JP2004040134A - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP2004040134A
JP2004040134A JP2003358853A JP2003358853A JP2004040134A JP 2004040134 A JP2004040134 A JP 2004040134A JP 2003358853 A JP2003358853 A JP 2003358853A JP 2003358853 A JP2003358853 A JP 2003358853A JP 2004040134 A JP2004040134 A JP 2004040134A
Authority
JP
Japan
Prior art keywords
aqueous solution
solid electrolytic
electrolytic capacitor
layer
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003358853A
Other languages
Japanese (ja)
Other versions
JP3731596B2 (en
Inventor
Yukari Shimamoto
島本 由賀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003358853A priority Critical patent/JP3731596B2/en
Publication of JP2004040134A publication Critical patent/JP2004040134A/en
Application granted granted Critical
Publication of JP3731596B2 publication Critical patent/JP3731596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor for reducing leakage current by suppressing the degradation of an anodized coating when a manganese dioxide layer is formed by thermal decomposition, for concurrently suppressing the increase of the leakage current when the capacitor is exposed to high temperatures and humidities without load, and for providing excellent impedance characteristics in the high-frequency region. <P>SOLUTION: The manufacturing method comprises the steps of: chemically reconverting an aluminum anodic body 1 in phosphate anion containing solution, of which anodic oxide coating film 2 is formed from aqueous solution of ammonium adipate; then forming a manganese dioxide layer 3 on the surface of the anodic body 1; then forming a conductive polymer layer 4 on the manganese dioxide layer 3; and further forming a cathode conductive layer 5 on the conductive polymer layer 4. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は陽極酸化皮膜を形成したアルミを陽極体とする固体電解コンデンサの製造方法に関するものである。 (4) The present invention relates to a method for manufacturing a solid electrolytic capacitor using aluminum having an anodized film as an anode body.

 従来、電解質として二酸化マンガンを用いた固体電解コンデンサはよく知られているが、二酸化マンガンは電導度が低いため、高周波領域でのインピーダンス特性が高いという欠点がある。この欠点を改良するものとして、例えば、特許文献1や特許文献2に示されているように、固体電解質として7,7,8,8−テトラシアノキノジメタン錯体を使用したものや、陽極酸化皮膜上に二酸化マンガンを形成した後、さらに固体電解質として導電性高分子層を形成したものが提案されている。 Conventionally, solid electrolytic capacitors using manganese dioxide as an electrolyte are well known, but manganese dioxide has a drawback of high impedance characteristics in a high-frequency region due to low conductivity. To improve this drawback, for example, as shown in Patent Document 1 and Patent Document 2, using a 7,7,8,8-tetracyanoquinodimethane complex as a solid electrolyte, or anodizing It has been proposed to form manganese dioxide on a film and then form a conductive polymer layer as a solid electrolyte.

 また、二酸化マンガンは一般に硝酸マンガンを熱分解することにより形成されるため、特にアルミを陽極体にした場合、陽極酸化皮膜が著しく損傷し、これにより、製品の漏れ電流が大きくなるという欠点を有するものである。これを解決する方法として、例えば、特許文献3や特許文献4に示されているように、導電性高分子層を形成した後、電解液中で再化成する方法が提案されている。
特開昭63−158829号公報 特開平01−253226号公報 特開昭63−181310号公報 特開平02−260516号公報
In addition, since manganese dioxide is generally formed by thermally decomposing manganese nitrate, particularly when aluminum is used as the anode body, the anodic oxide film is significantly damaged, which has a disadvantage that the leakage current of the product increases. Things. As a method of solving this, for example, as shown in Patent Document 3 and Patent Document 4, a method of forming a conductive polymer layer and then re-forming in an electrolytic solution has been proposed.
JP-A-63-158829 JP-A-01-253226 JP-A-63-181310 JP-A-02-260516

 しかしながら、上記した従来の方法では、導電性高分子層を形成した後、電解液中で再化成するようにしているため、電解液が陽極酸化皮膜に供給されにくく、これにより十分に陽極酸化皮膜を修復することができず、また、化成条件によっては導電性高分子層が劣化してインピーダンス特性が悪くなるという問題点を有していた。 However, in the above-mentioned conventional method, since the conductive polymer layer is formed and then re-chemically formed in the electrolytic solution, the electrolytic solution is hardly supplied to the anodic oxide film. Cannot be repaired, and there is a problem that the conductive polymer layer is deteriorated and the impedance characteristic is deteriorated depending on the formation conditions.

