JP2009246103A - Manufacturing method of cathode foil for aluminum electrolytic capacitor - Google Patents

Manufacturing method of cathode foil for aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2009246103A
JP2009246103A JP2008090140A JP2008090140A JP2009246103A JP 2009246103 A JP2009246103 A JP 2009246103A JP 2008090140 A JP2008090140 A JP 2008090140A JP 2008090140 A JP2008090140 A JP 2008090140A JP 2009246103 A JP2009246103 A JP 2009246103A
Authority
JP
Japan
Prior art keywords
cathode foil
solution
phosphoric acid
heat treatment
aluminum electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090140A
Other languages
Japanese (ja)
Inventor
Hidetomo Todoroki
英智 等々力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008090140A priority Critical patent/JP2009246103A/en
Publication of JP2009246103A publication Critical patent/JP2009246103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of cathode foil capable of improving water resistance of cathode foil for an aluminum electrolytic capacitor. <P>SOLUTION: This manufacturing method of cathode foil for an aluminum electrolytic capacitor is characterized in that a first immersion process of immersing etched cathode foil in a solution that has been subjected to pH adjustment by phosphoric acid and ammonia water is executed, thereafter a first heat treatment is carried out, then a second immersion process of immersing the cathode foil after the first heat treatment in the solution that has been subjected to the pH adjustment by phosphoric acid and ammonia water is executed, and thereafter a second heat treatment is carried out. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルミニウム電解コンデンサ用陰極箔の耐水性を向上させる製造方法に関するものである。   The present invention relates to a production method for improving the water resistance of a cathode foil for an aluminum electrolytic capacitor.

近年、電解コンデンサの低インピーダンス化が求められる中、低インピーダンス製品に用いられる電解液は、水を多量に含む構成となっている。
水を多量に含む電解液中で、アルミニウム陰極箔は、水和反応を起こして劣化するだけではなく、溶質として添加されている各種有機酸の錯化反応の活性化により、アルミニウムの溶解反応による劣化が促進される。よって、低インピーダンス製品に使用する電解コンデンサ用陰極箔は、耐水性、錯化反応に対する安定性に優れたものが求められている。
In recent years, while the electrolytic capacitor is required to have a low impedance, the electrolytic solution used in the low impedance product has a structure containing a large amount of water.
In an electrolyte containing a large amount of water, the aluminum cathode foil not only deteriorates due to a hydration reaction, but also due to the dissolution reaction of aluminum by the activation of the complexing reaction of various organic acids added as solutes. Deterioration is promoted. Therefore, the cathode foil for electrolytic capacitors used for low impedance products is required to have excellent water resistance and stability against complexing reaction.

従来の電解コンデンサ用陰極箔は、一般にアルミニウム箔をエッチングで表面を粗面化して表面積を拡大する処置を施した後、リン酸、硝酸、硫酸等を含む水溶液でケミカル洗浄を行い、塩化物を含むエッチング皮膜を溶解させる。更に、リン酸水溶液への浸漬処理を施した後、350℃以上の乾燥処理を行って、リン酸をエッチング箔に付着させることにより耐水性を向上させている。   Conventional cathode foils for electrolytic capacitors are generally prepared by etching aluminum foil to roughen the surface by etching to increase the surface area, and then chemically cleaning with an aqueous solution containing phosphoric acid, nitric acid, sulfuric acid, etc. The etching film containing is dissolved. Furthermore, after the immersion treatment in the phosphoric acid aqueous solution is performed, the water resistance is improved by performing a drying treatment at 350 ° C. or more to adhere phosphoric acid to the etching foil.

