. For second time anodic oxidation, a boric acid-based solution having pH of 3.0-5.0 is used as a chemical treatment liquid, its liquid temperature is set at 80-90°C, and its current density is set at 1.0-10.0 Adcm<SP>-2</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解コンデンサ用電極箔の製造方法に関するものである。   The present invention relates to a method for producing an electrode foil for an electrolytic capacitor.

電解コンデンサにおいて陽極として使用される電解コンデンサ用電極箔は、アルミニウムエッチング箔に陽極酸化を施して製造される(例えば、特許文献1、非特許文献1参照)。   Electrode capacitor electrode foils used as anodes in electrolytic capacitors are manufactured by anodizing aluminum etching foils (see, for example, Patent Document 1 and Non-Patent Document 1).

かかる電解コンデンサ用電極箔には、静電容量が高いことの他、漏れ電流レベルが低いことも求められる。また、電解コンデンサ用電極箔には、電解コンデンサを高温無負荷放置した場合に、損失増大、静電容量の減少、漏れ電流増大等の特性変化が発生しないことも求められる。
特開昭60−155699号公報 永田伊佐也「電解液陰極アルミニウム電解コンデンサ」,日本蓄電器工業株式会社,p.306-307
Such an electrode foil for an electrolytic capacitor is required to have a low leakage current level in addition to a high capacitance. Electrode capacitor electrode foils are also required not to undergo characteristic changes such as increased loss, decreased capacitance, increased leakage current, etc. when the electrolytic capacitor is left unloaded at high temperature.
JP-A-60-155699 Isaya Nagata “Electrolytic Cathode Aluminum Electrolytic Capacitor”, Nippon Electric Storage Co., Ltd., p. 306-307

電解コンデンサ用電極箔は、一般的に、アルミニウムエッチング箔に陽極酸化、乾燥を施した後、ロール状に巻回されて保管される。その際、長期間にわたって保管されると、陽極酸化膜中の欠陥等の影響で漏れ電流が増大することがある。また、製造直後の検査において、漏れ電流が高いものが生産されてしまうこともある。
このような電解コンデンサ用電極箔については、従来、廃棄する以外に方策がなく、省資源の観点およびコスト面から非常に問題である。
Electrode capacitor electrode foils are generally stored after being anodized and dried on an aluminum etching foil and then wound into a roll. At this time, if stored for a long period of time, the leakage current may increase due to the influence of defects in the anodized film. In addition, in the inspection immediately after manufacturing, a product having a high leakage current may be produced.
Conventionally, such an electrode foil for an electrolytic capacitor has no measures other than disposal, which is very problematic from the viewpoint of resource saving and cost.

以上の問題点に鑑みて、本発明の課題は、漏れ電流が高い電極箔についても確実に修復して使用可能とする電解コンデンサ用電極箔の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a method for manufacturing an electrode foil for an electrolytic capacitor that can be reliably restored and used even for an electrode foil having a high leakage current.

上記課題を解決するために、本発明では、アルミニウムエッチング箔に陽極酸化を施した電解コンデンサ用電極箔の製造方法において、該エッチング箔に陽極酸化および乾燥を施した電極箔に対して再度の陽極酸化を行う際、当該電極箔を酸性溶液に浸漬した後、再度の陽極酸化を行うことを特徴とする。   In order to solve the above-mentioned problems, in the present invention, in an electrolytic capacitor electrode foil manufacturing method in which an aluminum etching foil is subjected to anodization, an anode is formed again with respect to the electrode foil obtained by subjecting the etching foil to anodization and drying. When oxidizing, the electrode foil is immersed in an acidic solution, and then anodized again.

本発明では、陽極酸化済みの電極箔の漏れ電流が高い場合に、単に、再度の陽極酸化を行っても漏れ電流を低減することができないという知見に基づき、まず、電極箔を酸性溶液に浸漬して、陽極酸化皮膜中に散在するボイドおよびクラックを露呈させる減極処理を行った後、再度の陽極酸化を行う。
このため、陽極酸化皮膜中に散在していたボイドおよびクラックを確実に消失させることができるので、かかる再生を行った電解コンデンサ用電極箔は、漏れ電流の増大という事象が発生しなかった電解コンデンサ用電極箔と同等、またはそれ以下のレベルにまで漏れ電流を低減でき、かつ、同等以上の信頼性を有している。
In the present invention, when the leakage current of the anodized electrode foil is high, the electrode foil is first immersed in an acidic solution based on the knowledge that the leakage current cannot be reduced simply by performing anodization again. Then, after performing a depolarization treatment that exposes voids and cracks scattered in the anodized film, anodization is performed again.
For this reason, since the voids and cracks scattered in the anodic oxide film can be surely eliminated, the electrolytic capacitor electrode foil that has been regenerated is an electrolytic capacitor in which the phenomenon of increased leakage current has not occurred. The leakage current can be reduced to a level equal to or lower than that of the electrode foil, and the reliability is equal to or higher.