 また、アルミを陽極体にした固体電解コンデンサの場合、高温高湿下に無負荷で放置すると漏れ電流が著しく増大するという問題点を有していた。 固体 Further, in the case of a solid electrolytic capacitor using aluminum as an anode body, there is a problem that the leakage current increases significantly when left without a load under high temperature and high humidity.

 本発明は上記従来の問題点を解決するもので、熱分解により二酸化マンガン層を形成する際に起こる陽極酸化皮膜の劣化を抑制して漏れ電流を低減させることができるとともに、高温高湿下に無負荷で放置された時の漏れ電流の増大も抑制でき、かつ高周波領域でのインピーダンス特性も優れている固体電解コンデンサの製造方法を提供することを目的とするものである。 The present invention solves the above-mentioned conventional problems.In addition to suppressing the deterioration of the anodic oxide film that occurs when a manganese dioxide layer is formed by thermal decomposition, it is possible to reduce the leakage current, and at high temperature and high humidity. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that can suppress an increase in leakage current when left unloaded and has excellent impedance characteristics in a high-frequency region.

 本発明の請求項1に記載の発明は、アジピン酸アンモニウム水溶液から陽極酸化皮膜を形成したアルミの陽極体を燐酸アニオンを含む水溶液中で再化成を行い、この後、陽極体の表面に熱分解により二酸化マンガン層を形成し、この後、二酸化マンガン層上に導電性高分子層を形成し、さらにこの導電性高分子層上に陰極導電体層を形成した製造方法としたものであり、この製造方法によれば、燐酸アニオンを含む水溶液中で再化成を行うようにしているため、陽極酸化皮膜のない部分に陽極酸化皮膜を形成するとともに、陽極酸化皮膜中の燐の濃度は一定以上に保たれ、そしてこの燐の存在により、熱分解により二酸化マンガン層を形成する際の硝酸マンガンによる陽極酸化皮膜の溶解が抑制され、また、熱分解時の熱や水蒸気等の存在による陽極酸化皮膜の結晶化あるいは水和反応も起こりにくくなり、これらにより、漏れ電流の増大を抑制できるものである。 According to the first aspect of the present invention, an aluminum anode body having an anodic oxide film formed from an aqueous solution of ammonium adipate is re-chemically formed in an aqueous solution containing phosphate anions, and then the surface of the anode body is thermally decomposed. Forming a manganese dioxide layer, and thereafter, forming a conductive polymer layer on the manganese dioxide layer, and further forming a cathode conductor layer on the conductive polymer layer, a manufacturing method comprising: According to the production method, since re-chemical conversion is performed in an aqueous solution containing a phosphate anion, an anodic oxide film is formed on a portion having no anodic oxide film, and the concentration of phosphorus in the anodic oxide film is not less than a certain level. The anodic oxide film is prevented from dissolving by manganese nitrate when the manganese dioxide layer is formed by the thermal decomposition due to the presence of the phosphorus, and the presence of heat or steam during the thermal decomposition. According hardly occur crystallization or hydration of the anodized film, these are those of the increase in leakage current can be suppressed.