従来から、陰極箔にリン酸水溶液で、浸漬処理または化成処理を行うと、このような電極箔の耐水性向上に効果があることはよく知られている。(たとえば非特許文献1、特許文献1参照)   Conventionally, it is well known that when the cathode foil is subjected to immersion treatment or chemical conversion treatment with an aqueous phosphoric acid solution, the water resistance of the electrode foil is improved. (For example, see Non-Patent Document 1 and Patent Document 1)

永田伊佐也著、「電解液陰極アルミニウム電解コンデンサ」、日本蓄電器工業株式会社出版、平成9年2月24日、第2版第1刷、P339−341Isaya Nagata, “Electrolytic Cathode Aluminum Electrolytic Capacitor”, Nihon Denki Kogyo Kogyo Co., Ltd., February 24, 1997, 2nd edition, 1st edition, P339-341 特開平11−162791号公報Japanese Patent Laid-Open No. 11-162791

しかしながら、現在の低インピーダンス製品に用いられる電解液は、従来の電解液よりさらに水を多く含む電解液であり、従来から知られているリン酸による浸漬処理では、十分な効果を得ることはできない。   However, the electrolytic solution used in the current low impedance products is an electrolytic solution containing more water than the conventional electrolytic solution, and the conventional immersion treatment with phosphoric acid cannot obtain a sufficient effect. .

また、リン酸水溶液による化成処理により耐水性を上げる方法やリン酸水溶液のリン酸濃度を上げて浸漬する方法では、耐水性は改善されるが、静電容量の減少が非常に大きいため、静電容量を低下させずに耐水性を向上させる手段が求められていた。   In addition, the method of increasing water resistance by chemical conversion treatment with a phosphoric acid aqueous solution or the method of immersing by increasing the phosphoric acid concentration of the phosphoric acid aqueous solution improves the water resistance, but the electrostatic capacity is greatly reduced. A means for improving the water resistance without reducing the electric capacity has been demanded.

上記課題を解決するため、本発明は、アルミニウム電解コンデンサ用陰極箔の製造方法において、エッチングされた陰極箔をリン酸とアンモニア水でpH調整した溶液に浸漬する第1浸漬処理を行った後、第1熱処理を行い、次いで、前記第1熱処理後の陰極箔をリン酸とアンモニア水でpH調整した溶液に浸漬する第2浸漬処理を行った後、第2熱処理を行うことを特徴とする。   In order to solve the above problems, the present invention provides a method for producing a cathode foil for an aluminum electrolytic capacitor, after performing a first immersion treatment in which an etched cathode foil is immersed in a solution adjusted in pH with phosphoric acid and ammonia water. The first heat treatment is performed, and then the second heat treatment is performed after the second heat treatment is performed in which the cathode foil after the first heat treatment is immersed in a solution adjusted in pH with phosphoric acid and ammonia water.

本発明において、前記第2浸漬処理の溶液の温度が10〜60℃であり、かつリン酸濃度が0.30〜0.75wt%であることが好ましい。   In this invention, it is preferable that the temperature of the solution of the said 2nd immersion process is 10-60 degreeC, and phosphoric acid concentration is 0.30-0.75 wt%.

本発明において、前記第1浸漬処理の溶液のpHが、3.2〜7.5であり、前記第2浸漬処理の溶液のpHが5.5〜7.8であることが好ましい。   In the present invention, it is preferable that the pH of the solution for the first immersion treatment is 3.2 to 7.5, and the pH of the solution for the second immersion treatment is 5.5 to 7.8.

本発明において、前記第1および第2熱処理の温度が、100〜200℃であることが好ましい。   In this invention, it is preferable that the temperature of said 1st and 2nd heat processing is 100-200 degreeC.

本発明は、エッチングされた陰極箔を、リン酸とアンモニア水でpH調整した溶液に浸漬する第1浸漬処理を行った後、第1熱処理を行い、次いで、前記熱処理後の陰極箔をリン酸とアンモニア水でpH調整した溶液に浸漬する第2浸漬処理を行った後、第2熱処理を行うことにより、静電容量の減少を抑えながら、耐水性の向上を図ることができる。
その理由は必ずしも明確ではないが、リン酸とアンモニア水の溶液に浸漬した後に熱処理することにより皮膜が脱水されて下地皮膜を生成し、さらにリン酸とアンモニア水の溶液に浸漬することで、緻密で耐水性の高い皮膜が形成されると考えられる。
In the present invention, after the first immersion treatment is performed in which the etched cathode foil is immersed in a solution adjusted in pH with phosphoric acid and aqueous ammonia, a first heat treatment is performed, and then the cathode foil after the heat treatment is phosphoric acid. After performing the second dipping treatment in which the solution is adjusted in pH with ammonia water, the second heat treatment is performed, thereby improving the water resistance while suppressing a decrease in the capacitance.
The reason is not necessarily clear, but the film is dehydrated by dipping in a solution of phosphoric acid and ammonia water and then heat-treated to form a base film. It is considered that a highly water-resistant film is formed.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