本発明において、上記酸性溶液は、酸濃度が2.5〜25.0wt%の硝酸溶液、硫酸溶液またはリン酸溶液であって、当該酸性溶液に前記電極箔を浸漬する際の液温を50〜80℃とすることが好ましい。   In the present invention, the acidic solution is a nitric acid solution, a sulfuric acid solution, or a phosphoric acid solution having an acid concentration of 2.5 to 25.0 wt%, and the liquid temperature when the electrode foil is immersed in the acidic solution is 50. It is preferable to set it to -80 degreeC.

本発明において、上記の再度の陽極酸化には、化成液としてpHが3.0〜5.0のホウ酸系溶液を用い、当該ホウ酸系溶液の液温を80〜90℃とし、電流密度が1.0〜10.0A・dm-2の条件で前記再度の陽極酸化を行うことが好ましい。 In the present invention, a boric acid solution having a pH of 3.0 to 5.0 is used as the chemical conversion solution for the re-anodic oxidation described above, the temperature of the boric acid solution is set to 80 to 90 ° C., and the current density Is preferably performed again under the condition of 1.0 to 10.0 A · dm −2 .

本発明において、上記の再度の陽極酸化を行う際、液中給電により前記電極箔に給電することが好ましい。再度の陽極酸化を行う電極箔にはすでに陽極酸化皮膜が形成されているので、それに給電ローラを介して給電しようとすると、電極箔と給電ローラとの間にスパークが発生し、切断等の危険性が伴うが、液中給電によればかかる危険性を回避することができる。   In the present invention, it is preferable to supply power to the electrode foil by in-liquid power supply when performing the second anodic oxidation. Since an anodized film has already been formed on the electrode foil to be anodized again, if power is supplied to the electrode foil via the power supply roller, a spark is generated between the electrode foil and the power supply roller, resulting in dangers such as cutting. However, such a risk can be avoided by submerged power feeding.

本発明では、陽極酸化済みの電極箔を酸性溶液に浸漬して、陽極酸化皮膜に散在するボイドおよびクラックを露呈させた後、再度の陽極酸化を行う。このため、陽極酸化皮膜中に散在していたボイドおよびクラックを確実に消失させることができるので、かかる再生を行った電解コンデンサ用電極箔は、漏れ電流の増大という事象が発生しなかった電解コンデンサ用電極箔と同等、またはそれ以下のレベルにまで漏れ電流を低減でき、かつ、同等以上の信頼性を有している。よって、電解コンデンサ用電極箔を使用可能な状態に再生できるので、省資源およびコストの両面において寄与することができる。   In the present invention, the anodized electrode foil is immersed in an acidic solution to expose voids and cracks scattered in the anodized film, and then anodized again. For this reason, since the voids and cracks scattered in the anodic oxide film can be surely eliminated, the electrolytic capacitor electrode foil which has been regenerated is an electrolytic capacitor in which the phenomenon of increased leakage current has not occurred. The leakage current can be reduced to a level equal to or lower than that of the electrode foil, and the reliability is equal to or higher. Therefore, the electrolytic capacitor electrode foil can be regenerated to be usable, which can contribute to both resource saving and cost.

図1は、本発明を適用した電解コンデンサ用電極箔の製造方法を示す工程図である。
図1に示すように、本発明では、アルミニウムエッチング箔に陽極酸化および乾燥を施した電極箔に対して再度の陽極酸化を行う際、減極処理ST1として、電極箔を酸性溶液に浸漬した後、修復化成処理ST2として、再度の陽極酸化を行う。
ここで、再度の陽極酸化により形成された陽極酸化皮膜が耐水性を有していない場合には、リン酸浸漬処理ST3においてリン酸水溶液に浸漬した後、乾燥処理ST4を行い、ロール状に巻き上げる。
FIG. 1 is a process diagram showing a method for producing an electrode foil for an electrolytic capacitor to which the present invention is applied.
As shown in FIG. 1, in the present invention, when anodization is again performed on an electrode foil obtained by anodizing and drying an aluminum etching foil, the electrode foil is immersed in an acidic solution as depolarization treatment ST1. Then, another anodization is performed as the repair conversion treatment ST2.
Here, when the anodic oxide film formed by re-anodic oxidation does not have water resistance, after dipping in the phosphoric acid aqueous solution in the phosphoric acid dipping treatment ST3, the drying treatment ST4 is performed to wind up the roll. .