 請求項2に記載の発明は、燐酸アニオンを含む水溶液中での再化成が、アジピン酸アンモニウム水溶液で陽極酸化皮膜を形成する化成電圧を超えない範囲の化成電圧で再化成を行うようにした製造方法とするものであり、この方法によれば初めに形成した陽極酸化皮膜の特性を損なうことなく再化成を行うことができるため、非常に漏れ電流の小さい固体電解コンデンサを得ることができるものである。 According to a second aspect of the present invention, there is provided a production method wherein re-chemical formation in an aqueous solution containing a phosphate anion is performed at a chemical formation voltage within a range not exceeding a chemical formation voltage for forming an anodic oxide film with an aqueous solution of ammonium adipate. According to this method, re-chemical formation can be performed without impairing the characteristics of the anodic oxide film formed first, so that a solid electrolytic capacitor having a very small leakage current can be obtained. is there.

 請求項3に記載の発明は、燐酸アニオンを含む水溶液の濃度を0.1〜5.0重量%の範囲にした製造方法とするものであり、この濃度が0.1重量%以下の場合は、化成液の電導度が低いため陽極酸化皮膜の形成速度が著しく遅くなり、生産効率が悪いものである。一方、濃度が5.0重量%以上の場合は、陽極酸化反応と同時に溶解反応の進行が速くなるため、耐圧低下などの問題が生じるものであり、したがって、燐酸アニオンを含む水溶液の濃度は0.1〜5.0重量%の範囲が好ましいものである。 According to a third aspect of the present invention, there is provided a production method wherein the concentration of the aqueous solution containing a phosphate anion is in the range of 0.1 to 5.0% by weight. On the other hand, since the conductivity of the chemical conversion solution is low, the formation speed of the anodic oxide film becomes extremely slow, and the production efficiency is poor. On the other hand, when the concentration is 5.0% by weight or more, the dissolution reaction proceeds rapidly at the same time as the anodic oxidation reaction, which causes a problem such as a decrease in pressure resistance. Therefore, the concentration of the aqueous solution containing the phosphate anion is 0%. The range of 0.1 to 5.0% by weight is preferable.

 請求項4に記載の発明は、燐酸アニオンを含む水溶液の再化成時の温度を50〜100℃の範囲に設定したもので、この温度が50℃以下の場合は、再化成により形成した陽極酸化皮膜中の欠陥が多くなって好ましくない。一方、温度が100℃以上の場合は、すでに形成された陽極酸化皮膜の水和反応が進行し、逆に耐圧の低下を招くため、好ましくなく、したがって、燐酸アニオンを含む水溶液の再化成時の温度は50〜100℃の範囲が好ましいものである。 According to the fourth aspect of the present invention, the temperature at the time of re-chemical formation of the aqueous solution containing the phosphate anion is set in the range of 50 to 100 ° C., and when the temperature is 50 ° C. or less, the anodic oxidation formed by the re-chemical formation is performed. This is undesirable because the number of defects in the coating increases. On the other hand, when the temperature is 100 ° C. or higher, the hydration reaction of the already formed anodic oxide film proceeds, which in turn causes a decrease in the pressure resistance, which is not preferable. The temperature is preferably in the range of 50 to 100 ° C.

 本発明によれば、アジピン酸アンモニウム水溶液から陽極酸化皮膜を形成したアルミの陽極体を燐酸アニオンを含む水溶液中で再化成を行い、この後、陽極体の表面に熱分解により二酸化マンガン層を形成し、この後、二酸化マンガン層上に導電性高分子層を形成し、さらにこの導電性高分子層上に陰極導電体層を形成した製造方法としたものであり、この方法によれば、燐酸アニオンを含む水溶液中で再化成を行うようにしているため、陽極酸化皮膜中の燐の濃度は一定以上に保たれることになり、そしてこの燐の存在により、熱分解により二酸化マンガン層を形成する際の硝酸マンガンによる陽極酸化皮膜の溶解が抑制され、また、熱分解時の熱や水蒸気等の存在による陽極酸化皮膜の結晶化あるいは水和反応も起こりにくくなり、これらにより、固体電解コンデンサ製造時の漏れ電流を低減させることができるとともに、高温高湿下に無負荷で放置された時の漏れ電流の増大も抑制でき、かつ高周波領域でのインピーダンスも低い固体電解コンデンサを提供することができるものである。 According to the present invention, an aluminum anode body on which an anodized film is formed from an aqueous solution of ammonium adipate is re-formed in an aqueous solution containing phosphate anions, and thereafter, a manganese dioxide layer is formed on the surface of the anode body by thermal decomposition. Thereafter, a conductive polymer layer is formed on the manganese dioxide layer, and further, a cathode conductor layer is formed on the conductive polymer layer. Since the chemical conversion is carried out in an aqueous solution containing anions, the concentration of phosphorus in the anodic oxide film is maintained at a certain level, and the presence of this phosphorus forms a manganese dioxide layer by thermal decomposition. The dissolution of the anodic oxide film by manganese nitrate during the process is suppressed, and the crystallization or hydration reaction of the anodic oxide film due to the presence of heat or steam during thermal decomposition hardly occurs. Can reduce the leakage current during the production of solid electrolytic capacitors, suppress the increase in leakage current when left unloaded under high temperature and high humidity, and have low impedance in the high-frequency region. A capacitor can be provided.