[実施例1−1〜1−4]第1熱処理温度の比較
[実施例1−3、1−5〜1−7]第2熱処理温度の比較
公知の方法により、アルミニウム原箔に、エッチング(粗面化)処理を行い、エッチング箔を作製した。エッチング処理後、45℃、0.5wt%のリン酸溶液に浸漬し、残留塩素イオンを除去した。
次に、0.60wt%のリン酸水溶液をアンモニア水でpH=7.0±0.2に調整した液温60℃の水溶液に、前記エッチング箔を1分間浸漬し、第1浸漬処理を行った後、後、表1の条件に従い第1熱処理を3分間行った。
次いで、0.60wt%のリン酸水溶液をアンモニア水でpH=7.0±0.2に調整した液温60℃の水溶液に、前記エッチング箔を1分間浸漬し、第2浸漬処理を行った後、表1の条件に従い第2熱処理を3分間行った。最後に公知の乾燥処理(例えば、450℃20秒)を行い、陰極箔試料を作製した。
これらの陰極箔試料(サイズ:2×5=10cm)について、静電容量と水和時間の測定を行った。なお、水和時間については、上記陰極箔試料を熱水中に浸漬し、ガスが発生し始めるまでの時間とした。その結果を表1に示す。なお、120分浸漬後もガスが発生しなかった試料については120以上とした。
[Examples 1-1 to 1-4] Comparison of the first heat treatment temperature [Examples 1-3, 1-5 to 1-7] Comparison of the second heat treatment temperature A roughening process was performed to produce an etching foil. After the etching treatment, it was immersed in a phosphoric acid solution at 45 ° C. and 0.5 wt% to remove residual chlorine ions.
Next, the etching foil is immersed for 1 minute in an aqueous solution having a temperature of 60 ° C. adjusted to pH = 7.0 ± 0.2 with aqueous ammonia of 0.60 wt%, and a first immersion treatment is performed. Thereafter, the first heat treatment was performed for 3 minutes in accordance with the conditions shown in Table 1.
Next, the etching foil was immersed for 1 minute in an aqueous solution having a temperature of 60 ° C. adjusted to pH = 7.0 ± 0.2 with aqueous ammonia of 0.60 wt% phosphoric acid, and a second immersion treatment was performed. Thereafter, the second heat treatment was performed for 3 minutes according to the conditions in Table 1. Finally, a known drying process (for example, 450 ° C. for 20 seconds) was performed to prepare a cathode foil sample.
For these cathode foil samples (size: 2 × 5 = 10 cm 2 ), capacitance and hydration time were measured. In addition, about the hydration time, it was set as the time until the said cathode foil sample was immersed in hot water and gas began to generate | occur | produce. The results are shown in Table 1. In addition, it was set to 120 or more about the sample in which gas did not generate | occur | produce after 120-minute immersion.

(従来例1−1、1−2)
また、従来例1−1、1−2は、第2浸漬処理、乾燥と第2熱処理を行わなかった以外は、上記実施例と同様の条件により陰極箔試料を作製し、同様の測定を行った。その結果を表1に示す。
(Conventional example 1-1, 1-2)
Further, in the conventional examples 1-1 and 1-2, a cathode foil sample was prepared under the same conditions as in the above examples except that the second immersion treatment, the drying and the second heat treatment were not performed, and the same measurement was performed. It was. The results are shown in Table 1.