このように本発明では、減極処理ST1において、電極箔を酸性溶液に浸漬して、陽極酸化皮膜に散在するボイドおよびクラックを露呈させる減極処理を行った後、修復化成処理ST2において、再度の陽極酸化を行うため、陽極酸化皮膜中に散在していたボイドおよびクラックを確実に消失させることができる。それ故、漏れ電流が高い電極箔についても確実に修復して使用可能とすることができる。   As described above, in the present invention, in the depolarization process ST1, the electrode foil is immersed in an acidic solution, and after performing the depolarization process that exposes voids and cracks scattered in the anodized film, in the repair chemical conversion process ST2, again. Therefore, voids and cracks scattered in the anodized film can be surely eliminated. Therefore, it is possible to reliably repair and use an electrode foil having a high leakage current.

ここで、酸性溶液は、酸濃度が2.5〜25.0wt%の硝酸溶液、硫酸溶液またはリン酸溶液であって、かかる酸性液に電極箔を浸漬する際の液温を50〜80℃とすることが好ましい。硝酸溶液、硫酸溶液、リン酸溶液は、他の無機酸のように陽極酸化皮膜およびアルミニウム素地部分を激しく溶解させてしまうことがない。従って、陽極酸化皮膜中の欠陥部の露呈を効果的に行うことができる。
また、減極処理ST1を行う際の酸性溶液の液温については50〜80℃が好ましく、50℃より低いと陽極酸化皮膜を溶解させるのに時間がかかる一方、80℃より高いと溶解が激しいため制御が困難となる。
そして、酸濃度については2.5〜25.0wt%の範囲が好ましく、2.5wt%より低いと陽極酸化皮膜中のボイドおよびクラックが露呈されず、25.0wt%より高いと陽極酸化皮膜全体を溶解させてしまう。
Here, the acidic solution is a nitric acid solution, a sulfuric acid solution or a phosphoric acid solution having an acid concentration of 2.5 to 25.0 wt%, and the temperature of the electrode foil immersed in the acidic solution is 50 to 80 ° C. It is preferable that The nitric acid solution, the sulfuric acid solution, and the phosphoric acid solution do not vigorously dissolve the anodized film and the aluminum base portion like other inorganic acids. Therefore, it is possible to effectively expose the defective portion in the anodized film.
Moreover, about 80-80 degreeC is preferable about the liquid temperature of the acidic solution at the time of performing depolarization process ST1, and when it is lower than 50 degreeC, while it takes time to melt | dissolve an anodized film, when it is higher than 80 degreeC, melt | dissolution is intense. Therefore, control becomes difficult.
The acid concentration is preferably in the range of 2.5 to 25.0 wt%. When the concentration is lower than 2.5 wt%, voids and cracks in the anodized film are not exposed. Will be dissolved.

また、修復化成処理ST2においては、化成液としてpHが3.0〜5.0のホウ酸系溶液を用い、このホウ酸系溶液の液温を80〜90℃とし、電流密度が1.0〜10.0A・dm-2の条件で再度の陽極酸化を行うことが好ましい。再度の陽極酸化時の液温が80℃より低いと、化成性が低下し漏れ電流の低減効果が低くなり、90℃より高いと化成液の化成性が高まり漏れ電流の低減効果は高まるが、化成機上で電極箔が煽られ、切断する危険性が高まる。よって、液温は80〜90℃が最適である。
また、化成液のpHが5.0より高いと、再度の陽極酸化により形成される陽極酸化皮膜が厚くなり静電容量の低下を招き、3.0より低いと液調合段階でホウ酸を大量に投入することになり、ホウ酸が析出しやすくなる。従って、pHは3.0〜5.0の範囲が最適である。
電流密度については、1.0〜10.0A・dm-2の範囲が最適で、10.0A・dm-2より高いと再度の化成時に欠陥部の修復が十分に行われず、漏れ電流の低減効果が低くなり、1.0A・dm-2より低いと修復化成の電気量が少なくなるため漏れ電流の低減効果が低下する。
Further, in the repair chemical conversion treatment ST2, a boric acid solution having a pH of 3.0 to 5.0 is used as the chemical conversion solution, the temperature of the boric acid solution is set to 80 to 90 ° C., and the current density is 1.0. It is preferable to perform anodic oxidation again under a condition of ˜10.0 A · dm −2 . If the liquid temperature during the second anodic oxidation is lower than 80 ° C., the chemical conversion is reduced and the leakage current reduction effect is low. The risk of cutting the electrode foil on the chemical conversion machine increases. Therefore, the optimal liquid temperature is 80 to 90 ° C.
Also, if the pH of the chemical conversion solution is higher than 5.0, the anodic oxidation film formed by re-anodic oxidation becomes thick and the capacitance decreases, and if it is lower than 3.0, a large amount of boric acid is produced in the liquid preparation stage. The boric acid tends to precipitate. Therefore, the pH is optimally in the range of 3.0 to 5.0.
The current density, the optimum range of 1.0~10.0A · dm -2, defect repair not sufficiently when re-conversion is higher than 10.0A · dm -2, reduction of leakage current The effect is low, and if it is lower than 1.0 A · dm −2 , the amount of electricity for restoration conversion is reduced, and the effect of reducing leakage current is reduced.