 以下、本発明の実施の形態について添付図面にもとづいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

 図1は本発明の実施の形態における固体電解コンデンサのコンデンサ素子の構成を示したもので、この図1において、1はアジピン酸アンモニウム水溶液から陽極酸化皮膜2を形成したアルミ箔よりなる陽極体で、この陽極体1の表面には熱分解により二酸化マンガン層3を形成している。4は二酸化マンガン層3上に形成されたポリピロール膜からなる導電性高分子層で、この導電性高分子層4上にはカーボンペーストと銀ペーストを順次塗布することにより陰極導電体層5を形成してコンデンサ素子を構成し、この後、リードを引き出した後、樹脂モールドによりコンデンサ素子に外装を施して固体電解コンデンサを構成している。 FIG. 1 shows a configuration of a capacitor element of a solid electrolytic capacitor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an anode body made of an aluminum foil having an anodic oxide film 2 formed from an aqueous solution of ammonium adipate. A manganese dioxide layer 3 is formed on the surface of the anode body 1 by thermal decomposition. Reference numeral 4 denotes a conductive polymer layer formed of a polypyrrole film formed on the manganese dioxide layer 3. A cathode conductor layer 5 is formed on the conductive polymer layer 4 by sequentially applying a carbon paste and a silver paste. Then, after the leads are pulled out, the capacitor element is externally coated with a resin mold to form a solid electrolytic capacitor.

 そして前記陽極体1の陽極酸化皮膜2中には、燐酸アニオンを含む水溶液中で再化成を行い、燐の濃度を一定以上に保つようにしてある。この燐を存在させたことにより、熱分解により二酸化マンガン層3を形成する場合、硝酸マンガンによる陽極酸化皮膜2の溶解を抑制することができ、また熱分解時の熱や水蒸気等の存在による陽極酸化皮膜の結晶化あるいは水和反応も起こりにくくなるため、これらにより、漏れ電流の増大を抑制することができるものである。 {Circle around (2)} The anodized film 2 of the anode body 1 is re-chemically formed in an aqueous solution containing a phosphate anion so that the concentration of phosphorus is maintained at a certain level or more. By the presence of phosphorus, when the manganese dioxide layer 3 is formed by thermal decomposition, the dissolution of the anodic oxide film 2 by manganese nitrate can be suppressed. Since the crystallization or hydration reaction of the oxide film hardly occurs, it is possible to suppress the increase of the leakage current.

 次に、本発明の具体的な実施の形態について説明するが、本発明はこれに限定されるものではない。 Next, specific embodiments of the present invention will be described, but the present invention is not limited thereto.