Figure 2009246103
Figure 2009246103

[第1熱処理温度の比較] 実施例1−1〜1−4
表1より明らかなように、第1浸漬処理と第1熱処理のみで、第2浸漬処理と第2熱処理を行わなかった従来例1−1、1−2は、静電容量が250μF/cm以上となるが、水和時間が80min未満となってしまうので、好ましくない。
そして、実施例1−1〜1−4は、静電容量が250μF/cm以上で、かつ水和時間が80min以上であり、従来例1−1、1−2と比べて優れていることが分かる。特に、第1熱処理温度100〜200℃とした実施例1−2、1−3の場合、静電容量が260μF/cm以上で、かつ水和時間が90min以上となり、さらに優れていることが分かる。
[Comparison of first heat treatment temperature] Examples 1-1 to 1-4
As is clear from Table 1, in the conventional examples 1-1 and 1-2 in which only the first immersion treatment and the first heat treatment were performed and the second immersion treatment and the second heat treatment were not performed, the capacitance was 250 μF / cm 2. Although it becomes above, since a hydration time will be less than 80 minutes, it is unpreferable.
In Examples 1-1 to 1-4, the capacitance is 250 μF / cm 2 or more and the hydration time is 80 min or more, which is superior to those of Conventional Examples 1-1 and 1-2. I understand. In particular, in Examples 1-2 and 1-3 in which the first heat treatment temperature is 100 to 200 ° C., the capacitance is 260 μF / cm 2 or more and the hydration time is 90 minutes or more, which is further excellent. I understand.

[第2熱処理温度の比較] 実施例1−3、1−5〜1−7
実施例1−3、1−5〜1−7より、第2熱処理の温度は、100〜200℃の場合、静電容量が260μF/cm以上で、かつ水和時間が90min以上となり、さらに好ましい。
[Comparison of Second Heat Treatment Temperature] Examples 1-3 and 1-5 to 1-7
From Examples 1-3 and 1-5 to 1-7, when the temperature of the second heat treatment is 100 to 200 ° C., the capacitance is 260 μF / cm 2 or more and the hydration time is 90 min or more. preferable.

[実施例2−1〜2−5、1−3]第2浸漬処理溶液−リン酸濃度の比較
[実施例2−6〜2−11、1−3]第2浸漬処理温度の比較
[実施例2−12〜2−18]第1浸漬処理溶液−pHの比較
[実施例2−19〜2−23]第2浸漬処理溶液−pHの比較
[Examples 2-1 to 2-5, 1-3] Comparison of second immersion treatment solution-phosphoric acid concentration [Examples 2-6 to 2-11, 1-3] Comparison of second immersion treatment temperature Examples 2-12 to 2-18] Comparison of first immersion treatment solution-pH [Examples 2-19 to 2-23] Comparison of second immersion treatment solution-pH

上記実施例1−1〜1−7と同様の方法により、エッチング(粗面化)処理を行い、エッチング箔を作製し、残留塩素イオンを除去した。
次に、0.60wt%のリン酸水溶液をアンモニア水でpH=7.0±0.2に調整した液温60℃の水溶液に、前記エッチング箔を1分間浸漬し、第1浸漬処理を行った後、表1の条件に従い第1熱処理を3分間行った。
次いで、表2に示す条件で、リン酸水溶液をアンモニア水でpH調整し、温度設定した水溶液に、前記エッチング箔を1分間浸漬し、第2浸漬処理を行った後、表2の条件に従い第2熱処理を3分間行った。最後に公知の乾燥処理(例えば、450℃20秒)を行い、陰極箔試料を作製した。
これらの陰極箔試料(サイズ:2×5=10cm)について、静電容量と水和時間の測定を行った。なお、水和時間については、上記陰極箔試料を熱水中に浸漬し、ガスが発生し始めるまでの時間とした。その結果を表2に示す。なお、120分後も浸漬ガスが発生しなかった試料については120以上とした。
Etching (roughening) treatment was performed by the same method as in Examples 1-1 to 1-7 to prepare an etching foil, and residual chlorine ions were removed.
Next, the etching foil is immersed for 1 minute in an aqueous solution having a temperature of 60 ° C. adjusted to pH = 7.0 ± 0.2 with aqueous ammonia of 0.60 wt%, and a first immersion treatment is performed. After that, the first heat treatment was performed for 3 minutes according to the conditions in Table 1.
Next, after adjusting the pH of the aqueous phosphoric acid solution with ammonia water under the conditions shown in Table 2 and immersing the etching foil in an aqueous solution set for temperature for 1 minute to perform a second immersion treatment, 2 Heat treatment was performed for 3 minutes. Finally, a known drying process (for example, 450 ° C. for 20 seconds) was performed to prepare a cathode foil sample.
For these cathode foil samples (size: 2 × 5 = 10 cm 2 ), capacitance and hydration time were measured. In addition, about the hydration time, it was set as the time until the said cathode foil sample was immersed in hot water and gas began to generate | occur | produce. The results are shown in Table 2. In addition, it was set to 120 or more about the sample which immersion gas did not generate | occur | produce after 120 minutes.