さらに、多槽式の連続化成機によって陽極酸化済みの電極箔に対して本発明を適用する場合には、再度の陽極酸化を行う際、液中給電により電極箔に給電することが好ましい。
再度の陽極酸化を行う電極箔にはすでに陽極酸化皮膜が形成されているので、それに給電ローラを介して給電しようとすると、電極箔と給電ローラとの間にスパークが発生し、切断等の危険性が伴うが、液中給電によればかかる危険性を回避することができる。
Further, when the present invention is applied to an anodized electrode foil by a multi-tank continuous chemical conversion machine, it is preferable to supply power to the electrode foil by in-liquid power supply when performing anodization again.
Since the anodized film is already formed on the electrode foil to be anodized again, if power is supplied to the electrode foil via the power supply roller, a spark is generated between the electrode foil and the power supply roller, resulting in danger of cutting and the like. However, such a risk can be avoided by submerged feeding.

[実施例1〜16]硝酸水溶液への浸漬処理条件(酸濃度、液温)比較
以下、実施例に基づいて、本発明による実施例をより具体的に説明する。まず、最終まで化成処理された電極箔を準備する。ここで、電極箔は、例えば、EIAJ法による皮膜耐電圧が535Vであり、漏れ電流レベルの高い電極箔を準備する。ここで、酸性溶液としては硝酸水溶液を用い、酸濃度は2.5〜25.0wt%とする。
[Examples 1 to 16] Comparison of immersion treatment conditions (acid concentration, liquid temperature) in an aqueous nitric acid solution Hereinafter, examples according to the present invention will be described more specifically based on examples. First, an electrode foil subjected to chemical conversion treatment to the end is prepared. Here, as the electrode foil, for example, an electrode foil having a coating withstand voltage of 535 V according to the EIAJ method and a high leakage current level is prepared. Here, a nitric acid aqueous solution is used as the acidic solution, and the acid concentration is set to 2.5 to 25.0 wt%.

次に、準備した電極箔の漏れ電流を低減するために、まず、上記硝酸水溶液を温度50〜80℃に設定した状態で電極箔を5分間浸漬する。次に、ホウ酸110g/lと28wt%アンモニア水0.20ml/lとを配合した化成液中で電圧535Vを印加して再度の陽極酸化を行い、電圧535Vに到達した後15分間保持する。なお、化成液のpHは4.0、電流密度は1.0A・dm−2とした。次に、8.5wt%リン酸水溶液中へ5分間浸漬を行い、その後150℃以上で乾燥を行って電解コンデンサ用電極箔を作製した。 Next, in order to reduce the leakage current of the prepared electrode foil, first, the electrode foil is immersed for 5 minutes in a state where the nitric acid aqueous solution is set at a temperature of 50 to 80 ° C. Next, anodic oxidation is performed again by applying a voltage of 535 V in a chemical solution containing 110 g / l of boric acid and 0.20 ml / l of 28 wt% aqueous ammonia, and the voltage is maintained for 15 minutes after reaching the voltage of 535 V. The pH of the chemical conversion solution was 4.0, and the current density was 1.0 A · dm −2 . Next, it was immersed in an 8.5 wt% phosphoric acid aqueous solution for 5 minutes and then dried at 150 ° C. or higher to produce an electrode foil for an electrolytic capacitor.

(比較例1)
なお、上記の硝酸水溶液への浸漬を行わなかった以外は、上記実施例と同様の再生処理を行って、電解コンデンサ用電極箔を作製した。
(Comparative Example 1)
In addition, except having not immersed in said nitric acid aqueous solution, the reproduction | regeneration process similar to the said Example was performed, and the electrode foil for electrolytic capacitors was produced.

(比較例2〜5)
次に、比較例として、酸濃度、酸性溶液の液温が上記実施例の範囲を外れるもの、すなわち、酸濃度が1.0wt%、30.0wt%、酸性溶液の液温が40℃、90℃の条件にて、その他の再生処理条件は、上記実施例と同様にして電解コンデンサ用電極箔を作製した。
(Comparative Examples 2 to 5)
Next, as a comparative example, the acid concentration and the liquid temperature of the acidic solution are out of the range of the above-described examples, that is, the acid concentration is 1.0 wt%, 30.0 wt%, the liquid temperature of the acidic solution is 40 ° C., 90 An electrolytic capacitor electrode foil was prepared in the same manner as in the above example under the conditions of ° C. and other regeneration treatment conditions.