 (実施の形態1)
 電解エッチングを施した3.5mm×4.0mm(コンデンサ素子の有効面積)のアルミ箔よりなる陽極体に、液温が70℃で、かつ濃度が5重量%のアジピン酸アンモニウム水溶液中で12Vの直流電圧を10分間印加して陽極酸化皮膜2を形成し、その後、液温が70℃で、かつ濃度が0.5重量%の正燐酸水溶液中で12Vの直流電圧を10分間印加して陽極酸化皮膜を形成し、この後、陽極体を硝酸マンガン水溶液に浸漬して300℃で5分間熱分解することにより陽極体の表面に二酸化マンガン層を形成し、この後、二酸化マンガン層上に電解重合法によりポリピロール膜からなる導電性高分子層を形成する。さらにこの後、導電性高分子層上にカーボンペーストと銀ペーストを順次塗布して陰極導電体層を形成し、そしてリードを引き出した後、樹脂モールドにより外装を施して固体電解コンデンサを構成した。
(Embodiment 1)
An anode body made of aluminum foil of 3.5 mm × 4.0 mm (effective area of the capacitor element) subjected to electrolytic etching is applied with 12 V in an aqueous solution of ammonium adipate having a liquid temperature of 70 ° C. and a concentration of 5% by weight. A direct current voltage is applied for 10 minutes to form an anodic oxide film 2, and then a 12V direct current voltage is applied for 10 minutes in an aqueous solution of orthophosphoric acid having a liquid temperature of 70 ° C. and a concentration of 0.5% by weight. An oxide film is formed, and then the anode body is immersed in an aqueous solution of manganese nitrate and thermally decomposed at 300 ° C. for 5 minutes to form a manganese dioxide layer on the surface of the anode body. A conductive polymer layer made of a polypyrrole film is formed by a polymerization method. Thereafter, a carbon paste and a silver paste were sequentially applied on the conductive polymer layer to form a cathode conductor layer, and after the leads were pulled out, the package was applied with a resin mold to form a solid electrolytic capacitor.

 (実施の形態2)
 実施の形態1と同じ条件で陽極酸化皮膜を形成したアルミ箔よりなる陽極体に、コンデンサ素子の有効面積が3.5mm×4.0mmになるように打ち抜き加工を施し、その後、この陽極体の打ち抜き断面部に、液温が70℃で、かつ濃度が1.0重量%の燐酸アンモニウム水溶液中で12Vの直流電圧を10分間印加して再化成を行うことにより陽極酸化皮膜を形成し、この後、実施の形態1と同じ方法で二酸化マンガン層、導電性高分子層および陰極導電体層を形成し、そしてリードを引き出した後、樹脂モールドにより外装を施して固体電解コンデンサを構成した。
(Embodiment 2)
An anode body made of an aluminum foil on which an anodic oxide film is formed under the same conditions as in Embodiment 1 is subjected to a punching process so that the effective area of the capacitor element is 3.5 mm × 4.0 mm. Anodized film was formed on the punched cross-section by applying a DC voltage of 12 V for 10 minutes in an aqueous solution of ammonium phosphate having a liquid temperature of 70 ° C. and a concentration of 1.0% by weight for 10 minutes. Thereafter, a manganese dioxide layer, a conductive polymer layer, and a cathode conductor layer were formed in the same manner as in Embodiment 1, and the leads were drawn out, followed by coating with a resin mold to form a solid electrolytic capacitor.

 (実施の形態3)
 実施の形態2に示した再化成液である燐酸アンモニウム水溶液の液温を80℃とした以外は、実施の形態2と同様の内容により固体電解コンデンサを構成した。
(Embodiment 3)
A solid electrolytic capacitor was configured in the same manner as in Embodiment 2 except that the solution temperature of the ammonium phosphate aqueous solution as the re-formation solution described in Embodiment 2 was set to 80 ° C.

 (実施の形態4)
 実施の形態2に示した再化成液の濃度が0.5重量%の正燐酸水溶液とした以外は、実施の形態2と同様の内容により固体電解コンデンサを構成した。
(Embodiment 4)
A solid electrolytic capacitor was constructed in the same manner as in Embodiment 2 except that the concentration of the re-formation solution shown in Embodiment 2 was 0.5 wt% of normal phosphoric acid aqueous solution.