Figure 2009246103
Figure 2009246103

表2から明らかなように、本発明による実施例は、静電容量が250μF/cm以上で、かつ水和時間が80min以上であり、従来例1−1、1−2と比べて優れていることが分かる。 As is clear from Table 2, the examples according to the present invention have a capacitance of 250 μF / cm 2 or more and a hydration time of 80 min or more, which is superior to the conventional examples 1-1 and 1-2. I understand that.

[第2浸漬処理溶液−リン酸濃度の比較] 実施例2−1〜2−5、1−3
実施例1−3、2−2〜2−4より、リン酸濃度0.30〜0.75wt%の場合、静電容量が260μF/cm以上で、かつ水和時間が100min以上となり、さらに好ましい。
[Comparison of second immersion treatment solution-phosphoric acid concentration] Examples 2-1 to 2-5, 1-3
From Examples 1-3 and 2-2 to 2-4, when the phosphoric acid concentration is 0.30 to 0.75 wt%, the capacitance is 260 μF / cm 2 or more and the hydration time is 100 min or more. preferable.

[第2浸漬処理温度の比較] 実施例2−6〜2−11、1−3
また、実施例2−6〜2−10、1−3より、第2浸漬処理温度10〜60℃の場合、静電容量が260μF/cm以上で、かつ水和時間が100min以上となり、さらに好ましい。
[Comparison of second immersion treatment temperature] Examples 2-6 to 2-11, 1-3
Further, from Examples 2-6 to 2-10 and 1-3, when the second immersion treatment temperature is 10 to 60 ° C., the capacitance is 260 μF / cm 2 or more and the hydration time is 100 min or more. preferable.

[第1浸漬処理溶液−pHの比較] 実施例2−12〜2−18
さらに、実施例2−13〜2−17より、第1浸漬処理溶液のpHは、3.2〜7.5の場合、静電容量が250μF/cm以上で、かつ水和時間が100min以上となり、さらに好ましい。
[Comparison of first immersion treatment solution-pH] Examples 2-12 to 2-18
Furthermore, from Examples 2-13 to 2-17, when the pH of the first immersion treatment solution is 3.2 to 7.5, the capacitance is 250 μF / cm 2 or more and the hydration time is 100 min or more. It is more preferable.

[第2浸漬処理溶液−pHの比較] 実施例2−19〜2−23
そして、実施例2−20〜2−22より、第2浸漬処理溶液のpHは、5.5〜7.8の場合、静電容量が250μF/cm以上で、かつ水和時間が100min以上となり、さらに好ましい。
[Comparison of second immersion treatment solution-pH] Examples 2-19 to 2-23
And from Examples 2-20 to 2-22, when the pH of the second immersion treatment solution is 5.5 to 7.8, the capacitance is 250 μF / cm 2 or more and the hydration time is 100 min or more. It is more preferable.