上記の再生処理を行うにあたって使用した酸性水溶液の条件、および再生処理を行って得た電解コンデンサ用電極箔の漏れ電流の評価結果を表1に示す。   Table 1 shows the conditions of the acidic aqueous solution used in performing the regeneration treatment and the evaluation results of the leakage current of the electrode foil for an electrolytic capacitor obtained by performing the regeneration treatment.

Figure 2007184301
Figure 2007184301

表1から分かるように、本発明の再生処理を行った実施例1〜16は、かかる再生処理を行わなかった比較例と比較して、漏れ電流が改善されていることが分かる。
ここで、酸性溶液に電極箔を浸漬する際の液温は、50〜80℃の範囲が最適であり、特に、60℃および70℃で低減効果が高い(実施例5〜12)。40℃では陽極酸化皮膜を溶解させるのに時間がかかるので漏れ電流が高くなり(比較例2)、90℃では陽極酸化皮膜の溶解が激しいため、漏れ電流が高くなる(比較例4)。
また、酸濃度は2.5〜25.0wt%の範囲が最適である。1.0wt%では陽極酸化皮膜中のボイドおよびクラックが露呈されず、漏れ電流が高くなり(比較例3)、30.0wt%では陽極酸化皮膜全体を溶解させでしまうので(比較例4)、漏れ電流が高くなる。
As can be seen from Table 1, in Examples 1 to 16 in which the regeneration process of the present invention was performed, the leakage current was improved as compared with the comparative example in which the regeneration process was not performed.
Here, the temperature at which the electrode foil is immersed in the acidic solution is optimally in the range of 50 to 80 ° C., and the reduction effect is particularly high at 60 ° C. and 70 ° C. (Examples 5 to 12). Since it takes time to dissolve the anodized film at 40 ° C., the leakage current becomes high (Comparative Example 2), and at 90 ° C., the dissolution of the anodized film is intense and the leakage current becomes high (Comparative Example 4).
The acid concentration is optimally in the range of 2.5 to 25.0 wt%. At 1.0 wt%, voids and cracks in the anodized film are not exposed and the leakage current becomes high (Comparative Example 3), and at 30.0 wt%, the entire anodized film can be dissolved (Comparative Example 4). Leakage current increases.

[実施例17〜24]リン酸、硫酸水溶液への浸漬処理比較
次に、酸性溶液として、リン酸または硫酸の水溶液を用いた以外は、上記実施例5〜8と同様の条件にて電解コンデンサ用電極箔を作製し、漏れ電流の評価を行った。リン酸水溶液の場合(実施例17〜20)、硫酸水溶液の場合(実施例21〜24)についての評価結果を表2,3に示す。
[Examples 17 to 24] Comparison of immersion treatment in phosphoric acid and sulfuric acid aqueous solution Next, an electrolytic capacitor was used under the same conditions as in Examples 5 to 8 except that an aqueous solution of phosphoric acid or sulfuric acid was used as the acidic solution. Electrode foils were prepared and leakage current was evaluated. Tables 2 and 3 show the evaluation results for the case of the phosphoric acid aqueous solution (Examples 17 to 20) and the case of the sulfuric acid aqueous solution (Examples 21 to 24).

Figure 2007184301
Figure 2007184301

Figure 2007184301
Figure 2007184301

表2、3の実施例17〜24と表1の比較例1とを比較すると、リン酸または硫酸で再生処理を行った実施例17〜24は、再生処理を行わなかった比較例1より漏れ電流が改善されていることが分かる。
なお、表1〜3において、酸性溶液の種類別に比較すると、漏れ電流低減効果が最も高い酸性液はリン酸で、濃度が5.0wt%、浸漬する際の液温が60℃の条件の電極箔(実施例22)が最も効果が高い。
Comparing Examples 17 to 24 in Tables 2 and 3 with Comparative Example 1 in Table 1, Examples 17 to 24 that were regenerated with phosphoric acid or sulfuric acid leaked from Comparative Example 1 that was not regenerated. It can be seen that the current is improved.
In Tables 1 to 3, when compared with the types of acidic solutions, the acidic solution having the highest leakage current reduction effect is phosphoric acid, the concentration is 5.0 wt%, and the electrode temperature is 60 ° C. The foil (Example 22) is most effective.