 (実施の形態5)
 実施の形態2において二酸化マンガン層を形成した後、さらに液温が70℃で、かつ濃度が1.0重量%の燐酸アンモニウム水溶液中で前記陽極酸化皮膜を形成する化成電圧(12Vの直流電圧)を超えない範囲の化成電圧、すなわち11Vの直流電圧を印加して再化成を行うことにより陽極酸化皮膜を形成したもので、この後は、実施の形態2と同様の内容により固体電解コンデンサを構成した。
(Embodiment 5)
After forming the manganese dioxide layer in the second embodiment, the formation temperature (DC voltage of 12 V) for forming the anodic oxide film in an aqueous solution of ammonium phosphate having a solution temperature of 70 ° C. and a concentration of 1.0% by weight. An anodic oxide film was formed by applying a formation voltage within a range not exceeding, that is, applying a DC voltage of 11 V and performing re-formation. did.

 (比較例1)
 実施の形態1においてアルミ箔よりなる陽極体に形成される陽極酸化皮膜を液温が70℃で、かつ濃度が5重量%のアジピン酸アンモニウム水溶液のみで形成し、かつポリピロール膜からなる導電性高分子層を形成した後、液温が40℃で、かつ濃度が5重量%のアジピン酸アンモニウム水溶液中で12Vの直流電圧を10分間印加して再化成を行った以外は、実施の形態1と同様の内容により固体電解コンデンサを構成した。
(Comparative Example 1)
In the first embodiment, an anodic oxide film formed on an anode body made of an aluminum foil is formed only of an aqueous solution of ammonium adipate having a liquid temperature of 70 ° C. and a concentration of 5% by weight, and has a high conductivity made of a polypyrrole film. After forming a molecular layer, a liquid temperature was 40 ° C. and a DC voltage of 12 V was applied in an aqueous solution of ammonium adipate having a concentration of 5% by weight for 10 minutes to perform re-formation. A solid electrolytic capacitor was constructed in the same manner.

 (比較例2)
 実施の形態1においてアルミ箔よりなる陽極体に形成される陽極酸化皮膜を液温が70℃で、かつ濃度が5重量%のアジピン酸アンモニウム水溶液のみで形成した以外は、実施の形態1と同様の内容により固体電解コンデンサを構成した。
(Comparative Example 2)
Same as the first embodiment except that the anodic oxide film formed on the anode body made of aluminum foil in the first embodiment is formed only of an aqueous solution of ammonium adipate having a liquid temperature of 70 ° C. and a concentration of 5% by weight. The solid electrolytic capacitor was constructed according to the contents of the above.

 (表1)は本発明の実施の形態1〜5および比較例1,2の製造方法により製造された固体電解コンデンサの各々10個における初期特性の平均値を示したものである。測定は、温度25〜30℃で行い、内容およびtanδは120Hz、インピーダンスは400kHz、漏れ電流は直流電圧6.3Vを印加した後30秒後の電流値を測定した。 (Table 1) shows average values of initial characteristics of ten solid electrolytic capacitors manufactured by the manufacturing methods of Embodiments 1 to 5 of the present invention and Comparative Examples 1 and 2, respectively. The measurement was performed at a temperature of 25 to 30 ° C., the content and tan δ were 120 Hz, the impedance was 400 kHz, and the leakage current was measured 30 seconds after applying a DC voltage of 6.3 V.

 (表2)は本発明の実施の形態1〜5および比較例1,2の製造方法により製造された固体電解コンデンサの各々5個の初期および121℃2気圧の飽和水蒸気中に5時間無負荷放置して試験を行った後の漏れ電流の平均値を示したものである。測定は、温度25〜30℃で行い、漏れ電流は直流電圧6.3Vを印加した後30秒後の電流値を測定した。 (Table 2) shows five solid electrolytic capacitors manufactured by the manufacturing methods of Embodiments 1 to 5 of the present invention and Comparative Examples 1 and 2, each having no load in saturated steam at 121 ° C. and 2 atm for 5 hours. It shows the average value of the leakage current after leaving the test. The measurement was performed at a temperature of 25 to 30 ° C., and the leakage current was measured by measuring a current value 30 seconds after applying a DC voltage of 6.3 V.