Claims (4)

アルミニウム電解コンデンサ用陰極箔の製造方法において、エッチングされた陰極箔をリン酸とアンモニア水でpH調整した溶液に浸漬する第1浸漬処理を行った後、第1熱処理を行い、次いで、前記第1熱処理後の陰極箔をリン酸とアンモニア水でpH調整した溶液に浸漬する第2浸漬処理を行った後、第2熱処理を行うことを特徴とするアルミニウム電解コンデンサ用陰極箔の製造方法。   In the method for producing a cathode foil for an aluminum electrolytic capacitor, a first heat treatment is performed by immersing an etched cathode foil in a solution adjusted to pH with phosphoric acid and aqueous ammonia, and then a first heat treatment is performed. A method for producing a cathode foil for an aluminum electrolytic capacitor, wherein a second heat treatment is performed after a second immersion treatment in which the heat-treated cathode foil is immersed in a solution adjusted in pH with phosphoric acid and aqueous ammonia. 前記第2浸漬処理の溶液の温度が10〜60℃であり、かつリン酸濃度が0.30〜0.75wt%であることを特徴とする請求項1記載のアルミニウム電解コンデンサ用陰極箔の製造方法。   The temperature of the solution of said 2nd immersion process is 10-60 degreeC, and phosphoric acid concentration is 0.30-0.75 wt%, The manufacture of the cathode foil for aluminum electrolytic capacitors of Claim 1 characterized by the above-mentioned. Method. 前記第1浸漬処理の溶液のpHが、3.2〜7.5であり、前記第2浸漬処理の溶液のpHが5.5〜7.8であることを特徴とする請求項1または2に記載のアルミニウム電解コンデンサ用陰極箔の製造方法。   The pH of the solution for the first immersion treatment is 3.2 to 7.5, and the pH of the solution for the second immersion treatment is 5.5 to 7.8. A method for producing a cathode foil for an aluminum electrolytic capacitor as described in 1 above. 前記第1および第2熱処理の温度が、100〜200℃であることを特徴とする請求項1〜3のいずれか1項に記載のアルミニウム電解コンデンサ用陰極箔の製造方法。   The temperature of the said 1st and 2nd heat processing is 100-200 degreeC, The manufacturing method of the cathode foil for aluminum electrolytic capacitors of any one of Claims 1-3 characterized by the above-mentioned.
JP2008090140A 2008-03-31 2008-03-31 Manufacturing method of cathode foil for aluminum electrolytic capacitor Pending JP2009246103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090140A JP2009246103A (en) 2008-03-31 2008-03-31 Manufacturing method of cathode foil for aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090140A JP2009246103A (en) 2008-03-31 2008-03-31 Manufacturing method of cathode foil for aluminum electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009246103A true JP2009246103A (en) 2009-10-22

Family

ID=41307682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090140A Pending JP2009246103A (en) 2008-03-31 2008-03-31 Manufacturing method of cathode foil for aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009246103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273348B1 (en) * 2011-12-08 2013-06-11 삼영전자공업(주) Electrode for aluminun electrolytic condenser and method thereof
CN106449110A (en) * 2016-12-07 2017-02-22 南通海星电子股份有限公司 Mesohigh-voltage corrosion foil five-stage face expansion corrosion method for aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273348B1 (en) * 2011-12-08 2013-06-11 삼영전자공업(주) Electrode for aluminun electrolytic condenser and method thereof
CN106449110A (en) * 2016-12-07 2017-02-22 南通海星电子股份有限公司 Mesohigh-voltage corrosion foil five-stage face expansion corrosion method for aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2008140904A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2009246103A (en) Manufacturing method of cathode foil for aluminum electrolytic capacitor
JP4520385B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP5004844B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4690171B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP4754404B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2007036048A (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2006108395A (en) Manufacturing method for electrode foil for aluminum electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2005142343A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP4662268B2 (en) Method for producing electrode foil for electrolytic capacitor
JP5262238B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007273903A (en) Method for fabricating electrode foil for electrolytic capacitor
JP3731596B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010219083A (en) Electrolytic capacitor cathode foil and method of manufacturing the same
JP2010196131A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2005194610A (en) Method of producing etching foil for electrolytic capacitor
JP2008112877A (en) Manufacturing method of electrode foil for electrolytic capacitor
JP2011066032A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP2010174266A (en) Method for manufacturing cathode foil for electrolytic capacitor and cathode foil for electrolytic capacitor