[実施例25〜32]再度の陽極酸化条件(化成液のpH、液温、電流密度)比較
次に、酸性溶液への浸漬処理条件の中で、漏れ電流低減効果が最も高かった実施例18の電極箔を用い、再度の陽極酸化時の化成液のpH、液温、電流密度の条件を変えて、再生処理を行った。
ここで、pHは3.0〜5.0、電流密度は1〜10A・dm-2、液温は80〜90℃とした。
なお、再度の陽極酸化の条件は、上述した条件と同様であり、ホウ酸110g/lとし、28wt%アンモニア水でpHを調整した化成液中で電圧535Vを印加して再度の陽極酸化を行い、電圧535Vに到達した後、15分間保持し、次に8.5wt%リン酸水溶液中へ5分間浸漬を行い、その後150℃で乾燥を行って電解コンデンサ用電極箔を作製した。
[Examples 25 to 32] Comparison of anodizing conditions again (pH of chemical conversion liquid, liquid temperature, current density) Next, Example 18 in which the effect of reducing leakage current was the highest among the conditions of immersion treatment in acidic solution. The electrode foil was used, and the regeneration treatment was performed by changing the pH, liquid temperature, and current density conditions of the chemical conversion solution during the anodic oxidation again.
Here, the pH was 3.0 to 5.0, the current density was 1 to 10 A · dm −2 , and the liquid temperature was 80 to 90 ° C.
The conditions for re-anodic oxidation are the same as those described above, and boric acid is 110 g / l, and the voltage is adjusted to 535 V in 28 wt% ammonia water, and a voltage of 535 V is applied for re-anodic oxidation. After reaching the voltage of 535 V, it was held for 15 minutes, then immersed in an 8.5 wt% phosphoric acid aqueous solution for 5 minutes, and then dried at 150 ° C. to produce an electrode foil for an electrolytic capacitor.

(比較例)
次に、比較例として、pHが2.0および6.0、電流密度が0.5A・dm-2および15A・dm-2、液温が75℃または95℃の条件にて、その他の再生処理条件は上記実施例と同様にして、電解コンデンサ用電極箔を作製した。
(Comparative example)
Next, as a comparative example, other regenerations were performed under the conditions of pH 2.0 and 6.0, current densities of 0.5 A · dm −2 and 15 A · dm −2 , and liquid temperature of 75 ° C. or 95 ° C. The processing conditions were the same as in the above example, and an electrode foil for an electrolytic capacitor was produced.

上記の実施例および比較例の電解コンデンサ用電極箔について、漏れ電流を評価した結果を表4に示す。   Table 4 shows the results of evaluating the leakage current for the electrode foils for electrolytic capacitors of the above-described Examples and Comparative Examples.

Figure 2007184301
Figure 2007184301

表4から分かるように、化成液のpHは3.0〜5.0の範囲が最適である。2.0では漏れ電流の増加はないが、化成液の調合段階でホウ酸が折出しやすくなり、また、6.0では再度の陽極酸化により形成される陽極酸化皮膜が厚くなり静電容量の低下を招く。
また、電流密度は1.0〜10.0A・dm-2の範囲が最適である。0.5A・dm-2では修復化成の電気量が少なくなるため、漏れ電流の低減効果が低下し、15.0A・dm-2では修復化成時に欠陥部の修復が不充分となり、漏れ電流の低減効果が低下する。
さらに、化成液の液温は80〜90℃の範囲が適当である。75℃では化成性が低下し、漏れ電流の低減効果が低くなり、95℃では化成液の化成性が高まり、漏れ電流の低減効果は高まるが化成機上で電極箔が煽られ、切断する危険性が高まる。
As can be seen from Table 4, the optimum pH of the chemical conversion solution is in the range of 3.0 to 5.0. In 2.0, there is no increase in leakage current, but boric acid tends to break out at the chemical liquid preparation stage, and in 6.0, the anodic oxide film formed by re-anodizing becomes thicker and the capacitance is increased. Incurs a decline.
The current density is optimally in the range of 1.0 to 10.0 A · dm −2 . At 0.5 A · dm -2 , the amount of electricity required for repair formation is reduced, so the effect of reducing leakage current is reduced. At 15.0 A · dm -2 , the repair of defective parts becomes insufficient during repair formation, and leakage current is reduced. Reduction effect decreases.
Furthermore, the range of 80-90 degreeC is suitable for the liquid temperature of a chemical conversion liquid. At 75 ° C, the chemical conversion is reduced, and the effect of reducing leakage current is reduced. At 95 ° C, the chemical conversion of the chemical liquid is increased, and the effect of reducing leakage current is increased, but the risk of cutting and cutting the electrode foil on the chemical generator is high. Increases nature.

[実施例26と酸性溶液浸漬、修復化成の有無との比較]
表5は、本発明に係る再生処理をしない比較例12、酸性溶液への浸漬処理を行わずに再度の陽極酸化のみを行った比較例1、および本発明の実施例26の漏れ電流を比較した結果である。
実施例26は、上述したとおり、酸性溶液として5wt%のリン酸水溶液を用い、浸漬の際の液温は60℃、浸漬時間は5分である。また、再度の陽極酸化に用いる化成液は、pHが4.0、液温が85℃のホウ酸系化成液で、再度の陽極酸化時の電流密度は1.0A・dm-2である。
[Comparison of Example 26 with Acid Solution Soaking and Restoration Conversion]
Table 5 compares the leakage current of Comparative Example 12 where the regeneration treatment according to the present invention is not performed, Comparative Example 1 where only the anodic oxidation is performed again without performing the immersion treatment in the acidic solution, and Example 26 of the present invention. It is the result.
In Example 26, as described above, a 5 wt% aqueous phosphoric acid solution was used as the acidic solution, the liquid temperature during immersion was 60 ° C., and the immersion time was 5 minutes. The chemical conversion solution used for re-anodic oxidation is a boric acid-based chemical solution having a pH of 4.0 and a liquid temperature of 85 ° C., and the current density during re-anodic oxidation is 1.0 A · dm −2 .