Figure 2004040134
Figure 2004040134

Figure 2004040134
Figure 2004040134

 この(表1)、(表2)から明らかなように、本発明の実施の形態1〜5の製造方法により製造された固体電解コンデンサは、アジピン酸アンモニウム水溶液から陽極酸化皮膜を形成したアルミの陽極体を燐酸アニオンを含む水溶液中で再化成を行い、この陽極体の表面に熱分解により形成された二酸化マンガン層と、この二酸化マンガン層上に形成された導電性高分子層と、この導電性高分子層上に形成された陰極導電体層とを備えることにより、燐酸アニオンを含む水溶液中で再化成を行うようにしているため、陽極酸化皮膜中の燐の濃度は一定以上に保たれることになり、熱分解により二酸化マンガン層を形成する際の硝酸マンガンによる陽極酸化皮膜の溶解が抑制され、また、熱分解時の熱や水蒸気等の存在による陽極酸化皮膜の結晶化あるいは水和反応も起こりにくくなり、これらのことから、比較例1,2に比べて固体電解コンデンサ製造時の漏れ電流を低減させることができるとともに、高温高湿下に無負荷で放置された時の漏れ電流の増大を抑制できるものである。 As is clear from Tables 1 and 2, the solid electrolytic capacitors manufactured by the manufacturing methods according to Embodiments 1 to 5 of the present invention are made of aluminum having an anodic oxide film formed from an aqueous solution of ammonium adipate. The anode body is re-formed in an aqueous solution containing phosphate anions, and a manganese dioxide layer formed on the surface of the anode body by thermal decomposition, a conductive polymer layer formed on the manganese dioxide layer, And the cathode conductor layer formed on the conductive polymer layer, so that reconversion is performed in an aqueous solution containing phosphate anions, so that the concentration of phosphorus in the anodic oxide film is maintained at a certain level or more. Therefore, the dissolution of the anodic oxide film by manganese nitrate when forming the manganese dioxide layer by thermal decomposition is suppressed, and the anodic oxide film due to the presence of heat or steam at the time of thermal decomposition. The crystallization or hydration reaction is also unlikely to occur, and from these facts, it is possible to reduce the leakage current at the time of manufacturing the solid electrolytic capacitor as compared with Comparative Examples 1 and 2, and leave the capacitor under no load under high temperature and high humidity. It is possible to suppress an increase in leakage current at the time of occurrence.

 本発明は陽極酸化皮膜を形成したアルミを陽極体とする固体電解コンデンサの製造方法に関するもので、高周波領域でのインピーダンス特性を改善した固体電解コンデンサを得ることができる。 The present invention relates to a method for manufacturing a solid electrolytic capacitor using an aluminum body having an anodized film formed thereon as an anode body, and a solid electrolytic capacitor having improved impedance characteristics in a high frequency region can be obtained.

本発明の一実施の形態における固体電解コンデンサのコンデンサ素子の構成を示す破断斜視図1 is a cutaway perspective view showing a configuration of a capacitor element of a solid electrolytic capacitor according to an embodiment of the present invention.

符号の説明Explanation of reference numerals

 1 陽極体
 2 陽極酸化皮膜
 3 二酸化マンガン層
 4 導電性高分子層
 5 陰極導電体層
DESCRIPTION OF SYMBOLS 1 Anode body 2 Anodized film 3 Manganese dioxide layer 4 Conductive polymer layer 5 Cathode conductor layer

Claims (4)