Figure 2007184301
Figure 2007184301

表5から分かるように、本発明に係る再生処理を行った実施例26によれば、比較例1、12と比較して漏れ電流を大幅に低減できることが確認できた。   As can be seen from Table 5, according to Example 26 in which the regeneration process according to the present invention was performed, it was confirmed that the leakage current could be significantly reduced as compared with Comparative Examples 1 and 12.

上記3種の電解コンデンサ用電極箔について、ホウ酸70g/lの水溶液中で電圧を一定速度で上昇させた際の電圧−漏れ電流の関係を示すV−I特性を測定したので、その結果を図2に示す。   With respect to the above three types of electrolytic capacitor electrode foils, the VI characteristics indicating the voltage-leakage current relationship when the voltage was increased at a constant rate in an aqueous solution of boric acid 70 g / l were measured. As shown in FIG.

図2から明らかなように、比較例12では100V付近で漏れ電流値が上昇しており、かかる上昇が発生することから、陽極酸化皮膜中にボイドおよびクラックと呼ばれる欠陥部が多数残存しているものと考えられる。これに対して、実施例26は漏れ電流値が低くなっており、化成箔の陽極酸化皮膜中のボイドおよびクラックが修復されているものと考えられる。なお、再度の陽極酸化のみを行った比較例1は、比較例12より漏れ電流値は低くなっているものの、陽極酸化皮膜中に多数のボイドが残存している結果であった。   As is apparent from FIG. 2, in Comparative Example 12, the leakage current value increases near 100 V, and such an increase occurs, so that many defect portions called voids and cracks remain in the anodized film. It is considered a thing. On the other hand, Example 26 has a low leakage current value, and it is considered that voids and cracks in the anodized film of the conversion foil are repaired. In Comparative Example 1 in which only the anodic oxidation was performed again, the leakage current value was lower than that in Comparative Example 12, but many voids remained in the anodic oxide film.

本発明を適用した電解コンデンサ用電極箔の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the electrode foil for electrolytic capacitors to which this invention is applied. 本発明の実施例26、比較例1、12に係る電解コンデンサ用電極箔のV−I特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the VI characteristic of the electrode foil for electrolytic capacitors which concerns on Example 26 and Comparative Examples 1 and 12 of this invention.

符号の説明Explanation of symbols

ST1 減極処理(酸性溶液への浸漬)
ST2 修復化成処理(再度の陽極酸化)
ST3 リン酸浸漬処理
ST4 乾燥処理
ST1 Depolarization treatment (immersion in acidic solution)
ST2 Repair conversion treatment (re-anodic oxidation)
ST3 Phosphate immersion treatment ST4 Drying treatment

Claims (4)

アルミニウムエッチング箔に陽極酸化を施した電解コンデンサ用電極箔の製造方法において、
該エッチング箔に陽極酸化および乾燥を施した電極箔に対して再度の陽極酸化を行う際、該電極箔を酸性溶液に浸漬した後、再度の陽極酸化を行うことを特徴とする電解コンデンサ用電極箔の製造方法。
In the method for producing an electrode foil for an electrolytic capacitor obtained by anodizing an aluminum etching foil,
An electrode for an electrolytic capacitor, characterized in that, when anodizing and drying an electrode foil that has been anodized and dried on the etching foil, the electrode foil is immersed in an acidic solution and then anodized again. Foil manufacturing method.
上記酸性溶液は、酸濃度が2.5〜25.0wt%の硝酸溶液、硫酸溶液またはリン酸溶液であって、
該酸性溶液に前記電極箔を浸漬する際の液温を50〜80℃とすることを特徴とする請求項1に記載の電解コンデンサ用電極箔の製造方法。
The acidic solution is a nitric acid solution, a sulfuric acid solution or a phosphoric acid solution having an acid concentration of 2.5 to 25.0 wt%,
The method for producing an electrode foil for an electrolytic capacitor according to claim 1, wherein the temperature of the electrode foil immersed in the acidic solution is 50 to 80 ° C.
上記の再度の陽極酸化には、化成液としてpHが3.0〜5.0のホウ酸系溶液を用い、
該ホウ酸系溶液の液温を80〜90℃とし、電流密度が1.0〜10.0A・dm-2の条件で前記再度の陽極酸化を行うことを特徴とする請求項1または請求項2に記載の電解コンデンサ用電極箔の製造方法。
For the second anodic oxidation, a boric acid solution having a pH of 3.0 to 5.0 is used as a chemical conversion solution.
The liquid temperature of the boric acid-based solution is set to 80 to 90 ° C, and the anodic oxidation is performed again under the condition of a current density of 1.0 to 10.0 A · dm -2. 2. A method for producing an electrode foil for an electrolytic capacitor as described in 2.
上記の再度の陽極酸化を行う際、液中給電により前記電極箔に給電することを特徴とする請求項1〜3の何れか1項に記載の電解コンデンサ用電極箔の製造方法。   The method for producing an electrode foil for an electrolytic capacitor according to any one of claims 1 to 3, wherein when the anodic oxidation is performed again, the electrode foil is fed by submerged feeding.
JP2005380524A 2005-12-29 2005-12-29 Method of manufacturing electrode foil for electrolytic capacitor Pending JP2007184301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005380524A JP2007184301A (en) 2005-12-29 2005-12-29 Method of manufacturing electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005380524A JP2007184301A (en) 2005-12-29 2005-12-29 Method of manufacturing electrode foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2007184301A true JP2007184301A (en) 2007-07-19

Family

ID=38340149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380524A Pending JP2007184301A (en) 2005-12-29 2005-12-29 Method of manufacturing electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2007184301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113985A (en) * 2009-11-24 2011-06-09 Nec Tokin Corp Method of manufacturing solid electrolytic capacitor
CN103646787A (en) * 2013-12-20 2014-03-19 严民 High-specific-volume high-flex electrode foil corrosion manufacturing method
DE102014002927A1 (en) 2013-03-08 2015-08-27 Suzuki Motor Corporation Method for repairing an aluminum-based element, repair solution and aluminum-based material and method for its production
WO2018146932A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminium electrolytic capacitor, and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113985A (en) * 2009-11-24 2011-06-09 Nec Tokin Corp Method of manufacturing solid electrolytic capacitor
DE102014002927A1 (en) 2013-03-08 2015-08-27 Suzuki Motor Corporation Method for repairing an aluminum-based element, repair solution and aluminum-based material and method for its production
CN103646787A (en) * 2013-12-20 2014-03-19 严民 High-specific-volume high-flex electrode foil corrosion manufacturing method
WO2018146932A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminium electrolytic capacitor, and production method therefor
JP2018129428A (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminum electrolytic capacitor, and method for manufacturing the same
CN110366764A (en) * 2017-02-09 2019-10-22 日本轻金属株式会社 Aluminium electrolutic capacitor electrode and its manufacturing method
JP2021185626A (en) * 2017-02-09 2021-12-09 日本軽金属株式会社 Electrode for aluminum electrolytic capacitor
JP6990974B2 (en) 2017-02-09 2022-01-12 日本軽金属株式会社 Manufacturing method of electrodes for aluminum electrolytic capacitors
US11309137B2 (en) 2017-02-09 2022-04-19 Nippon Light Metal Company, Ltd Electrode for aluminium electrolytic capacitor, and production method therefor
JP7181358B2 (en) 2017-02-09 2022-11-30 日本軽金属株式会社 Electrodes for aluminum electrolytic capacitors

Similar Documents

Publication Publication Date Title
US7780835B2 (en) Method of making a capacitor by anodizing aluminum foil in a glycerine-phosphate electrolyte without a pre-anodizing hydration step
WO1999065043A1 (en) Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JP2007184301A (en) Method of manufacturing electrode foil for electrolytic capacitor
CN112117128B (en) High-specific-volume and high-strength medium-high voltage corrosion electrode foil and preparation method and application thereof
JP2011162802A (en) Method of manufacturing anodic oxidation film and electrolytic capacitor
JP4653687B2 (en) Method for producing electrode foil for electrolytic capacitor
CN108962606A (en) A kind of high-voltage solid-state aluminum capacitor is anodizing to electrolyte and its chemical synthesizing method
JP2000068159A (en) Solid electrolytic capacitor electrode foil therefor and its manufacture
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP4576192B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH09246111A (en) Formation of electrode foil for aluminum electrolytic capacitor
JP4970369B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP4217147B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP2007281246A (en) Manufacturing method of electrolytic capacitor electrode foil
JP2007036048A (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
US11649557B2 (en) Method for forming holes, metal product, and metal composite
JP5137666B2 (en) Method for producing metal foil for electrolytic capacitor, and electrolytic capacitor
JP2004040134A (en) Manufacturing method of solid electrolytic capacitor
JP4074588B2 (en) Method for producing anode foil for aluminum electrolytic capacitor