アジピン酸アンモニウム水溶液から陽極酸化皮膜を形成したアルミの陽極体を燐酸アニオンを含む水溶液中で再化成を行い、この後、陽極体の表面に熱分解により二酸化マンガン層を形成し、この後、二酸化マンガン層上に導電性高分子層を形成し、さらにこの導電性高分子層上に陰極導電体層を形成した固体電解コンデンサの製造方法。 An aluminum anode body having an anodic oxide film formed from an aqueous solution of ammonium adipate is re-chemically formed in an aqueous solution containing phosphate anions, and then a manganese dioxide layer is formed on the surface of the anode body by thermal decomposition. A method for manufacturing a solid electrolytic capacitor, comprising forming a conductive polymer layer on a manganese layer, and further forming a cathode conductor layer on the conductive polymer layer. 燐酸アニオンを含む水溶液中での再化成が、アジピン酸アンモニウム水溶液で陽極酸化皮膜を形成する化成電圧を超えない範囲の化成電圧で再化成を行うようにした請求項1に記載の固体電解コンデンサの製造方法。 2. The solid electrolytic capacitor according to claim 1, wherein the re-formation in the aqueous solution containing a phosphate anion is performed at a formation voltage within a range not exceeding a formation voltage for forming an anodic oxide film with an aqueous solution of ammonium adipate. Production method. 燐酸アニオンを含む水溶液の濃度を0.1〜5.0重量%の範囲にした請求項1または2に記載の固体電解コンデンサの製造方法。 3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the concentration of the aqueous solution containing a phosphate anion is in the range of 0.1 to 5.0% by weight. 燐酸アニオンを含む水溶液の再化成時の温度を50〜100℃の範囲に設定した請求項1〜3のいずれか1つに記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to any one of claims 1 to 3, wherein a temperature at the time of re-chemical formation of the aqueous solution containing a phosphate anion is set in a range of 50 to 100C.
JP2003358853A 2003-10-20 2003-10-20 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3731596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358853A JP3731596B2 (en) 2003-10-20 2003-10-20 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358853A JP3731596B2 (en) 2003-10-20 2003-10-20 Manufacturing method of solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22811196A Division JP3552415B2 (en) 1996-08-29 1996-08-29 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2004040134A true JP2004040134A (en) 2004-02-05
JP3731596B2 JP3731596B2 (en) 2006-01-05

Family

ID=31712857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358853A Expired - Fee Related JP3731596B2 (en) 2003-10-20 2003-10-20 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3731596B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210837A (en) * 2005-01-31 2006-08-10 Nichicon Corp Solid electrolytic capacitor and method for manufacturing the same
KR100833392B1 (en) 2005-08-04 2008-05-28 엔이씨 도낀 가부시끼가이샤 Solid electrolytic capacitor, distributed constant type noise filter, and method of producing the same
JP2010199572A (en) * 2009-02-20 2010-09-09 Avx Corp Anode for solid electrolytic capacitor containing non-metallic surface treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210837A (en) * 2005-01-31 2006-08-10 Nichicon Corp Solid electrolytic capacitor and method for manufacturing the same
KR100833392B1 (en) 2005-08-04 2008-05-28 엔이씨 도낀 가부시끼가이샤 Solid electrolytic capacitor, distributed constant type noise filter, and method of producing the same
JP2010199572A (en) * 2009-02-20 2010-09-09 Avx Corp Anode for solid electrolytic capacitor containing non-metallic surface treatment

Also Published As

Publication number Publication date
JP3731596B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP5933397B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4653687B2 (en) Method for producing electrode foil for electrolytic capacitor
JP4383227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3731596B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000068159A (en) Solid electrolytic capacitor electrode foil therefor and its manufacture
JP3552415B2 (en) Solid electrolytic capacitors
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JPH01266712A (en) Preparation of electrode foil for aluminum electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009246103A (en) Manufacturing method of cathode foil for aluminum electrolytic capacitor
JP2008091358A (en) Solid-state electrolytic capacitor, and its manufacturing process
JP2008112877A (en) Manufacturing method of electrode foil for electrolytic capacitor
JP2005142343A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP4776510B2 (en) Method for producing anode foil for electrolytic capacitor
JP2010196131A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP4660884B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008226971A (en) Manufacturing method for solid electrolytic capacitor
JP2008042136A (en) Manufacturing method of solid-state electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP2011113985A (en) Method of manufacturing solid electrolytic capacitor
JPH11251192A (en) Solid electrolytic capacitor and its manufacture
JP2009076712A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees